
Planning as satisfiability: parallel plans and
algorithms for plan search

Jussi Rintanen
Albert-Ludwigs-Universität Freiburg
Institut für Informatik, Georges-Köhler-Allee
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We address two aspects of constructing plans efficiently by means of satisfiability testing: efficient encoding of
the problem of existence of plans of a given numbert of time points in the propositional logic, and strategies for
finding plans given the formulae representing these formulae for different values oft.

For the first problem we consider a number of semantics for plans with parallel operator application. The stan-
dard semantics used most often in earlier work requires that parallel operators are independent and can therefore
be executed in any order. We consider a more relaxed definition of parallel plans, first proposed by Dimopoulos
et al., as well as normal forms for parallel plans that require every operator to be executed as early as possible.
We formalize the semantics of parallel plans emerging in this setting, and present translations of these semantics
into the propositional logic. The sizes of the translations are asymptotically optimal.

For the second problem we consider strategies based on testing the satisfiability of several formulae represent-
ing plans ofn time steps for several values ofn concurrently by several processes. We show that big efficiency
gains can be obtained in comparison to the standard strategy of sequentially testing the satisfiability of formulae
for an increasing number of time steps.
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1. INTRODUCTION

Satisfiability planning [Kautz and Selman 1996] is a leading approach to solving difficult
planning problems. An important factor in its efficiency is the notion of parallel plans
[Blum and Furst 1997; Kautz and Selman 1996].

The standard parallel encoding, thestate-based encoding[Kautz and Selman 1996], al-
lows the simultaneous execution of a set of operators as long as the operators are mutually
non-interfering. This condition guarantees that any total ordering on the simultaneous op-
erators is a valid execution and in all cases leads to the same state. We call this semantics
of parallelismthe step semantics. Two benefits of this form of parallelism in planning as
satisfiability are that, first, it is unnecessary to consider all possible orderings of a set of
non-interfering operators, and second, less clauses and propositional variables are needed
as the values of the state variables in the implicit intermediate states need not be repre-
sented. The purpose of parallelism is to improve planning efficiency, and not to address
genuine temporal parallelism arising for example in multi-agent domains.
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In this paper we formalize two more refined parallel semantics for AI planning and
present efficient encodings of them in the propositional logic. Both of the semantics are
known from earlier research but the first,process semantics, has not been considered in
connection with planning, and the second,1-linearization semantics, has not been given
efficient encodings in the propositional logic before.

The two semantics considered in this paper are orthogonal refinements of the step se-
mantics. The process semantics is stricter than the step semantics in that it requires all
actions to be taken as early as possible. Process semantics was first introduced for Petri
nets; for an overview see [Best and Devillers 1987]. Heljanko [2001] has applied this se-
mantics to the deadlock detection of 1-safe Petri nets and demonstrated that big efficiency
gains are possible.

The idea of the 1-linearization semantics was proposed by Dimopoulos et al. [1997].
They pointed out that it is not necessary to require that all parallel operators are non-
interfering as long as they can be executed in at least one order, which may make it possible
to execute still more operators simultaneously. They also showed how certain planning
problems can be modified to satisfy this condition and that the reduction in the number of
time points improves runtimes.

The structure of this paper is as follows. In Sections 2.1, 2.2 and 2.3 we discuss and
formalize the standard step semantics of parallel plans, the process semantics and the 1-
linearization semantics, respectively. A main result of this section is the identification of
the border between tractable and intractable notions of parallel plans based on the distinc-
tion between polynomial-time and NP-hard decision problems.

In Section 3 we give a detailed presentation of encodings of deterministic planning in
the classical propositional logic. Section 3.1 gives the part of the encodings shared by all
the semantics of parallel plans, and Sections 3.2, 3.2 and 3.2 give several encodings of
the three semantics of parallel plans. A main result is the introduction of encodings that
have a size that is asymptotically optimal. Encodings having this property have not been
presented earlier for planning problems.

Section 4 evaluates the advantages of the different semantics in terms of different kinds
of planning problems. Section 4.3 compares the semantics in terms of runtimes and plan
quality on difficult problems sampled from the space of all problem instances. Section 4.4
makes a comparison on a number of structured problem instances.

Section 5 presents two new algorithms for finding plans by using the translation of de-
terministic planning to the classical propositional logic. In Section 5.4 the properties of
the algorithms are analytically investigated, and in Section 5.5 their impact on planner
runtimes is experimentally demonstrated.

Section 6 discusses related work.

1.1 Notation

We consider planning in a setting where the states of the world are represented in terms of
a setP of Boolean state variables that take the valuetrueor false. We can form formulae in
the standard way from the state variables and the connectives∨, ∧ and¬. The connectives
→and↔ are defined in terms of the other connectives in the standard way. Eachstateis
a valuation ofP , that is, an assignments : P → {0, 1}. A literal is a formula of the form
a or ¬a wherea ∈ P is a state variable. We define thecomplementsof literals asa = ¬a
and¬a = a for all a ∈ P . A clauseis a disjunctionl1 ∨ · · · ∨ ln of one or more literals.
We also use the constant atoms> and⊥ for denotingtrueandfalse, respectively.
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We useoperatorsfor expressing how the state of the world can be changed.

Definition 1 Anoperatoron a set of state variablesP is a triple 〈p, e, c〉 where

(1) p is a propositional formula onP (the precondition),

(2) e is a set of literals onP (unconditional effects), and

(3) c is a set of pairsf B d (conditional effects) wheref is a propositional formula on
P andd is a set of literals onP .

For an operator〈p, e, c〉 its active effectsin states are

[o]s = e ∪
⋃
{d|f B d ∈ c, s |= f}.

The operator isapplicablein s if s |= p and its set of active effects ins is consistent (does
not contain botha and¬a for anya ∈ P .) If this is the case, then we defineappo(s) as the
unique state that is obtained froms by making[o]s true and retaining the truth-values of the
state variables not occurring in[o]s. For sequenceso1; o2; . . . ; on of operators we define
appo1;o2;...;on(s) asappon(· · ·appo2(appo1(s)) · · ·). For setsS of operators and statess
we defineappS(s): the result of simultaneously applying all operatorso ∈ S. We require
thatappo(s) is defined for everyo ∈ S and that the set[S]s =

⋃
o∈S [o]s of active effects of

all operators inS is consistent. For operatorso = 〈p, e, c〉 and atomic effectsl of the form
a and¬a (for a ∈ P ) define theeffect precondition EPCl(o) = > if l ∈ e and otherwise
EPCl(o) =

∨
{f |f B d ∈ c, l ∈ d} where the empty disjunction

∨
∅ is defined as⊥.

Lemma 2 For literals l, operatorso and statess, l ∈ [o]s if and only ifs |= EPCl(o).

We sometimes consider operators without conditional effects and disjunctivity in pre-
conditions:〈p, e, c〉 is aSTRIPS operatorif c = ∅ andp is a conjunction of literals. Let
π = 〈P, I,O,G〉 be aproblem instance, consisting of a setP of state variables, a stateI on
P (the initial state), a setO of operators onP , and a formulaG onP (the goal formula).
A (sequential)plan for π is a sequenceσ = o1; . . . ; on of operators fromO such that
appσ(I) |= G, that is, applying the operators in the given order starting in the initial state
is defined (precondition of every operator is true and the active effects are consistent when
the operator is applied) and produces a state that satisfies the goal formula. Sometimes we
say that an object is a plan forO andI when we just want to say that the plan is executable
starting fromI without specifying the goal states.

In the rest of this paper we also consider plans that are sequences ofsets of operators,
so that at each execution step all operators in the set are applied. The different semantics
discussed in the next sections impose further constraints on these sets.

2. DEFINITIONS OF PARALLEL PLANS

2.1 Step semantics

We formally present a semantics that generalizes the semantics used in most works on
parallel plans, for example by Kautz and Selman [1996].

Earlier definitions of parallel plans have been based on the notion ofinterference. The
parallel application of a set of operators is possible if the operators do not interfere. Lack
of interference guarantees that the operators can be executed sequentially in any total order
and the terminal state is independent of the ordering.
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Because we have a more general definition of operators than in most of the earlier works
which restrict to STRIPS operators, we start from a more abstract definition of parallel
plans. Then we identify the sources of computational complexity in our definition, and
identify a tractable notion of parallel plans that generalizes definitions considered earlier.
We investigate the order-independence as the basic principle in the step semantics: parallel
operators may be executed in any order, leading to the same state in every case.

Definition 3 (Step plans) For a set of operatorsO and an initial stateI, a step plan forO
andI is a sequenceT = 〈S0, . . . , Sl−1〉 of sets of operators for somel ≥ 0 such that there
is a sequence of statess0, . . . , sl (the execution ofT ) such that

(1) s0 = I,

(2) for all i ∈ {0, . . . , l− 1} and every total orderingo1, . . . , on of Si, appo1;...;on
(si)

is defined and equalssi+1,

We show that this abstract definition yields the standard definition of interference for
STRIPS operators, that is, an operator does not falsify the precondition of another operator
that is applied simultaneously.

Lemma 4 Let T = 〈S0, . . . , Sl−1〉 be a step plan with executions0, . . . , sl. Then the
following hold.

(1) There is noi ∈ {0, . . . , l− 1} and{〈p, e, c〉, 〈p′, e′, c′〉} ⊆ Si anda ∈ P such that
a ∈ e and¬a ∈ e′.

(2) appo(si) is defined for everyo ∈ Si.

PROOF. For (1) we derive a contradiction by assuming the opposite. Take an ordering
of the operators such that〈p, e, c〉 and〈p′, e′, c′〉 are the last operators in this order. Hence
si+1 |= ¬a. But the ordering in which the two operators are the other way round leads to a
states′i+1 such thats′i+1 |= a. This contradicts the assumption thatT is a step plan. Hence
(1) holds.

Consider any operatoro ∈ Si and any ordering in whicho is the first operator. For the
operators to be executable in this order,o has to be applicable insi. Therefore (2).

For operators without conditional effects (including STRIPS) operators the above lemma
means that for every setSi of parallel operators in a stepappSi

(si) is defined. With condi-
tional effects this is not necessarily the case: consider for example{〈>, ∅, {(¬a ∧ ¬b) B
{a,¬b}, b B {a}}〉, 〈>, ∅, {(¬a∧¬b) B {¬a, b}, a B {b}}〉} executed in a state satisfying
¬a ∧ ¬b.

Theorem 5 LetO be a set of STRIPS operators,I a state, andT = 〈S0, . . . , Sl−1〉 ∈
(2O)l

. ThenT is a step plan forO and I if and only if there is a sequence of states
s0, . . . , sl such that

(1) s0 = I,

(2) si+1 = appSi(si) for all i ∈ {0, . . . , l − 1}, and

(3) for no i ∈ {0, . . . , l − 1} and two operators{〈p, e, ∅〉, 〈p′, e′, ∅〉} ⊆ Si there is
m ∈ e such thatm is one of the conjuncts ofp′.
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PROOF. We first prove theonly if part. BecauseT is a step plan it has an execution
s0, . . . , sl as in Definition 3. We show that the three conditions on right side of the equiv-
alence is satisfied by this sequence of states.

By the definition of step plans, the first state of the execution is the initial stateI. Hence
we get (1).

By (1) of Lemma 4 for alli ∈ {0, . . . , l− 1} the setsEi = [Si]si
=

⋃
{e|〈p, e, ∅〉 ∈ Si}

are consistent. By (2) of the same lemma the preconditions of all operators inSi are true
in si. Hence the stateappSi

(si) is defined. The changes made by any total ordering ofSi

equalEi because the effects of no operator inSi override any effect of another operator in
Si. Thereforesi+1 = appSi(si). This establishes (2).

For the sake of argument assume there is literalm andi ∈ {0, . . . , l−1} such thatm ∈ e
for some〈p, e, ∅〉 ∈ Si andm is a conjunct of the preconditionp′ of some other〈p′, e′, ∅〉 ∈
Si. Then in every total ordering of the operators in which〈p, e, ∅〉 immediately precedes
〈p′, e′, ∅〉, the latter would not be applicable. This however contradicts the definition of
step plans. Therefore (3).

Then we prove theif part. Assume there is a sequences0, . . . , sl satisfying (1), (2) and
(3). We show thatT ands0, . . . , sl satisfy Definition 3 of step plans.

Thats0 = I is directly by our assumption (1).
We show thatappo1;...;on

(si) = appSi
(si) for all i ∈ {0, . . . , l − 1} and all total order-

ingso1, . . . , on of Si. BecauseappSi
(si) is defined, the precondition of everyo ∈ Si is

true insi andEi =
⋃
{e|〈p, e, ∅〉 ∈ Si} is consistent. Take any total orderingo1, . . . , on

of Si. By (3) no operator inSi can disable another operator inSi. Henceappo1;...;on(si)
is defined. BecauseEi is consistent effects of no operator can be overridden by another
operator inSi. HenceappSi

(si) = si+1 = appo1;...;on
(si). Because this holds for any

total ordering ofSi, the definition of step plans is fulfilled.

Testing whether a sequence of sets of STRIPS operators is a step plan can be done in
polynomial time. A simple quadratic algorithm tests the operators pairwise for occurrences
of a literal and its complement in the effects of the two operators and in the effect of one and
in the precondition of the other. Computing the successor states is similarly polynomial
time computation.

In the general case, however, the definition of step plans is computationally rather com-
plex. The proof shows that this holds even when operators have no conditional effects.
Hence the high complexity emerges merely from disjunctivity in operator preconditions.

Theorem 6 Testing whether a sequence of sets of operators is a step plan is co-NP-hard.

PROOF. The proof is by reduction from TAUT. Letφ be any propositional formula. Let
P = {a1, . . . , an} be the set of propositional variables occurring inφ. Our set of state
variables isP . Let S = {〈>, {a1}, ∅〉, . . . , 〈>, {an}, ∅〉, 〈φ, ∅, ∅〉}. Let s ands′ be states
such thats 6|= a ands′ |= a for all a ∈ P . We show thatφ is a tautology if and only if
T = 〈S〉 is a step plan forS ands.

Assumeφ is a tautology. Now for any total orderingo1, . . . , on of S the stateappo1;...,on(s)
is defined and equalss′ because all preconditions are true in all states and the set of effects
of all operators isP (it is consistent, and making them true ins yieldss′.) HenceT is a
step plan.

AssumeT is a step plan. Letv be any valuation. We show thatv |= φ. Let Sv =
{〈>, {a}, ∅〉|a ∈ P, v |= a}. The operatorsS can be ordered too1, . . . , on so that the
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operatorsSv = {o1, . . . , ok} precedeoz andS\(Sv ∪{oz}) follow oz. BecauseT is a step
plan,appo1;...;on

(s) is defined. Because alsoappo1;...;ok;oz
(s) is defined, the precondition

φ of oz is true inv = appo1;...;ok
(s). Hencev |= φ. Because this holds for any valuation

v, φ is a tautology.

Membership in co-NP is easy to show. There is a nondeterministic polynomial-time
algorithm that can determine that a sequence of sets of operators is not a step plan. It first
guesses an indexi and a total ordering for the firsti − 1 steps and two total orderings for
stepi, and then computes the two states that are reached by applying the operators in the
first i − 1 steps followed by one total ordering of stepi. If the states differ or if not all
operators are applicable, then the definition of step plans is not fulfilled.

To obtain a tractable notion of step plans for all operators, we can generalize the notion
of interference used for STRIPS operators to arbitrary operators. Lack of interference is a
sufficient but not necessary condition for a set of operators to be executable in every order
with the same results. First define positive and negative occurrences of state variables
a ∈ P in a formula inductively as follows.

Definition 7 (Positive and negative occurrences)We say that a state variablea occurs
positively inφ if positive(a, φ) is true. Similarly,a occurs negatively inφ if negative(a, φ)
is true.

positive(a, a) = true, for all a ∈ P
positive(a, b) = false, for all{a, b} ⊆ P such thata 6= b

positive(a, φ ∧ φ′) = positive(a, φ) or positive(a, φ′)
positive(a, φ ∨ φ′) = positive(a, φ) or positive(a, φ′)

positive(a,¬φ) = negative(a, φ)

negative(a, b) = false, for all{a, b} ⊆ P
negative(a, φ ∧ φ′) = negative(a, φ) or negative(a, φ′)
negative(a, φ ∨ φ′) = negative(a, φ) or negative(a, φ′)

negative(a,¬φ) = positive(a, φ)

A state variablea occurs inφ if it occurs positively or occurs negatively inφ.

Below we also consider positive and negative occurrences of state variables as effects.
A state variablea occurs positively as an effect in operator〈p, e, c〉 if a ∈ e or there is
f B d ∈ c such thata ∈ e. A state variablea occurs negatively as an effect in operator
〈p, e, c〉 if ¬a ∈ e or there isf B d ∈ c such that¬a ∈ e.

Definition 8 (Interference) LetP be a set of state variables. Operatorso = 〈p, e, c〉 and
o′ = 〈p′, e′, c′〉 overP interfereif there isa ∈ P that

(1) occurs positively as an effect ino and occurs inf for somef B d ∈ c′ or occurs
negatively inp′,

(2) occurs positively as an effect ino′ and occurs inf for somef B d ∈ c or occurs
negatively inp,

(3) occurs negatively as an effect ino and occurs inf for somef B d ∈ c′ or occurs
positively inp′, or

(4) occurs negatively as an effect ino′ and occurs inf for somef B d ∈ c or occurs
positively inp.
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Proposition 9 Testing whether two operators interfere can be done in polynomial time in
the size of the operators.

There are rather simple examples of valid step plans in which operators interfere ac-
cording to the above definition. Hence the restriction to steps without interfering operators
rules out many plans covered by the general definition (Definition 3.)

Example 10 Consider a setP of state variables and any setS of operators of the form

〈>, ∅, {a B {¬a}|a ∈ A} ∪ {¬a B {a}|a ∈ A}〉

whereA is any subset ofP (dependent on the operator.) Hence each operator reverses the
values of a certain set of state variables. Executing the operators in any order results in the
same state in every case. Hence〈S〉 is a step planning according to Definition 3 but any
two operators affecting the same state variable interfere. �

Before formally connecting the notion of interference to plans satisfying the step se-
mantics, we define a more relaxed notion of interference that is dependent on the state. In
Section 3 we primarily use the state-independent notion of interference.

Definition 11 (Interference in a state) LetP be a set of state variables. Operatorso =
〈p, e, c〉 ando′ = 〈p′, e′, c′〉 overP interfere in a states if there isa ∈ P such that

(1) a ∈ [o]s anda occurs ind for somed B f ∈ c′ or occurs negatively inp′,

(2) a ∈ [o′]s anda occurs ind for somed B f ∈ c or occurs negatively inp,

(3) ¬a ∈ [o]s anda occurs ind for somed B f ∈ c′ or occurs positively inp′, or

(4) ¬a ∈ [o′]s anda occurs ind for somed B f ∈ c or occurs positively inp.

Lemma 12 Let s be a state ando ando′ two operators. Ifo ando′ interfere ins, theno
ando′ interfere.

PROOF. Definition of interference has the form thato and o′ interfere if there is an
effect (conditional or unconditional) that fulfills some property. Interference ins is the
same, except that a restriction to a subclass of effects is made, those that are active ins.

As an example we consider one case. Other cases are analogous. So assumeo ando′

interfere ins because (case (1)) there isa ∈ P such thata ∈ [o]s anda occurs negatively
in the precondition ofo′. Now case (1) of the definition of interference is fulfilled because
there isa ∈ P that occurs negatively in the precondition ofo′.

Lemma 13 Lets be a state andS a set of operators so that appS(s) is defined and no two
operators interfere ins. Then appS(s) = appo1;...;on(s) for any total orderingo1, . . . , on

of S.

PROOF. Let o1, . . . , on be any total ordering ofS. We prove by induction on the length
of a prefix ofo1, . . . , on the following statement for alli ∈ {0, . . . , n − 1} by induction
on i: s |= a if and only if appo1;...;oi

(s) |= a for all state variablesa occurring in an
antecedent of a conditional effect or a precondition of operatorsoi+1, . . . , on.

Base casei = 0: Trivial.
Inductive casei ≥ 1: By the induction hypothesis the antecedents of conditional ef-

fects ofoi have the same value ins and inappo1;...;oi−1(s), from which follows[oi]s =
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[oi]appo1;...;oi−1 (s). Becauseoi does not interfere ins with operatorsoi+1, . . . , on, no state
variable occurring in[oi]s occurs in an antecedent of a conditional effect or in the pre-
condition ofoi+1, . . . , on, that is, these state variables do not change. Because[oi]s =
[oi]appo1;...;oi−1 (s) this also holds whenoi is applied inappo1;...;oi−1(s). This completes
the induction proof.

BecauseappS(s) is defined, the precondition of everyo ∈ S is true ins and [o]s is
consistent. By the fact we established above, the precondition of everyo ∈ S is true
also in appo1;...;ok

(s) and [o]appo1;...;ok
(s) is consistent for any{o1, . . . , ok} ⊆ S\{o}.

Hence any total ordering of the operators is executable. By the fact we established above,
[o]s = [o]appo1;...;ok

(s) for every{o1, . . . , ok} ⊆ S\{o}. Hence every operator causes the
same changes no matter what the total ordering is. BecauseappS(s) is defined, no operator
in S undoes the effects of another operator. Hence the same states′ = appS(s) is reached
in every case.

Theorem 14 LetI be a state,O a set of operators, andT = 〈S0, . . . , Sl−1〉 ∈ (2O)l
such

that there is a sequences0, s1, . . . , sl of states withs0 = I andsi+1 = appSi(si) for all
i ∈ {0, . . . , l − 1}. If for no i ∈ {0, . . . , l − 1} and {o, o′} ⊆ Si such thato 6= o′ the
operatorso ando′ interfere insi, thenT is a step plan forO andI.

PROOF. Directly by Lemma 13.

Theorem 15 LetI be a state,O a set of operators, andT = 〈S0, . . . , Sl−1〉 ∈ (2O)l
such

that there is a sequences0, s1, . . . , sl of states withs0 = I andsi+1 = appSi
(si) for all

i ∈ {0, . . . , l − 1}. If for no i ∈ {0, . . . , l − 1} and {o, o′} ⊆ Si such thato 6= o′ the
operatorso ando′ interfere, thenT is a step plan forO andI.

PROOF. By Lemma 12 and Theorem 14.

The state-dependent definition of interference in some cases allows more parallelism
than the state-independent definition.

Example 16 ConsiderS = {〈>, ∅, {a B {¬b}}〉, 〈>, ∅, {b B {¬a}}〉}. The operators
interfere according to Definition 8. However, the operators do not interfere in statess such
thats |= ¬a ∧ ¬b because no effect is active. �

A still more relaxed notion of interference which allows changing shared state variables
as long as the precondition does not become false nor the values of antecedents of con-
ditional effects change leads to high complexity because states other than the current one
have to be considered. Even if none of the operators change the values of antecedents of
conditional effects or preconditions in the current state, they may do that in states reach-
able by applying another operator. For example, the operator〈a∨ b, {c}, ∅〉 is not disabled
by 〈>, {¬a}, ∅〉 nor 〈>, {¬b}, ∅〉 alone, but in states reached by one of these operators
the other operator disables it. With a sufficient generality many schemes like this lead to
co-NP-hardness as in Theorem 6.

The problem with the general definition is that on different execution orders, all of which
must result in the same state, a different sequence of intermediate states is visited and it
seems unavoidable to make these intermediate states explicit when reasoning about the
executions.
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2.2 Process semantics

The idea of process semantics is that we only consider those step plans that fulfill the
following condition. There is no operatoro applied at timet + 1 with t ≥ 0 such that the
sequence of sets of operators obtained by movingo from time t + 1 to time t would be a
step plan leading to the same state according to Definition 3.

As an example consider a setS in which no two operators interfere nor have contradict-
ing effects and are initially applicable. If we have time points 0 and 1, we can apply each
operator alternatively at 0 or at 1. The resulting state at time point 2 will be the same in all
cases. So, under step semantics the number of equivalent plans on two time points is2|S|.
Process semantics says that no operator that is applicable at 0 may be applied later than at
0. Hence under process semantics there is only one plan instead of2|S|.

The idea of process semantics was previously investigated in conjunction with Petri nets
[Best and Devillers 1987]. The process semantics can be seen as a way of canonizing
step executions into a normal form where each operator of the step plan occurs as early as
possible. This canonical normal form is similar to the Foata normal form from the theory
of Mazurkiewicz traces [Diekert and Ḿetivier 1997; Heljanko 2001].

Definition 17 (Process plans)For a set of operatorsO and an initial stateI a process plan
forO andI is a step plan〈S0, . . . , Sl−1〉 forO andI with the executions0, . . . , sl such that
there is noi ∈ {1, . . . , l − 1} ando ∈ Si so that〈S0, . . . , Si−1 ∪ {o}, Si\{o}, . . . , Sl−1〉
is a step plan forO and I with the executions′0, . . . , s

′
l such thatsj = s′j for all j ∈

{0, . . . , i− 1, i+ 1, . . . , l}.

Notice that it is possible thato ∈ Si−1 and when transforming a step plan to a corre-
sponding process plan, the number of operators in the plan may decrease.

The important property of process semantics is that even though the additional condition
reduces the number of valid plans, whenever there is a plan witht time steps under step
semantics, there is also a plan with at mostt time steps under process semantics leading to
the same final state. From any step plan a plan satisfying the process condition is obtained
by repeatedly moving operators violating the condition one time point earlier.

Theorem 18 Letπ = 〈P, I,O,G〉 be a problem instance and〈S0, . . . , Sl−1〉 a step plan
for π. Then there is a process plan〈S′0, . . . , S′l−1〉 for π.

PROOF. Define a mappingρ from plans to plans: planρ(T ) is obtained fromT by
moving one operator earlier according to Definition 17 if possible, and otherwiseρ(T ) =
T . Define the functionf(〈S0, . . . , Sl−1〉) =

∑l−1
i=0(i·|Si|). Notice thatf(ρ(T )) < f(T ) if

ρ(T ) 6= T . Becausef can take only positive values, only finitely many moves are possible.
Whenf(ρ(T )) = f(T ), T is a process plan. Hence a process plan is obtained after finitely
many moves.

Theorem 19 Testing whether a sequence of sets of operators is a process plan is polynomial-
time reducible to testing whether a sequence of sets of operators is a step plan.

PROOF. The definition of process plans gives a procedure for doing the test. Consider
〈S0, . . . , Sl−1〉. For every operator inS1∪· · ·∪Sl−1 we have to test the process condition.
There are|S1|+ · · ·+ |Sl−1| such tests.
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Because we will later concentrate on step plans in which no two simultaneous operators
interfere, it is convenient to define a narrower class of process plans that are compatible
with the narrower class of step plans.

Definition 20 (i-Process plans)For a set of operatorsO and an initial stateI a pro-
cess plan forO and I is a step plan〈S0, . . . , Sl−1〉 for O and I with the execution
s0, . . . , sl such that there is noi ∈ {1, . . . , l − 1} and o ∈ Si so that〈S0, . . . , Si−1 ∪
{o}, Si\{o}, . . . , Sl−1〉 is a step plan forO andI with the executions′0, . . . , s

′
l such that

sj = s′j for all j ∈ {0, . . . , i− 1, i+ 1, . . . , l} and additionally, for noi ∈ {0, . . . , l − 1}
and{o, o′} ∈ Si such thato 6= o′ the operatorso ando′ interfere.

2.3 1-linearization semantics

We present a general formalization of a notion of plans first proposed by Dimopoulos et al.
[1997], calledpost-serializabilityby them.

Definition 21 (1-linearization plans) For a setO of operators and an initial stateI, a
1-linearization planis T = 〈S0, . . . , Sl−1〉 ∈ (2O)l

together with a sequence of states
s0, . . . , sl (the execution ofT ) for somel ≥ 0 such that

(1) s0 = I,

(2) for everyi ∈ {0, . . . , l − 1} there is a total orderingo1 < . . . < on of Si such that
si+1 = appo1;...;on(si).

The difference to step semantics is that instead of requiring that each stepSi can be
ordered to any total order, it is sufficient that there is one order that maps statesi to si+1.
Unlike in step semantics, the successorsi+1 of si is not uniquely determined solely by
Si, as the successor depends on the implicit ordering ofSi. Hence the definition has to
make the executions0, . . . , sl explicit. There are also other important technical differences
between 1-linearization and step semantics, most notably the fact that the properties given
in Lemma 4 for step semantics do not hold for 1-linearization semantics.

The more relaxed definition of 1-linearization plans sometimes allows much more par-
allelism than the definition of step plans.

Example 22 Consider a row ofn Russian dolls, each slightly bigger than the preceding
one. We can nest all the dolls by putting the first inside the second, then the second inside
the third, and so on, until every doll except the biggest one is inside another doll.

For four dolls this can be formalized as follows.

o1 = 〈out1∧ out2∧ empty2, {1in2,¬out1,¬empty2}, ∅〉
o2 = 〈out2∧ out3∧ empty3, {2in3,¬out2,¬empty3}, ∅〉
o3 = 〈out3∧ out4∧ empty4, {3in4,¬out3,¬empty4}, ∅〉

The shortest step plan nesting the dolls is〈{o1}, {o2}, {o3}〉. The 1-linearization plan
〈{o1, o2, o3}〉 nests the dolls in one step. �

Theorem 23 (i) Each step plan is a 1-linearization plan and (ii) for every 1-linearization
planT there is a step plan whose execution leads to the same final state as that ofT .



· 12

PROOF. (i) Consider a step planT = 〈S0, . . . , Sl−1〉. Any total ordering ofSi, i ∈
{0, . . . , l−1} takes statesi to the samesi+1. Hence,T is a 1-linearization plan. (ii) For a 1-
linearization planT = 〈S0, . . . , Sl−1〉, a step plan whose execution leads to the same final
state as that ofT can be obtained as follows:{o01}, . . . , {o0n0

}, . . . , {ol−1
1 }, . . . , {ol−1

nl−1
}

where for everyi ∈ {0, . . . , l − 1}, the sequence{oi
1}, . . . , {oi

ni
} is a total ordering ofSi

given by Condition 2 of Definition 21.

Theorem 24 LetO be a set of operators andI a state. Testing whetherT = 〈S0, . . . , Sl−1〉 ∈
(2O)l

is a 1-linearization plan forO andI with some executions0, . . . , sl is NP-hard, even
when the set of atomic effects of operators inSi for everyi ∈ {0, . . . , l − 1} is consistent.

PROOF. By reduction from SAT. Letφ be any propositional formula. LetP be the set
of propositional variables occurring inφ. Let s ands′ be states such thats 6|= a for all
a ∈ P ands′ |= a for all a ∈ P . We claim thatφ is satisfiable if and only if〈S〉 with
S = {〈>, {a}, ∅〉|a ∈ P} ∪ {〈φ, ∅, ∅〉} is a 1-linearization plan with executions, s′.

So assumeφ is satisfiable andv : P → {0, 1} is a valuation satisfyingφ. Then for
any total order onS such that exactly the operatorsSv = {〈>, {a}, ∅〉|a ∈ P, v(a) = 1}
precedeoφ = 〈φ, ∅, ∅〉 satisfies the definition of 1-linearization plans because executing
Sv produces the state/valuationv that satisfies the precondition ofoφ.

Assume〈S〉 is a 1-linearization plan. Hence there is a total orderingo1, . . . , on of S
such thatappo1;...;on

(s) is defined. Henceappo1;...;oj
(s) |= φ whereo1, . . . , oj are the

operators precedingoφ. Thereforeφ is satisfiable.

The preceding theorem (Theorem 24) and the following (Theorem 25) can be strength-
ened so that all operators inSi are applicable insi. This shows that later our restriction to
setsSi so thatappSi(si) is defined does not directly reduce complexity.

From the above proof we see that NP-hardness holds even when there are no conditional
effects and the effects of the operators are not in conflict with each other. However, the
proof assumes disjunctivity in preconditions becauseφ may be any formula. The question
arises if the problem is easier for STRIPS operators.

Theorem 25 Let O be a set of STRIPS operators andI a state. Testing whetherT =
〈S0, . . . , Sl−1〉 ∈ (2O)l

is a 1-linearization plan forO andI with some executions0, . . . , sl

is NP-hard.

PROOF. We reduce the NP-complete problem SAT to testing whether a sequence of sets
of operators is a 1-linearization plan. LetC be a set of clauses,n = |C| andA the set
of propositional variables occurring inC. Assign an indexi ∈ {1, . . . , n} to each clause.
The state variables areP = {c1, . . . , cn} ∪ {Ua|a ∈ A}. Define

o+a = 〈Ua, {¬Ua, cia+
1
, . . . , cia+

ma+
}, ∅〉 for all a ∈ A,

whereia+
1 , . . . , ia+

ma+
are the indices of clauses in whicha occurs positively

o−a = 〈Ua, {¬Ua, cia−
1
, . . . , cia−

ma−
}, ∅〉 for all a ∈ A,

whereia−1 , . . . , ia−ma−
are the indices of clauses in whicha occurs negatively

om = 〈c1 ∧ · · · ∧ cn, {Ua|a ∈ A}, ∅〉, and
S = {o+a |a ∈ A} ∪ {o−a |a ∈ A} ∪ {om}.

Let s ands′ be states such thats |= ¬c1 ∧ · · · ∧ ¬cn ∧
∧

a∈A Ua ands′ |= c1 ∧ · · · ∧
cn∧

∧
a∈A ¬Ua. We show that〈S〉 is a 1-linearization plan with executions, s′ if and only
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procedure linearize(s,S)
while S 6= ∅ do

if there iso = 〈p, e, ∅〉 ∈ S such thats |= p ande ∩ {l|l ∈ p′} = ∅ for all 〈p′, e′, ∅〉 ∈ S\{o}
then S := S\{o};
else return false;
s := appo(s);

end while
return true;

Fig. 1. Algorithm for testing whether a set of non-conflicting STRIPS operators can be linearized

if C is satisfiable. Assume thatv : A → {0, 1} is a valuation that satisfiesC. Take any
total ordering< of S such that for alla ∈ A, o+a < om iff v(a) = 1 ando−a < om iff
v(a) = 0. Applying the operators precedingom makes the state variablesc1, . . . , cn true
(becausev is a valuation that satisfiesC) and the state variablesUa, a ∈ A false. Now
om is applicable and its application makes allUa, a ∈ A true again. Then the remaining
operators are applicable, making everyUa, a ∈ A false. Hence that total ordering satisfies
the definition of 1-linearization plans for〈S〉 with executions, s′.

For the other direction, assume that〈S〉 is a 1-linearization plan with executions, s′,
that is, the operators can be applied in some order< to obtains′ from s. Because for every
a ∈ A the operatorso+a ando−a haveUa as the precondition and both makeUa false and
only om can makeUa true, it must be thato+a < om < o−a or o−a < om < o+a . Define
v : A → {0, 1} by v(a) = 1 iff o+a < om. Forom to be applicablec1 ∧ · · · ∧ cn must be
true. Hence the operators applied beforeom correspond to a valuationv that satisfies every
clause inC. Thereforev |= C.

Restriction to STRIPS operators alone does not make the test tractable, but if we com-
bine the restrictions of both of the preceding theorems then the test becomes polynomial
time.

Theorem 26 Let O be a set of STRIPS operators andI a state. Testing whetherT =
〈S0, . . . , Sl−1〉 ∈ (2O)l

with noSi containing operators with mutually conflicting effects,
is a 1-linearization plan forO andI with some executions0, . . . , sl is polynomial time.

PROOF. Because no two simultaneous operators have effects that conflict each other,
the execution of the plan – if one exists – is unambiguously determined by the sets of
effects of operators ofS0, . . . , Sl−1: s0 = I andsi+1 = app{〈>,e,∅〉|〈p,e,∅〉}(si) for all
i ∈ {0, . . . , l − 1}. The question that we must answer in polynomial time is whether the
operators at each time point can be ordered so that the precondition is satisfied when an
operator is applied.

The test is performed by the procedure calls linearize(si, Si) for all i ∈ {0, . . . , l −
1}. This procedure is given in Figure 1. It runs in polynomial time in the size ofS
because the number of iterations of thewhile loop is bounded by the cardinality ofS and
all the computation in one iteration is polynomial time in the size ofS. We show that the
procedure returnstrue if and only if a linearization ofS exists.

Assume linearize(s,S) returnstrue. Hence there is a sequence of statess′0, . . . , s
′
|S| and

a sequenceo′0, . . . , o
′
|S|−1 of operators such thats′0 = s ands′i+1 = appo′i

(s′i) for every
i ∈ {0, . . . , |S| − 1}. Henceappo′0;...;o

′
|S|−1

(s) = appS(s) which satisfies the conditions a
setS has to satisfy in the definition of 1-linearization plans.
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Assume linearize(s,S) returnsfalse. We show that no linearization exists. Becausefalse
is returned, for every〈p, e, ∅〉 ∈ S′ ⊆ S either s′ 6|= p (whereS′ and s′ are the last
values the variablesS ands have obtained) ore falsifies the precondition of at least one
of the operators inS′\{〈p, e, ∅〉}. Let o1, . . . , on be any total ordering ofS. We show that
appo1;...;on

(s) is not defined, and hence the total ordering does not satisfy Definition 21.
Take the operatoroi = 〈pi, ei, ∅〉 ∈ S′ that comes earliest in the orderingo1, . . . , on.
If s′i = appo1;...;oi−1(s) is not defined (because the precondition of one of the operators

is false when the operator is applied), then alsoappo1;...;on
(s) is not defined. So assume

s′i = appo1;...;oi−1(s) is defined.
Because linearize(s,S) returnsfalse, eithers′ 6|= pi or oi falsifies the precondition of at

least one ofS′\{oi}.
In the first case, because none of the operators inS\S′ falsifies any literal in the pre-

condition of any operator inS′, it must be thats 6|= pi. Becauses′ 6|= pi, there is at
least one conjunct (a literal) ofpi that is not made true by any operator inS\S′. Because
{o1, . . . , oi−1} ⊆ S\S′, that literal is also not true ins′i and hences′i 6|= pi.

In the second case, becauseoi is the first operator ofSi in the ordering, one of the
literals in the precondition of at least one operator inS′\{oi} becomes false whenoi is
applied. Because the operators inS are pairwise non-conflicting, there is no operator that
could make that literal and that precondition true again (here we use the assumption that
S consists of STRIPS operators.) Henceappo1;...;on(s) is not defined and the definition of
1-linearization plans is not satisfied.

To obtain a tractable notion of 1-linearization plans for operators in general we intro-
duce, similarly to step semantics, a syntactic notion characterizing dependencies between
operators that leads to a simple graph-theoretic test for plans.

Our quest for tractable notions of 1-linearization plans is motivated by the need to ef-
fectively encode the planning problem in the propositional logic (Section 3.) Even though
Theorem 26 allows 1-linearization plans in which the preconditions of some of the opera-
tors inSi are false insi, we will not consider encodings of this generality. The reason for
this is that there seem to be no simple such encodings of the semantics in the propositional
logic that would not involve making the implicit intermediate states explicit. Making the
intermediate states explicit would directly contradict the motivation of studying parallel
encodings in the first place.

Definition 27 (Affect) Let P be a set of state variables ando = 〈p, e, c〉 and o′ =
〈p′, e′, c′〉 operators overP . Theno affectso′ if there isa ∈ P such that

(1) a ∈ (e ∪
⋃
{d|f B d ∈ c}) and a occurs inf for somef B d ∈ c′ or occurs

negatively inp′, or

(2) ¬a ∈ e or ¬a ∈ d for somef B d ∈ c anda occurs inf for somef B d ∈ c′ or
occurs positively inp′.

This is like Definition 8 but we only consider one direction of interference: ifo ando′

interfere, then eithero affectso′ or o′ affectso.

Lemma 28 Let o1 < · · · < on be an ordering of a setS of operators so that ifo < o′

theno does not affecto′. Let s be a state so thats |= p and [o]s is consistent for every
〈p, e, c〉 ∈ S. Then the following hold.
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(1) appo1;...;oi
(s) |= pj for everyi ∈ {1, . . . , n− 1} andj ∈ {i+ 1, . . . , n} wherepj

is the precondition ofoj .
(2) [oj ]s = [oj ]appo1;...;oi

(s) for everyi ∈ {1, . . . , n− 1} andj ∈ {i+ 1, . . . , n}.
(3) For every i ∈ {1, . . . , n}, if app{o1,...,oi}(s) is defined, then appo1;...;oi

(s) =
app{o1,...,oi}(s).

PROOF. By induction oni.
Base casei = 0: Trivial.
Inductive casei ≥ 1: First we note thatappo1;...;oi

(s) is defined because by the induc-
tion hypothesis for case (1) the precondition ofoi is true inappo1;...;oi−1(s), and by the
assumptions and the induction hypothesis for case (2)[oi]appo1;...;oi−1 (s) is consistent.

Now consider anyj ∈ {i+ 1, . . . , n}.
Case (1): By the induction hypothesisappo1;...;oi−1(s) |= pj . Becauseoi does not affect

oj , oi does not falsifypj . Henceappo1;...;oi(s) |= pj .
Case (2): By the induction hypothesis[oj ]s = [oj ]appo1;...;oi−1 (s). Becauseoi does not

affectoj , oi does not change the value of any state variable occurring in the antecedent of
a conditional effect ofoj . Hence[oj ]s = [oj ]appo1;...;oi

(s).
Case (3): By the induction hypothesis, ifapp{o1,...,oi−1}(s) is defined, thenappo1;...;oi−1(s) =

app{o1,...,oi−1}(s). So assume alsoapp{o1,...,oi}(s) is defined, that is,[oi]s does not con-
tradict [{o1, . . . , oi−1}]s. By (2) [oi]s = [oi]appo1;...;oi−1 (s). Because the effects ofoi do
not override the effects of any operator earlier in the sequence, we getappo1;...;oi

(s) =
app{o1,...,oi}(s).

Theorem 29 LetO be a set of operators,I a state,T = 〈S0, . . . , Sl−1〉 ∈ (2O)l
, and and

s0, . . . , sl a sequence of states. If

(1) s0 = I, and
(2) for everyi ∈ {0, . . . , l−1} there is a total ordering< ofSi such that ifo < o′ then
o does not affecto′, and

(3) si+1 = appSi(si) for everyi ∈ {0, . . . , l − 1}.
thenT is a 1-linearization plan forO andI.

PROOF. Because by assumptionappSi
(si) is defined, the preconditions of all operators

in Si are true insi and [o]si
is consistent for everyo ∈ Si. Hence the assumptions of

Lemma 28 are satisfied and by (3)appo1;...;on(si) = appSi(si) for some total ordering
o1, . . . , on of Si.

For STRIPS operators the subclass of 1-linearization plans definable by using the notion
of affectsin Theorem 29 is not very restrictive. In comparison to arbitrary 1-linearization
plans, the only restrictions are that setsS of simultaneous operators have no contradicting
effects and all operators are applicable in the current states, that is,appS(s) is defined.
This is stated in the following theorem.

Theorem 30 Let π = 〈P, I,O,G〉 be a problem instance so that every operator inO
is a STRIPS operator and letT = 〈S0, . . . , Sl−1〉 be a 1-linearization plan forπ with
executions0, . . . , sl so thats0 = I and si+1 = appSi

(si) for everyi ∈ {0, . . . , Sl−1}.
Then for everyi ∈ {0, . . . , l − 1} there is a total ordering< of Si such that ifo < o′ then
o does not affecto′.
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PROOF. For STRIPS operators an operatoro affectso′ if and only if o has effectm and
m is one of the conjuncts in the precondition ofo′. The result follows from the proof of
Theorem 26. The procedurelinearize repeatedly selects an operator that does not affect
any of the remaining operators.

Even though the class of 1-linearization plans based onaffectsis narrower than the class
sanctioned by Definition 21, much more parallelism is still possible in comparison to the
class of step plans satisfying the non-interference condition. For instance, Example 22
belongs to this class.

Similarly to the notion of interference in a state (Definition 11), we could define when
an operator affects another operator in a given state. This would lead to a slightly more
relaxed but still efficient test of whether 1-linearization semantics is fulfilled.

Further, we could combine 1-linearization semantics with processes. Formal definition
can be abstractly given like for step semantics (Definition 17). Practical notions of 1-
linearization processes are based on the observation that an operatoro ∈ Si+1 can be
moved from time pointt+ 1 to t if o could be the first operator ofSi+1 and the last ofSi

in the respective total orderings and have the same active effects in both cases.

3. PLANNING AS SATISFIABILITY

Planning as satisfiability was introduced by Kautz and Selman [1992]. In addition to being
a powerful approach to planning, it is also the basis ofbounded model-checking[Biere,
Cimatti, Clarke, and Zhu 1999]1.

In this section we present encodings of the different semantics of parallel plans in the
propositional logic. A basic assumption in all these encodings is that for setsS of simulta-
neous operators applied in states the stateappS(s) is defined, that is, all the preconditions
are true ins and the set of active effects of the operators is consistent. Given this assump-
tion, the encodings of all the semantics share a common part that is described next.

3.1 The base encoding

Planning can be performed by propositional satisfiability testing as follows. Produce for-
mulaeφ0, φ1, φ2, . . . such thatφl is satisfiable iff there is a plan of lengthl. The formulae
are tested for satisfiability in the order of increasing plan length, and from the satisfying
assignment that is found a plan is constructed. The alternative semantics for this kind of
parallel plans and their encodings in the propositional logic differ only in the formulae re-
stricting simultaneous application of operators. Next we describe the part of the encodings
shared by all the semantics.

For the problem instanceπ = 〈P, I,O,G〉 let the (Boolean) state variables beP =
{a1, . . . , an} and the operatorsO = {o1, . . . , om}. For every state variablea ∈ P we
have the propositional variablesat that express the value ofa at different time pointst ∈
{0, . . . , l}. Similarly, for every operatoro ∈ O we haveot for expressing whethero is
applied att ∈ {0, . . . , l − 1}. For formulaeφ about the values of the state variables we
denote the formula with all state variables subscripted with the index to a time pointt by
φt.

1The work on bounded model-checking started at CMU after Alessandro Cimatti gave a seminar talk on the
techniques used in the 1998 AIPS planning competition in which the BLACKBOX planner by Kautz and Selman
participated [Cimatti 2003].
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Given an problem instanceπ = 〈P, I,O,G〉, a formulaΦπ,l is generated to answer the
following question. Is there an execution of a sequence ofl sets of operators fromO that
reaches a state satisfyingG from the initial stateI? The formulaΦπ,l is conjunction of
I0 (formula describing the initial state with propositional variables marked with time point
0),Gl, and the formulae described below, instantiated with allt ∈ {0, . . . , l − 1}.

First, for everyo = 〈p, e, c〉 ∈ O there are the following formulae. The preconditionp
has to be true when the operator is applied.

ot→pt (1)

If o is applied, then its unconditional effectse are true at the next time point.

ot→et+1 (2)

Here we view setse of literals as conjunctions of literals. For everyf B d ∈ c the effects
d will be true if f is true at the preceding time point.

(ot ∧ ft)→dt+1 (3)

Second, the value of a state variable does not change if no operator that changes it is ap-
plied. Hence for every state variableawe have two formulae, one expressing the conditions
for the change ofa to false from true,

(at ∧ ¬at+1)→((o1t ∧ (EPC¬a(o1))t) ∨ · · · ∨ (om
t ∧ (EPC¬a(om))t)) (4)

and another from true to false:

(¬at ∧ at+1)→((o1t ∧ (EPCa(o1))t) ∨ · · · ∨ (om
t ∧ (EPCa(om))t)). (5)

These formulae can be simplified by using the obvious equivalences whenEPC¬a(o) = ⊥.
The formulaeΦπ,l, just like the definition ofappS(s), allow sets of operators in parallel

that do not correspond to any sequential plan. For example, the operators〈a, {¬b}, ∅〉
and〈b, {¬a}, ∅〉 may be executed simultaneously resulting in a state satisfying¬a ∧ ¬b,
although this state is not reachable by the two operators sequentially. Plans following the
three semantics of parallel plans can always be executed sequentially. Further formulae
that are discussed in the next sections are needed for capturing the three semantics.

Theorem 31 Letπ = 〈P, I,O,G〉 be a problem instance. Then there isT = 〈S0, . . . , Sl−1〉 ∈
(2O)l

so thats0, . . . , sl are states so thatI = s0, sl |= G, andsi+1 = appSi(si) for all
i ∈ {0, . . . , l − 1} if and only if there is a valuation satisfying the formulaΦπ,l.

PROOF. For the proof from left to right, we construct a valuationv as follows. For all
i ∈ {0, . . . , l} and all state variablesa ∈ P definev(ai) = si(a). For alli ∈ {0, . . . , l−1}
and all operatorso ∈ O definev(oi) = 1 iff o ∈ Si.

We show thatv |= Φπ,l. Thatv |= I0 ∧Gl is immediate. It remains to show satisfaction
of instances of the schemata (1), (2), (3), (4) and (5).

(1) Consider anyi ∈ {0, . . . , l − 1} ando = 〈p, e, c〉 ∈ O. If o 6∈ Si, thenv 6|= oi

and immediatelyv |= oi→pi (Formula 1). So assumeo ∈ Si. By assumptionsi is a
state such thatappSi

(si) is defined. Hence the precondition ofo is true insi. Hence
v |= oi→pi (Formula 1).
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(2) Consider anyi ∈ {0, . . . , l − 1} ando = 〈p, e, c〉 ∈ O. If o 6∈ Si, thenv 6|= oi

and immediatelyv |= oi → ei+1 (Formula 2). So assumeo ∈ Si. Becauseo ∈ Si,
the unconditional effectse of o are true insi+1 = appSi(si). Hencev |= oi → ei+1

(Formula 2).

(3) Consider anyi ∈ {0, . . . , l − 1} ando = 〈p, e, c〉 ∈ O andf B d ∈ c. If o 6∈ Si,
thenv 6|= oi and immediatelyv |= (oi ∧ fi)→ ei+1 (Formula 2). So assumeo ∈ Si.
Now v |= (oi ∧ fi)→di+1 (Formula 3) because ifsi |= f then the literalsd are active
effects and are true insi+1 and consequentlyv |= di+1.

(4) Consider anyi ∈ {0, . . . , l − 1} anda ∈ P . According to the definition ofsi+1 =
appSi

(si), a can be true insi and false insi+1 only if ¬a ∈ [o]si
for someo ∈ Si.

By Lemma 2¬a ∈ [o]si
if and only if si |= EPC¬a(o). So if the antecedent of

(ai∧¬ai+1)→((o1i ∧ (EPC¬a(o1))i)∨ · · ·∨ (om
i ∧ (EPC¬a(om))i)) is true, then one

of the disjuncts of the consequent is true, whereO = {o1, . . . , om}. This yields the
truth of instances of Formula 4.
Proof for Formula 5 is analogous.

For the proof from right to left, assumev is a valuation satisfying the formulaΦπ,l. We
construct a plan〈S0, . . . , Sl−1〉 and a corresponding executions0, . . . , sl.

Define for alli ∈ {0, . . . , l} the statesi as the valuation ofP such thatsi(a) = v(ai)
for everya ∈ P . DefineSj = {o ∈ O|v(oj) = 1} for all j ∈ {0, . . . , l − 1}.

ObviouslyI = s0 andsl |= G. We show thatsi+1 = appSi
(si) for all i ∈ {0, . . . , l−1}.

The preconditionp of every operatoro ∈ Si is true insi becausev |= oi andv |= oi→
pi ∈ Φπ,l (Formula 1).
si+1 |= [o]si for everyo ∈ Si becausev |= oi andv |= oi → ei+1 ∈ Φπ,l for the

unconditional effectse of o (Formula 2) andv |= (oi ∧ fi)→di+1 for conditional effects
f B d of o. This also means that[Si]si

is consistent andappSi
(si) is defined.

For state variablesa not occurring in[Si]si
we have to show thatsi(a) = si+1(a).

Becausea does not occur in[Si]si
, for everyo ∈ {o1, . . . , om} = O eithero 6∈ Si or both

a 6∈ [o]si and¬a 6∈ [o]si . Hence eitherv 6|= oi or (by Lemma 2)v |= ¬(EPCa(o))i ∧
¬(EPC¬a(o))i. This together with the assumptions thatv |= (ai ∧ ¬ai+1) → ((o1i ∧
(EPC¬a(o1))i) ∨ · · · ∨ (om

i ∧ (EPC¬a(om))i)) (Formula 4) andv |= (¬ai ∧ ai+1) →
((o1i ∧ (EPCa(o1))i)∨· · ·∨ (om

i ∧ (EPCa(om))i)) (Formula 5) impliesv |= (ai→ai+1)∧
(¬ai→¬ai+1). Therefore everya ∈ P not occurring in[Si]si

remains unchanged. Hence
si+1 = appSi(si).

Proposition 32 The size of the formulaΦπ,l is linear in l and the size ofπ.

Theorem 31 says that a sequence of operators fulfilling certain conditions exists if and
only if a given formula is satisfiable. The theorems connecting certain formulae to certain
notions of plans (Theorems 33, 35, 40, 41, 42) provide an implication only in one direction:
whenever the formula for a given value of parameterl is satisfiable, a plan ofl time points
exists. The other direction is missing, because the formulae in general only approximate
the respective semantics and there is no guarantee that the formula for a givenl is satisfiable
when a plan withl time points exists. However, the formula with some higher value of
l is satisfiable. This follows from the fact that whenever a step or 1-linearization plan
〈S0, . . . , Sl−1〉 with n = |S0|+ · · ·+ |Sl−1| occurrences of operators exists, there is a plan
consisting ofn singleton sets, and the corresponding formulaeΦπ,n∧Φx

O,n are satisfiable.
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An exact match between step semantics and its encodings and 1-linearization semantics
and the first two of the three 1-linearization encodings holds for problem instances with
STRIPS operators only. We state as an instance one of these exact matches as Theorem 34.

The implications of the approximative nature of the step semantics encodings for process
semantics are more serious. For STRIPS operators the encodings for process semantics are
exact: the formula forn time points is satisfiable if and only if a process plan of length
n exists. However, in the general case the inexactness of the underlying step encoding
leads to a mismatch between process semantics and the formulae. The problem is that the
movement of an operator to an earlier time point may be prevented by the too strict step
semantics encoding even when it is allowed by Definition 3. Hence the process semantics
has to be understood in relation to particular classes of step plans: an operator has to be
moved earlier only if there is a corresponding step planbelonging to the subclass in ques-
tion, for example, the subclass of step plans in which no two parallel operators interfere.
This is the reason why we introduced the notion of i-process plans in Definition 20.

It is often useful to use constraints that do not affect the set of satisfying valuations
but instead help pruning the set of incomplete solutions encountered during satisfiability
testing, and thereby speed up plan search. The most important type of such constraints
for many planning problems is invariants, which are formulae that are true in all states
reachable from the initial state. Typically, one uses only a restricted class of invariants that
are efficient (polynomial time) to identify. There are efficient algorithms for finding many
invariants that are 2-literal clauses [Rintanen 1998; Blum and Furst 1997]. Theorem 31
does not hold if invariants are included because invariants contain information about the
set of states that are not reachable by any sequential plan. For example, the formulaa ∨ b
is an invariant that would rule out states satisfying¬a ∧ ¬b that are reachable from any
state satisfyinga ∧ b by simultaneous application of〈a, {¬b}, ∅〉 and〈b, {¬a}, ∅〉 but not
sequentially reachable by these operators.

3.2 Step semantics

We showed in Section 2.1 that the classes of step plans definable in terms of the notions
of interference and interference in a state are tractable, in contrast to the general definition
that is co-NP-hard.

In this section we present two encodings of the subclass of plans following step seman-
tics in which no two parallel operators interfere. The first encoding is similar to the one
used by Kautz and Selman in the BLACKBOX planner [Kautz and Selman 1999] and has
a size that is quadratic in the number of the operators. The size of the second encoding is
linear in the size of the operators. Encodings for the more relaxed notion of interference in
a state can be given, including an encoding with a linear size, but we do not discuss them
in detail in this work.

3.2.1 A quadratic encoding.The easiest way to encode the interference condition in
Definition 8 is to introduce formulae

¬ot ∨ ¬o′t (6)

for every pair of interfering operatorso ando′. Notice that according our definition, op-
erators that could never be applied simultaneously (because of conflicting preconditions
or effects) may interfere. The formulae (6) for these kinds of pairs of operators are of
course superfluous. DefineΦstep,1

O,l as the conjunction of the formulae (6) for all time
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pointst ∈ {0, . . . , l − 1} and for all pairs of interfering operators{o, o′} ⊆ O that could
be applied simultaneously. There areO(ln2) such formulae forn operators.

Theorem 33 Letπ = 〈P, I,O,G〉 be a problem instance. There is a step plan of lengthl
for π if Φπ,l ∧ Φstep,1

O,l is satisfiable.

PROOF. Directly by Theorems 15 and 31.

Similar quadratic-size encoding can be given also for state-dependent interference. The
state-dependence is easy to encode by a formula that has a size proportional to the two
operators: the simultaneous execution is allowed if there is no active effect of one operator
that changes a state variable in the precondition or antecedent of a conditional effect of the
other. Notice that for STRIPS operators the state-dependent and state-independent notions
of interference coincide, and even further, the above encoding of the step semantics is
perfectly accurate.

Theorem 34 Let π = 〈P, I,O,G〉 be a problem instance whereO is a set of STRIPS
operators. There is a step plan of lengthl for π if and only ifΦπ,l ∧ Φstep,1

O,l is satisfiable.

PROOF. The if direction is by Theorem 33. It remains to show theonly if direction. So
assume there is a step planT = 〈S0, . . . , Sl−1〉. By Theorem 31 there is a valuationv such
thatv |= Φπ,l. We show that alsov |= Φstep,1

O,l , that is, any conjunct¬oi ∨ ¬o′i of Φstep,1
O,l

for i ∈ {0, . . . , l − 1} and{o, o′} ⊆ O is satisfied byv.
Because¬oi ∨ ¬o′i is in Φstep,1

O,l , o and o′ interfere. By Definition 8 this means for
operators without conditional effects that there is a literalm such thatm is an effect ofo
andm is a conjunct of the precondition ofo′, or the other way round. Hence by Theorem 5
{o, o′} 6⊆ Si. By the construction ofv in the proof of Theorem 31v |= ¬oi ∨ ¬o′i. Hence
every conjunct ofΦstep,1

O,l is satisfied byv.

3.2.2 A linear encoding.Because the size ofΦπ,l is linear in l and the size ofπ, the
quadratic encoding of the interference constraints may dominate the size ofΦπ,l ∧Φstep,1

O,l .
We give a linear-size encoding for the interference constraints.

The idea of the encoding is to order all operators that may make a state variablep ∈ P
false (respectively true) or that have a positive (respectively negative) occurrence ofp in
the precondition or any occurrence in an antecedent of a conditional effect arbitrarily as
o1, . . . , on, and whenever an operatoro falsifying p is applied, a sequence of implications
prevents the application of every operatoro′ preceding or followingo whenevero′ has
positive occurrences ofp in the precondition or any occurrences in the antecedents of
conditional effects. One chain of implications, through a set of auxiliary propositional
variables, goes to the right in the ordering and another chain to the left.

Let o1, . . . , on be any fixed ordering of the operators. We produce a formula for every
literalm ∈ P ∪{¬p|p ∈ P} for preventing the simultaneous applications of operators that
falsifym and operators that requirem to remain true (that is, have a positive occurrence of
the literal in the precondition or any occurrence in the antecedent of a conditional effect.)
Let Em be the set of operators that may falsifym and letRm be the set of operators that
may requirem to remain true.
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The formula we synthesize is the conjunction ofchain(o1, . . . , on;Em;Rm;m1) and
chain(on, . . . , o1;Em;Rm;m2) for all literalsm where

chain(o1, . . . , on;E;R;m) =
∧
{oi

t→aj,m
t |i < j, oi ∈ E, oj ∈ R, {oi+1, . . . , oj−1} ∩R = ∅}

∪{ai,m
t →aj,m

t |i < j, {oi, oj} ⊆ R, {oi+1, . . . , oj−1} ∩R = ∅}
∪{ai,m

t →¬oi
t|oi ∈ R}.

The parameterm is needed to make the names of the auxiliary variables unique. Them1

andm2 are two names distinguishing the auxiliary variables for the two sets of formulae
for literalm.

The number of 2-literal clauses inchain(o1, . . . , on;Em;Rm;mi) is at most three times
the number of operators in whichm occurs, and hence inchain(o1, . . . , on;Em;Rm;m1)∧
chain(on, . . . , o1;Em;Rm;m2) at most six times the number of operators. Because we
have these formulae for every literalm, the number of 2-literal clauses is linearly bounded
by the size of the set of operators. LetΦstep,2

O,l be the conjunction of the above formulae for
all literalsm and time pointst ∈ {0, . . . , l − 1}.

Theorem 35 Let π = 〈P, I,O,G〉 be a problem instance.Φπ,l ∧ Φstep,1
O,l is satisfiable

if and only ifΦπ,l ∧ Φstep,2
O,l is satisfiable. Hence there is a step plan forπ of lengthl if

Φπ,l ∧ Φstep,2
O,l is satisfiable.

PROOF. Let v be a valuation such thatv |= Φstep,1
O,l . We construct a valuationv′ that

satisfiesΦstep,2
O,l . For all variables occurring inΦstep,1

O,l we havev′(x) = v(x). Additionally,

v′ assigns values to the auxiliary variablesai,m1

t andai,m2

t occurring only inΦstep,2
O,l .

Let v′(aj,m1

t ) = 1 iff there isoi ∈ Em such thati < j andv(oi
t) = 1. Letv′(aj,m2

t ) = 1
iff there isoi ∈ Em such thati > j andv(oi

t) = 1.
We consider only the components of the first conjunct ofchain(o1, . . . , on;Em;Rm;m1)∧

chain(on, . . . , o1;Em;Rm;m2). The second conjunct is analogous.

Consideroi
t→aj,m1

t such thati < j, oi ∈ Em, o
j ∈ Rm, {oi+1, . . . , oj−1} ∩ Rm = ∅.

If v′(oi
t) = 1, then by the definition ofv′ alsov′(aj,m1

t ) = 1 becausei < j andv′(oi
t) = 1.

Considerai,m1

t → aj,m1

t such thati < j, {oi, oj} ⊆ Rm, {oi+1, . . . , oj−1} ∩ Rm = ∅.
If v(ai,m1

t ) = 1, then there isoi′ ∈ Em such thati′ < i andv′(oi′

t ) = 1. Therefore by the

definition ofv′ we havev′(aj,m1

t ) = 1.

Considerai,m1

t →¬oi
t such thatoi ∈ Rm. If v(ai,m1

t ) = 1, then there isoi′ ∈ Em such
thati′ < i andv′(oi′

t ) = 1. Becausev′ |= ¬oi′

t ∨ ¬oi
t, it must be thatv′ |= ¬oi

t.
Hence all conjuncts ofchain(o1, . . . , on;Em;Rm;m1) are true inv′.
For the other direction, letv be a valuation such thatv |= Φstep,2

O,l . We show thatv |=
Φstep,1

O,l . Take any conjunct¬ot ∨ ¬o′t of Φstep,1
O,l . If v 6|= ot, then the truth immediately

follows. Assumev |= ot. Becauseo = 〈p, e, c〉 and o′ = 〈p′, e′, c′〉 interfere, there
is a state variablea ∈ P that occurs as a negative effect ofo and either ind for some
f B d ∈ c′ or positively inp′ (or, the roles ofo ando′ are the other way around, or the
polarity of the occurrences ofa is complementary: the proofs of these cases are analogous.)
Now o ∈ Ea ando′ ∈ Ra. We assume that the indexo is lower than that ofo′. The case
with a higher index is analogous: instead ofchain(o1, . . . , on;Ea;Ra; a1) we consider
chain(on, . . . , o1;Ea;Ra; a2).
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We show that becausev |= chain(o1, . . . , on;Ea;Ra; a1)t, alsov |= ¬o′t.
The formulachain(o1, . . . , on;Ea;Ra; a1)t contains a sequence of implicationso′t →

aj1,a
t →aj2,a

t →· · ·→ajk,a
t →¬ojk

t whereojk = o′. Because these implications are true in
v, v 6|= o′t, and thereforev |= ¬ot ∨ ¬o′t. Because this holds for all conjuncts ofΦstep,1

O,l ,

we havev |= Φstep,1
O,l . Becausev |= Φπ,l ∧ Φstep,1

O,l by Theorem 33 there is a step plan of
lenghtl for π.

The number of auxiliary propositional variables is linearly proportional to the number of
operators and state variables. Hence this linear-size encoding of the interference constraints
may lead to formulae with a much higher number of propositional variables than with the
quadratic size encoding of the constraints. The higher number of propositional variables
may negatively affect the runtimes of satisfiability algorithms.

A compromise between the size of the constraints and the number of propositional vari-
ables is possible. There is an encoding of the constrains with only a logarithmic number
of new propositional variables and with onlyO(n log n) clauses, thereby improving the
quadratic encoding with respect to the number of clauses and improving the linear encod-
ing with respect to the number of propositional variables. We just describe the idea of the
encoding without formalizing it and proving the formalization correct.

The idea of the encoding is similar to that ofchain(o1, . . . , on;Em;Rm;) in that an
arbitrary ordering is imposed on the operators and the application of an operator prevents
the application of operators later in the ordering. For each literalm we encode a binary
number between0 and|Rm|−1 in a logarithmic number of state variables. Then there is a
formula for each operatoro in Em stating that the binary number form has a value at least
as high as the index of the first operator inRm that followso. For each operatoro′ in Rm

there is similarly a formula that says thato′ is not applied if the value of the binary number
is lower than the index ofo′. Hence no operator inRm following an applied operator in
Em is applied.

The linear-size encoding and the aboven log n-size encoding can both be made state-
dependent by observing the application ofo with respect to the constrains related to literal
m only if m is an active effect ofo, that is, whenEPCm(o) is true.

3.3 Process semantics

The encoding of process semantics extends the encoding of step semantics, so we take all
formulae for the latter (for exampleΦπ,l ∧ Φstep,2

O,l ) and have further formulae specific to
process semantics.

The encoding of the underlying step semantics encoding and the additional constraints
for process semantics are tightly coupled: when the constraints force the movement of an
operator to the preceding time point, the step semantics constraints for the preceding time
points must be compatible with the move. In this section we discuss the encoding of the
process constraints for the subclass of step plans based on interference (Definition 8 and
Section 3.2.) Constraints compatible with broader classes of step plans (for example based
on Definition 11) are more complicated.

The formulae for process semantics deny the application of an operatoro at timet+1 if
movingo to timet would also result in a valid step plan according to Definition 3 and the
state at timet+ 2 would stay the same.

An operatoromay be applied at timet+1 only if at least one of the following conditions
hold.
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(1) The precondition ofo just became true att+ 1, that is, the precondition is false att.

(2) The operatoro interferes with an operator at time pointt (Definition 8.)
This includes the following pairwise tests.
(a) Could one operator falsify the precondition of the other?
(b) Could one operator change set of active effects of the other, that is, change the

value of the antecedent of a conditional effect of the other?
Notice that if none of the operators att interfere with the operator att + 1 then the
operator would have the same effects att as it would have att+ 1.

(3) The active effects ofo are in conflict with the active effects of an operator att.

We give a linear-size encoding of these conditions. Let the set of state variables be
P = {a1, . . . , an}. We introduce the following auxiliary propositional variables.

(1) The variablesai,1
t denote that an operator at timet+ 1 makes (may make)ai trueand

hence a justification for not moving that operator earlier is that
(a) there is an operator att with anegativeoccurrence ofai in its precondition, or
(b) there is an operator att with an occurrence ofai in the lhs of a conditional effect,

(2) The variablesai,¬1
t denote that an operator at timet + 1 makes (may make)ai false

and hence a justification for not moving that operator earlier is that
(a) there is an operator att with apositiveoccurrence ofai in its precondition, or
(b) there is an operator att with an occurrence ofai in the lhs of a conditional effect.

(3) The variablesai,2
t denote that an operator at timet+ 1 has an occurrence ofai in the

antecedent of a conditional effect and hence a justification for not moving that operator
earlier is that there is an operator att that changes the value ofai.

(4) The variablesai,3
t denote that an operator at timet+ 1 has apositiveoccurrence ofai

in the precondition and hence a justification for not moving that operator earlier is that
there is an operator att that makes (may make)ai false.

(5) The variablesai,¬3
t denote that an operator at timet+ 1 has anegativeoccurrence of

ai in the precondition and hence a justification for not moving that operator earlier is
that there is an operator att that makes (may make)ai true.

(6) The variablesai,4
t denote that an operator at timet + 1 (actually) makesai true and

hence a justification for not moving that operator earlier is that there is an operator at
t that (actually) makesai false.

(7) The variablesai,¬4
t denote that an operator at timet+ 1 (actually) makesai falseand

hence a justification for not moving that operator earlier is that there is an operator at
t that (actually) makesai true.

Notice that the definition of interference in Definition 8 is about occurrences of a state
variable in the effects of one operator and in the precondition or in the antecedents of
conditional effects of another operator. This is the reason why in the above description we
write that an operatormay makea state variable true or false. Below we make this more
explicit.

We need the following formulae for each state variableai and allt ∈ {0, . . . , l − 1}.

ai,1
t+1→(o1t ∨ · · · ∨ on

t ) (7)
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whereo1, . . . , on are all the operatorso that have an occurrence ofai in the lhs of a condi-
tional effect, or anegativeoccurrence ofai in the precondition.

ai,¬1
t+1 →(o1t ∨ · · · ∨ on

t ) (8)

whereo1, . . . , on are all the operatorso that have apositiveoccurrence ofai in the precon-
dition, or an occurrence ofai in the lhs of a conditional effect.

ai,2
t+1→(o1t ∨ · · · ∨ on

t ) (9)

whereo1, . . . , on are all the operators in whichai occurs in an effect.

ai,3
t+1→(o1t ∨ · · · ∨ on

t ) (10)

whereo1, . . . , on are all the operatorso that have the effect¬ai (possibly conditional).

ai,¬3
t+1 →(o1t ∨ · · · ∨ on

t ) (11)

whereo1, . . . , on are all the operatorso that have the effectai (possibly conditional).
Additionally, for each operatoro ∈ O we need a formula that lists all the possible

justifications for not moving the operator one step earlier. These formulae are

ot→(¬pt−1 ∨ φ) (12)

wherep is the precondition ofo andφ is disjunction of the propositional variables

(1) ai,1
t such thatai is an effect (possibly conditional) ofo,

(2) ai,¬1
t such that¬ai is an effect (possibly conditional) ofo,

(3) ai,2
t such thatai occurs in the antecedent of a conditional effect ofo,

(4) ai,3
t such thatai occurs positively in the precondition ofo, and

(5) ai,¬3
t such thatai occurs negatively in the precondition ofo.

For the variablesai,4
t andai,¬4

t we replace each positive occurrence ofai
t in the conse-

quent of the implication of Formula 3 by (ai
t ∧ a

i,4
t ∧ ai,¬4

t−1 ) and each occurrence of¬ai
t

by (¬ai
t ∧ a

i,¬4
t ∧ ai,¬4

t−1 ) for all t ∈ {1, . . . , l − 1}. This is to indicate thatai or ¬ai is an
active effect of the operator at timet.

The variablesai,2
t , ai,3

t andai,¬3
t and the associated formulae are not needed if all op-

erators are STRIPS operators. For STRIPS operators the use of variablesai,4
t andai,¬4

t

could be replaced by the useai,1
t andai,¬1

t .
Let the formulaΦprocess

O,l be a conjunction of all the above formulae. The size ofΦprocess
O,l

is linear in the size of the setO of operators because there are at most2l variable occur-
rences for every state variable occurrence in every operator.

Theorem 36 Let π = 〈P, I,O,G〉 be a problem instance. There is i-process planT of
lengthl for π if Φπ,l ∧ Φstep,2

O,l ∧ Φprocess
O,l is satisfiable.

PROOF. Assumev is a valuation such thatv |= Φπ,l ∧ Φstep,2
O,l ∧ Φprocess

O,l . Define for
all i ∈ {0, . . . , l} the statesi as the valuation ofP such thatsi(a) = v(ai) for every
a ∈ P . DefineSj = {o ∈ O|v(oj) = 1} for all j ∈ {0, . . . , l − 1}. By Theorem 35
T = 〈S0, . . . , Sl−1〉 is a step plan.
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Assume thatT is not an i-process plan because for somei ∈ {1, . . . , l− i} andox ∈ Si,
T ′ = 〈S0, . . . , Si−1 ∪ {ox}, Si\{ox}, . . . , Sl−1〉 is a step plan in which no two simultane-
ous operators interfere. We show that this leads to a contradiction with the assumption that
v |= Φprocess

O,l .
Considerox

i → (¬px
i−1 ∨ j1 ∨ · · · ∨ jn). Assume thatv satisfies this formula. Because

v |= ox
i (asox ∈ Si), at least one of the disjuncts in the right side is true inv. It cannot

be thatv |= ¬px
i−1 wherepx is the precondition ofox because otherwiseox would not be

applicable at timei− 1 in T ′.
So some other disjunct ofj1 ∨ · · · ∨ · · · jn must be satisfied byv. This leads to a

long and tedious case analysis, so we just consider as an example the disjunctaq,1
i for a

state variableaq that is a positive effect ofox. If v |= aq,1
i , then becausev |= aq,1

i →
(o1i−1 ∨ · · · ∨ on

i−1) whereo1, . . . , on are all the operators that have an occurrence ofaq in
the lhs of a conditional effect or a negative occurrence in the precondition. Hence there is
an operatoroy ∈ Si−1 that has an occurrence ofaq in the lhs of a conditional effect or a
negative occurrence in the precondition. Henceox andoy interfere and both are ati− 1 in
T ′, which contradicts our assumptions.

Therefore it must be the case thatT is an i-process plan.

3.4 1-linearization semantics

We give three encodings of the constraints that guarantee that the plans follow the 1-
linearization semantics. The first two (Sections 3.4.2 and 3.4.3) exactly encode the acyclic-
ity test, allowing maximum parallelism with respect to a given disabling graph (as defined
in Section 3.4.1). However, the first of these encodings has cubic size and the second in-
volves guessing a topological ordering for the set of operators, and hence these encodings
would not appear to be practical. The third encoding (Section 3.4.4) is based on assigning
a fixed ordering on the operators and allowing the simultaneous application of a subset of
the operators only if none of the operators affects the operators later in the ordering. The
size of this encoding is linear in the size of the set of operators, but it allows less parallelism
than the first two encodings. However, in our experiments this encoding has turned out to
be very efficient.

To improve the efficiency of the encodings we consider a method for utilizing the struc-
tural properties of planning problems in the form ofdisabling graphsin Section 3.4.1. The
idea is to identify operators for which the existence of a linearization required by the 1-
linearization semantics can be guaranteed, no matter in which state the set of operators is
simultaneously applied. The set of operators is partitioned to subsets of operators poten-
tially involved in a cycle that cannot be linearized. Constraints guaranteeing the lineariza-
tion property need to be given only for such subsets. The decomposition method in some
cases splits the set of all operators to singleton subsets, and in this case the linearization
property is guaranteed for any subset of operators applied simultaneously, and there is no
need to introduce further constraints on operator application. The technique improves all
the three encodings of the 1-linearization semantics on many types of structured problems.

3.4.1 Disabling graphs.The motivation for using disabling graphs is the following.
Define acircularly disabled setas a set of operators that is applicable in some state without
the effects contradicting each other and that cannot be totally ordered into a sequential
plan so that no operator affects a later operator. Now any set-inclusion minimal circularly
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disabled set is a subset of a strong component (or strongly connect component, abbreviated
as SCC) of the disabling graph.

Definition 37 Letπ = 〈P, I,O,G〉 be a problem instance. A graph〈O,E〉 is a disabling
graphfor π whenE ⊆ O ×O is the set of directed edges so that〈o, o′〉 ∈ E if

(1) there is a states such thats is reachable fromI by operators inO and app{o,o′}(s)
is defined, and

(2) o affectso′.

For a given set of operators there are typically several disabling graphs because the graph
obtained by adding an edge to a disabling graph is also a disabling graph. Also the com-
plete graph〈O,O × O〉 is a disabling graph. For every set of operators there is a unique
minimal disabling graph, but computing minimal disabling graphs is NP-hard because of
the consistency tests and PSPACE-hard because of the reachability tests ofs in Condi-
tion 1. Computing non-minimal disabling graphs is easier because the consistency and
reachability tests may be approximated.

We may allow the simultaneous application of a set of operators from the same SCC if
the subgraph of the disabling graph induced by those operators does not contain a cycle.2

Lemma 38 LetO be a set of operators andG = 〈O,E〉 a disabling graph forO. Let
C1, . . . , Cm be the strong components ofG. Let s be a state. LetA be a set of operators
so that appA(s) is defined. If for everyi ∈ {1, . . . ,m} the subgraph〈Ci ∩ A,E ∩ ((Ci ∩
A)×(Ci∩A))〉 ofG induced byCi∩A is acyclic, then there is a total orderingo1, . . . , on

ofA such that appo1;...;on
(s) = appA(s).

PROOF. Let the indices ofC1, . . . , Cm be such that for alli ∈ {1, . . . ,m − 1} and
j ∈ {i+ 1, . . . ,m} there are no edges from an operator inCi to an operator inCj . Such a
numbering exists because the setsCi are strong components ofG (the strong components
always form a tree.) Because the subgraph induced byCi ∩ A is acyclic for everyi ∈
{1, . . . ,m}, we can impose an orderingo1 <i . . . <i oni

onCi ∩A so that ifo <i o
′ then

there is no edge fromo to o′, that is,o does not affecto′.
Now we can construct a total ordero1 < · · · < on onA as follows. For all{o, o′} ∈ A,

o < o′ if {o, o′} ⊆ Ci for somei ∈ {1, . . . ,m} ando <i o
′, or o ∈ Ci ando′ ∈ Cj and

i < j. Now for all {o, o′} ⊆ A, if o < o′ theno does not affecto′. Henceappo1;...;on
(s) =

appA(s) by Lemma 28.

Notice that acyclicity is a sufficient but not a necessary condition for a set of operators to
be executable in some order, even for minimal disabling graphs, because the set of edges in
the graph are independent of the state, exactly like the notion of interference in Definition
8. As in Example 16 we can have two operators that form a cycle in the disabling graph
but can nevertheless be executed in any order with the same results. However, for STRIPS
operators and minimal disabling graphs acyclicity exactly coincides with executability in
some order, as we show in Lemma 39. This fact was already implicitly used in Theorem 30.

2In step semantics simultaneous application is allowed only if the subgraph induced by all applied operators does
not haveanyedges.
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Lemma 39 Let π = 〈P, I,O,G〉 be a problem instance and〈O,E〉 a disabling graph
for π such that〈o, o′〉 ∈ E only if o affectso′. Let s be a state reachable fromI by
some sequence of operators inO and S = {o1, . . . , on} a set of STRIPS operators so
that appo1;...;on(s) and appS(s) are defined for some orderingo1, . . . , on of S. Then the
subgraph of〈O,E〉 induced byS is acyclic.

PROOF. Fact A: BecauseappS(s) is defined, there is no{〈p, e, ∅〉, 〈p′, e′, ∅} ⊆ S and
a ∈ P such thata ∈ e and¬a ∈ e′.

Becauseappo1;...;on(s) is defined, for noi ∈ {1, . . . , n−1} andj ∈ {i+1, . . . , n} such
thatoi affectsoj . If there were,oi would make one of the literals in the precondition ofoj

false and by Fact A no operatorok, k ∈ {i + 1, . . . , j − 1} could make the precondition
true again, and henceappo1;...;oj

(s) would not be defined. Because no operator inS affects
a later operator, and there is an edge from an operator to another only if the former affects
the latter, the subgraph of〈O,E〉 induced byS is acyclic.

Next we discuss three ways of deriving constraints that guarantee that operators occu-
pying one SCC of a disabling graph can be ordered to a valid totally ordered plan.

3.4.2 Encoding of sizeO(n3). We can exactly test that the intersection of one SCC
and a set of simultaneous operators do not form a cycle. The next encoding allows the
maximum parallelism with respect to a given disabling graph, but it is expensive in terms
of formula size.

We use auxiliary propositional variablesci,jt for all operators with indicesi andj indi-
cating that the operatorsoi, o1, o2, . . . , on, oj are applied and each operator affects its im-
mediate successor in the sequence. Letoi andoi′ belong to the same SCC of the disabling
graph and let there be an edge fromoi to oi′ . Then we have the formulae(oi

t ∧ oi′

t )→ci,i
′

t

and(oi
t ∧ c

i′,j
t )→ci,jt for all j such thati′ 6= j 6= i. Further we have formulae¬(oi

t ∧ c
i′,i
t )

for preventing the completion of a cycle.
There is a cubic number of formulae, each having a constant size (two or three variable

occurrences). The number of propositional variablesci,jt is quadratic in the number of
operators in an SCC. Some problems have SCCs of hundreds or thousands of operators, and
this would mean millions or billions of formulae, which would often make the encoding
impractical.

Theorem 40 Letπ = 〈P, I,O,G〉 be a problem instance. There is a 1-linearization plan
of lengthl for π if Φπ,l ∧ Φ1lin,1

O,l is satisfiable.

PROOF. Let v be a valuation such thatv |= Φπ,l ∧Φ1lin,1
O,l . Define for alli ∈ {0, . . . , l}

the statesi as the valuation ofP such thatsi(a) = v(ai) for every a ∈ P . Define
Sj = {o ∈ O|v(oj) = 1} for all j ∈ {0, . . . , l − 1}. By Theorem 31 we just have to test
the condition that for〈S0, . . . , Sl−1〉, its executions0, . . . , sl and everyi ∈ {0, . . . , l− 1}
there is a total orderingo1, . . . , on of Si such thatappo1;...;on

(si) = appSi
(si).

By Lemma 38 it suffices to show that the subgraph of the disabling graph induced by
Si∩C for every SCCC of the disabling graph is acyclic. For the sake of argument assume
that the subgraph has a cycle. That is, there are operatorso′1, . . . , o′m in Si such thato′j

affectso′j+1 for all j ∈ {1, . . . ,m− 1} ando′m affectso′1. But the formulae

(o′m−1
i ∧o′mi )→cm−1,m

i , (o′m−2
i ∧cm−1,m

i )→cm−2,m
i , . . . , (o′1i ∧c

2,m
i )→c1,m

i ,¬(o′mi ∧c1,m
i )
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together witho′1i , . . . , o
′m
i is inconsistent. Because these formulae are conjuncts ofΦ1lin,1,

there can be no cycle in the subgraph induced bySi ∩ C.

3.4.3 Encoding of sizeO(e log2 n). A more compact encoding is obtained by assigning
a log2 n-bit binary number to each of then operators, and requiring that the number of
operatoro is lower than that ofo′ if there is an edge fromo′ to o in the disabling graph.3

The size of the encoding isO(e log2 n) wheree is the number of edges in the disabling
graph andn is the number of operators.

For every operatoro and time pointtwe introduce the propositional variablesio,0
t , . . . io,k

t

wherek = dlog2 ne − 1 for encodingo’s index at time pointt.
So, for any operatorso ando′ so thato′ affectso use the following formula for guaran-

teeing that the edges are always from an operator with a higher index to a lower index.

(ot ∧ o′t)→GT (io
′,0

t , . . . , io
′,k

t ; io,0
t , . . . , io,k

t ) (13)

AboveGT (io
′,0

t , . . . , io
′,k

t ; io,0
t , . . . , io,k

t ) is a formula comparing twok-bit binary num-
bers. There are such formulae that have a size that is linear in the number of bits.

Theorem 41 Letπ = 〈P, I,O,G〉 be a problem instance. There is a 1-linearization plan
of lengthl for π if Φπ,l ∧ Φ1lin,2

O,l is satisfiable.

PROOF. Similarly to the proof of Theorem 40 we have to show that the subgraph in-
duced by every set of simultaneous operators is acyclic. Formula 13 guarantees that the
index of an operator to which there is an edge from another operator is lower than the in-
dex of the latter. The existence of a cycle would mean that there are also edges from an
operator with a lower index to an operator to a higher index, but as such edges do not exist,
there are no cycles in the graph.

Notice that given a set of literals describing which operators are applied at a given time
point, for the encoding in Section 3.4.2 unit resolution is sufficient for determining whether
there is a cycle, but not for the encoding in Section 3.4.3.

3.4.4 A linear-size encoding based on a fixed ordering of operators.Our third encoding
does not allow all the parallelism allowed by the preceding encodings but it leads to small
formulae and seems to be very efficient in practice. With this encoding the set of formulae
constraining parallel applicationis a subsetof those for the less permissive step semantics.
One therefore receives two benefits simultaneously: possibly much shorter parallel plans
and formulae with a smaller size / time points ratio.

The idea is to impose beforehand an (arbitrary) ordering on the operatorso1, . . . , on in
an SCC and to allow parallel application of two operatorsoi andoj such thatoi affects
oj only if i ≥ j. Of course, this restriction to one given linearization may rule out many
sets of parallel operators that could be applied simultaneously according to some other
linearization than the fixed one.

A trivial implementation of this idea (similar to the step semantics encoding in Sec-
tion 3.2.1) has a quadratic size because of the worst-case quadratic number of pairs of
operators that may not be simultaneously applied. However, we may use one half of the im-
plications in the linear-size encoding for step semantics from Section 3.2.2. The linear-size

3This encoding has also been independently discovered by Victor Khomenko [2004].
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encoding for the constraints for 1-linearization semantics is thus simply the conjunction of
formulae

chain(o1, . . . , on;Em;Rm;m)

for every literalm, whereEm is the set of operators that may falsifym (that is,m occurs
as an atomic effect) andRm is the set of operators that may requirem to remain true (that
is,m occurs in the antecedent of a conditional effect or positively in the precondition).

Theorem 42 Letπ = 〈P, I,O,G〉 be a problem instance. There is a 1-linearization plan
of lengthl for π if Φπ,l ∧ Φ1lin,3

O,l is satisfiable.

PROOF. Let v be a valuation such thatv |= Φπ,l ∧Φ1lin,3
O,l . Define for alli ∈ {0, . . . , l}

the statesi as the valuation ofP such thatsi(a) = v(ai) for everya ∈ P . DefineSj =
{o ∈ O|v(oj) = 1} for all j ∈ {0, . . . , l − 1}. Consider an SCCC of the disabling graph
and the fixed orderingo′1, . . . , o′n

′
of the operators inC ∩ Si for somei ∈ {0, . . . , l− 1}.

The formulaechain(o1, . . . , on;Em;Rm;m) in Φ1lin,3
O,l for all literalsm guarantee that

if o′j affectso′k, thenk < j. By Lemma 28appSi
(si) = appo′1;...;o′n′ (si). Hence the

definition of 1-linearization plans is satisfied.

4. EXPERIMENTS

The shortest encodings of the three semantics in Sections 3.2.2, 3.3 and 3.4.4 have an
asymptotically optimal size, that is, their sizes are linear in the size of the problem instance
and the number of time points. The question arises whether the potentially much smaller
number of time points makes 1-linearization semantics more efficient than step semantics,
and whether the potentially much smaller number of plans makes the process semantics
more efficient than step semantics. In this section we address these questions in terms of
an evaluation of a number of planning problems with respect to these three semantics.

We consider two problem classes. First, as a way of measuring the efficiency of the
encodings on “average” problem instances, we sample problem instances from the space
of all problem instances characterized by certain parameter values, following Bylander
[1996] and Rintanen [2004b]. The problem instances we consider are rather small, 40 state
variables and up to 280 operators, but rather challenging in the phase transition region.

Second, we consider some of the benchmarks used by the planning community. These
problem instances have a simple interpretation in terms of real-world planning tasks, like
simple forms of transportation planning. In contrast to the problem instances in the phase
transition study, the numbers of state variables and operators in these problems are much
higher (up to several thousands of state variables and tens of thousands of operators), and
most of these problems can be solved rather easily by domain-specific polynomial time
algorithms when no optimality criteria (for example number of operators in the plan) have
to be satisfied.

4.1 Implementation details

We briefly discuss details of the implementation of our translator from the planning domain
description language PDDL [Ghallab, Howe, Knoblock, McDermott, Ram, Veloso, Weld,
and Wilkins 1998], in which most of the standard planning benchmarks are formalized, to
propositional formulae in conjunctive normal form.
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The planning domain description language PDDL allows describing schematic opera-
tors that are instantiated with a number of objects. For some of the standard benchmark
problems the number of operators produced by a naı̈ve instantiation procedure is astro-
nomic, and indeed all practical planner implementations rely on heuristic techniques for
avoiding the generation of ground operators that could never be part of a plan because no
state satisfying the precondition of the operator can be reached.

After instantiating the schematic PDDL operators, we perform a simple polynomial-time
reachability analysis for the possible values of state variables to identify operators that can
never be applied. For example, in the 1998 and 2000 AIPS planning competition logistics
problems there are operators for driving trucks between locations outside the truck’s home
city, but the truck can never leave its home city. Hence the state variables indicating that
the truck’s location is a non-home city can never be true. This analysis allows eliminating
many irrelevant operators.

Similarly to BLACKBOX [Kautz and Selman 1999] and other implementations of satis-
fiability planning, our translation includes formulaelt ∨ l′t for invariantsl ∨ l′ as produced
by the algorithm by Rintanen [1998]. This algorithm, defined only for STRIPS operators,
can be generalized to arbitrary operators [Rintanen 2004a].

In the experiments in Section 4 we use disabling graphs that are not necessarily minimal
but can be computed in polynomial time. The test of whether two operators can be simul-
taneously applied in some state is not exact: we just test whether the unconditional effects
contradict directly or through an invariant and whether the preconditions have conjuncts
that are complementary literals or contradict through an invariant. For STRIPS operators
the graphs are minimal whenever the simultaneous applicability of any two operators can
be determined by looking at the invariants.

The orderings in the 1-linearization encoding of Section 3.4.4 were the ones in which
the operators came out of our PDDL front-end. Better orderings, minimizing the number
of pairs of operatorso ando′ such thato precedes and affectso′ and thereby potentially
increasing parallelism and improving runtimes, could be produced by heuristic methods.

The AIPS 2000 planning competition Schedule benchmarks contain conditional effects
m B m, sometimes simultaneously with effectsm. The purpose of this is to make it
impossible to parallelize several operators. Replacing effectsm B m by preconditions
m whenever alsom is an unconditional effect and by effectsm wheneverm is not an
unconditional nor a conditional effect of the operator, is a transformation that preserves the
semantics of the operators exactly, but for this benchmark for example allows much more
parallelism. The front-end of our translator performs this transformation.

The SAT solvers we use only accept formulae in conjunctive normal form (CNF) as
input. Therefore all the propositional formulae have to be transformed to CNF. We use a
simple scheme for doing this. For any subformula of the form(φ1 ∧ φ2)∨ ψ we introduce
an auxiliary variablex, replace the subformula byx∨ψ and addx→φ1 andx→φ2 to our
set of formulae. Notice that almost all of the formulae in our encodings are already in CNF
(modulo equivalences like¬(φ∧ψ) ↔ ¬φ∨¬ψ.) Exceptions to this are the precondition
axioms for operators with disjunctive preconditions and effect axioms for operators with
conditional effects.

For effect axiomsot → et we only include those effects ine that are not consequences
of other effects and invariants. For example, many operators in the standard benchmarks
have effects of the format(A,L1)∧¬at(A,L2)representing the movement of an object from
location 2 to location 1 and typically in these cases¬at(A,L1)∨¬at(A,L2) is an invariant
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that is included in the problem encoding. Because¬at(A,L2) is a consequence of the
invariant together withat(A,L1), the effect axiom 2 does not have to state this explicitly.
This reduces the size of the formulae slightly and has a small effect on runtimes.

4.2 Experimental setting

For the experiments we use a 3.6 GHz Intel Xeon processor with 512 KB internal cache
and the Siege SAT solver version 4 by Ryan of the Simon Fraser University.

In addition to Siege V4, we ran tests with the May 13, 2004 version of zChaff. The
runtimes are close to the ones for Siege, often worse but in some cases slightly better. We
could solve some of the biggest structured instances (Section 4.4) in a reasonable time only
with Siege. Also the BerkMin is relatively good on the planning problems. We have also
tried a number of other SAT solvers but their performance on the problems we tried was
worse.

Because Siege V4 uses randomization, its runtimes vary, in some cases considerably.
For the structured problems the tables present the average runtimes over 100 runs and 95
per cent confidence intervals for the average runtimes. Because it is not known what the
distribution of Siege runtimes on a given instance is, we calculate the confidence inter-
vals by using a standard bootstrapping procedure. From the sample of 100 runtimes we
resample (with replacement) 4000 times a sample of 100 runtimes, and then look at the
distribution of these averages. The 95 per cent confidence interval is obtained as the 2.5
and 97.5 percentiles of this distribution.

4.3 Problem instances sampled from the phase transition region

We considered problem instances withP = 40 state variables, corresponding to state
spaces with240 ∼ 1012 states, and STRIPS operators with 3 literals in the preconditions
and 2 literals in the effect, following Model A of Rintanen [2004b], in which precondition
literals are chosen randomly and independently, and effect literals are chosen randomly so
that each propositional variable has about the same number of occurrences in an atomic
effect, both negatively and positively. We generated about 1000 soluble problem instances
for ratios |O|

|P | of operators to state variables varying from 1.85 to 5 at an interval of about
0.3. The number of operators then varied from 74 to 280. For the smaller ratios, to find
1000 soluble instances we had to generate up to 45000 instances most of which are insol-
uble. Because we did not have a complete insolubility test, we do not know how many
of the instances that we could not solve within our limits on plan length (60 time points)
and CPU time (3 minutes per formula) are really insoluble. Problem instances of this size
are very hard for existing planning algorithms. For example, the fastest planners based on
heuristic state space search solve less than half of our soluble instances below ratio 2.5 in
under 10 minutes.

Figure 2 depicts the average runtimes of Siege on the 1-linearization (the linear-size en-
coding from Section 3.4.4), step (the linear-size encoding from Section 3.2.2), and process
semantics (the linear-size encoding from Section 3.3 based on the linear-size step encoding
from Section 3.2.2). Because of the two sources of imprecision in the runtime comparison,
the variation of runtimes of Siege due to randomization and the random variation in the
properties of problem instances sampled from the space of all problem instances, we give
estimates on the accuracy of the averages of runtimes. The diagrams depicting the runtimes
give error bars indicating the 95 per cent confidence intervals for the runtimes. Notice that
the scale of the runtime diagram is logarithmic.
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Fig. 2. Runtimes of 1-linearization, step and process semantics on problem instances with 40 state variables
sampled from the phase transition region.
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Fig. 4. Numbers of time points in plans for 1-linearization, step and process semantics on problem instances
with 40 state variables sampled from the phase transition region. For step and process semantics the number of
time points is always the same.

Figure 3 depicts the average numbers of operators in the plans. Figure 4 depicts the
average number of time points in the plans. The process and step semantics share the
curve because the shortest number of time points of a plan for any problem instance is the
same for both.

As is apparent from the diagrams, the 1-linearization semantics is by far the most effi-
cient of the three. The efficiency is directly connected to the fact that with 1-linearization
semantics the shortest plans often have less time points than with the step and process se-
mantics. The encoding for the process semantics is the slowest, most likely because of the
higher number of propositional variables and clauses and the ineffectiveness of the process
constraints on these problems.

Interestingly, the number of operators in the 1-linearization and step plans is almost ex-
actly the same despite the fact that the step semantics needs more time points. On the other
hand, process semantics imposes stricter constraints on the plans than the step semantics,
and the number of operators is hence smaller.

4.4 Structured problem instances

We evaluate the different semantics on a number of benchmarks from the AIPS planning
competitions of years 1998, 2000 and 2002. We also tried the benchmarks from the year
2004 competition, but, although most of them are easy to solve, they result in very big
formulae, and the relative behavior of the encodings of the different semantics on them is
similar to the benchmarks we report in this paper. Hence we did not run exhaustive tests
on them.

On all other benchmarks we use the STRIPS version, but for the Schedule benchmark
the ADL version because with the Strips version our translator has problems with the very
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instance len val 1-lin process step step l.
gripper-2 5 F 0.01 0.01

0.01

gripper-2 6 T 0.01 0.01
0.01

gripper-2 10 F 0.14 0.13
0.15 0.08 0.08

0.09 0.12 0.12
0.13

gripper-2 11 T 0.04 0.03
0.04 0.02 0.01

0.02 0.05 0.04
0.05

gripper-3 7 F 0.23 0.23
0.24

gripper-3 8 T 0.17 0.16
0.18

gripper-3 14 F 9.39 8.43
10.47 3.91 3.48

4.35 8.84 7.84
9.93

gripper-3 15 T 1.72 1.18
2.34 0.32 0.19

0.47 0.69 0.36
1.08

gripper-4 9 F 12.87 11.61
14.26

gripper-4 10 T 0.85 0.70
1.02

gripper-4 16 F - - -
gripper-4 17 ?
gripper-4 18 ?
gripper-4 19 T - - -

Table I. Runtimes of Gripper problems

instance len val 1-lin process step step l.
log-16-0 7 F 0.01 0.01

0.01

log-16-0 8 T 0.03 0.03
0.04

log-16-0 12 F 0.62 0.57
0.67 0.30 0.27

0.33 0.79 0.73
0.86

log-16-0 13 T 7.46 6.96
7.98 1.35 1.19

1.52 2.27 2.04
2.50

log-17-0 8 F 0.15 0.14
0.15

log-17-0 9 T 0.02 0.02
0.02

log-17-0 13 F 3.06 2.93
3.19 1.97 1.89

2.05 2.25 2.15
2.35

log-17-0 14 T 14.40 13.71
15.11 3.22 2.93

3.55 4.48 4.07
4.91

log-18-0 8 F 0.13 0.13
0.14

log-18-0 9 T 0.33 0.26
0.40

log-18-0 14 F 8.18 7.74
8.67 5.83 5.50

6.17 6.77 6.47
7.08

log-18-0 15 T - 7.84 6.78
9.09 14.95 13.13

16.78

log-19-0 8 F 0.23 0.22
0.25

log-19-0 9 T 0.33 0.22
0.46

log-19-0 14 F 10.23 9.54
10.95 11.22 10.47

11.98 13.39 12.68
14.12

log-19-0 15 T - 29.10 25.33
33.05 -

log-20-0 8 F 0.25 0.24
0.26

log-20-0 9 T 0.88 0.64
1.17

log-20-0 14 F 12.30 11.76
12.83 10.63 9.96

11.32 12.01 11.36
12.67

log-20-0 15 T - - 41.17 36.81
45.80

Table II. Runtimes of Logistics problems

high number of operators. However, the simplification mentioned in Section 4.1 makes
also these operators STRIPS operators.

In Tables I, II, III, IV, V VI, VII, VIII and IX we present for each problem instance
the runtimes for the formulae corresponding to the highest number of time points without
a plan (truth value F) and the first satisfiable formula corresponding to a plan (truth value
T). The column1-lin is for the 1-linearization semantics encoding in Section 3.4.4, the
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instance len val 1-lin process step step l.
block-12-1 33 F 0.06 0.05

0.06 0.17 0.16
0.18 0.06 0.06

0.06 0.16 0.16
0.17

block-12-1 34 T 0.05 0.04
0.05 0.36 0.35

0.37 0.05 0.05
0.05 0.19 0.18

0.20

block-14-1 35 F 0.34 0.34
0.35 1.45 1.38

1.53 0.35 0.34
0.35 1.01 0.98

1.05

block-14-1 36 T 0.14 0.12
0.15 1.18 1.10

1.26 0.12 0.11
0.14 0.50 0.46

0.53

block-16-1 53 F 0.67 0.65
0.69 3.82 3.66

4.00 0.65 0.63
0.68 1.77 1.69

1.85

block-16-1 54 T 0.35 0.33
0.37 4.95 4.63

5.30 0.38 0.36
0.40 1.86 1.76

1.98

block-18-0 57 F 1.91 1.85
1.98 15.20 14.32

16.11 2.29 2.22
2.36 6.56 6.33

6.80

block-18-0 58 T 0.94 0.87
1.01 8.04 7.41

8.67 1.07 0.98
1.17 3.42 3.19

3.66

block-20-0 59 F 2.49 2.37
2.61 8.34 8.04

8.66 2.57 2.43
2.74 5.37 5.09

5.66

block-20-0 60 T 1.86 1.79
1.92 9.55 9.25

9.87 1.80 1.74
1.85 4.93 4.66

5.21

block-22-0 71 F 38.15 36.82
39.48 - 38.49 37.28

39.76 51.64 49.58
53.78

block-22-0 72 T 14.34 12.88
15.82 - 14.32 13.03

15.66 26.72 24.83
28.64

Table III. Runtimes of Blocks World problems

instance len val 1-lin process step step l.
satel-14 4 F 9.43 8.81

10.12

satel-14 5 T 1.79 1.66
1.91

satel-14 7 F 38.20 36.42
40.13 29.59 28.17

31.12 30.95 29.59
32.37

satel-14 8 T 6.20 5.83
6.61 4.38 4.06

4.73 5.82 5.31
6.37

satel-15 4 F 10.44 9.36
11.66

satel-15 5 T 1.60 1.45
1.75

satel-15 7 F 33.04 30.92
35.37 26.58 25.32

27.87 28.11 26.72
29.59

satel-15 8 T 7.53 7.17
7.90 4.83 4.58

5.10 6.23 5.93
6.55

satel-16 3 F 1.73 1.54
1.93

satel-16 4 T 3.36 3.16
3.57

satel-16 5 F 20.34 18.68
22.04 8.80 8.10

9.53 20.09 18.61
21.74

satel-16 6 ?
satel-16 7 T 8.87 8.21

9.55 7.88 7.42
8.39 7.81 7.35

8.29

satel-17 3 F 0.28 0.25
0.30

satel-17 4 T 2.85 2.81
2.90

satel-17 5 F 2.74 2.46
3.08 1.45 1.32

1.63 1.72 1.66
1.78

satel-17 6 T 3.46 3.22
3.71 2.22 2.10

2.35 2.53 2.37
2.69

satel-18 4 F 0.07 0.07
0.07

satel-18 5 T 0.22 0.20
0.24

satel-18 7 F 0.60 0.57
0.63 0.30 0.29

0.31 0.54 0.52
0.57

satel-18 8 T 1.18 1.08
1.27 0.54 0.49

0.58 0.86 0.78
0.93

Table IV. Runtimes of Satellite problems
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instance len val 1-lin process step step l.
driver-2-3-6b 4 F 0.01 0.01

0.01

driver-2-3-6b 5 T 0.01 0.01
0.01

driver-2-3-6b 6 F 0.04 0.04
0.04 0.01 0.01

0.01 0.02 0.02
0.02

driver-2-3-6b 7 T 0.09 0.08
0.09 0.03 0.02

0.03 0.04 0.04
0.05

driver-2-3-6c 6 F 0.01 0.01
0.01

driver-2-3-6c 7 T 0.01 0.01
0.01

driver-2-3-6c 8 F 0.03 0.03
0.03 0.03 0.03

0.03 0.03 0.03
0.04

driver-2-3-6c 9 T 0.24 0.22
0.27 0.10 0.09

0.11 0.14 0.13
0.16

driver-2-3-6d 12 F 0.44 0.42
0.46

driver-2-3-6d 13 T 0.63 0.57
0.69

driver-2-3-6d 15 F 34.14 32.82
35.45 19.09 18.23

20.00 26.27 25.27
27.27

driver-2-3-6d 16 T 17.79 15.95
19.67 8.04 7.12

8.97 9.59 8.30
11.00

driver-2-3-6e 7 F 0.01 0.01
0.02

driver-2-3-6e 8 T 0.04 0.04
0.04

driver-2-3-6e 11 F 2.14 2.04
2.24 1.13 1.08

1.19 1.55 1.47
1.62

driver-2-3-6e 12 T 2.54 2.29
2.80 1.27 1.10

1.45 1.25 1.09
1.41

driver-3-3-6b 8 F 0.16 0.15
0.17

driver-3-3-6b 9 T 0.08 0.07
0.09

driver-3-3-6b 10 F 2.15 1.99
2.31 0.82 0.77

0.87 1.40 1.31
1.51

driver-3-3-6b 11 T 3.26 2.77
3.83 1.07 0.90

1.26 1.43 1.21
1.69

driver-4-4-8 8 F 0.14 0.13
0.15

driver-4-4-8 9 T 0.15 0.13
0.16

driver-4-4-8 10 F 4.68 4.49
4.87 1.30 1.26

1.33 2.84 2.75
2.94

driver-4-4-8 11 T 23.69 21.93
25.60 5.92 5.35

6.49 13.08 11.94
14.26

Table V. Runtimes of DriverLog problems

instance len val 1-lin process step step l.
sched-10-0 6 F 0.01 0.01

0.01 0.01 0.01
0.01 0.01 0.01

0.01 0.01 0.01
0.01

sched-10-0 7 T 0.01 0.01
0.01 0.07 0.05

0.10 0.01 0.01
0.01 0.01 0.01

0.01

sched-15-0 8 F 8.74 7.40
10.17 14.57 13.27

15.88 3.44 2.86
4.10 11.52 10.21

12.85

sched-15-0 9 T 0.16 0.12
0.22 0.23 0.19

0.27 0.14 0.11
0.16 0.36 0.27

0.44

sched-20-0 8 F 1.11 1.06
1.16 1.42 1.37

1.47 0.46 0.44
0.48 1.30 1.25

1.35

sched-20-0 9 T 0.14 0.11
0.18 0.24 0.21

0.28 0.19 0.19
0.20 0.10 0.09

0.11

sched-25-0 8 F 7.85 6.87
8.96 15.47 14.61

16.37 2.14 1.96
2.35 8.53 7.57

9.56

sched-25-0 9 T 0.29 0.23
0.35 0.68 0.55

0.82 0.19 0.18
0.21 0.69 0.56

0.84

sched-30-0 10 F - - 8.12 5.93
10.45 -

sched-30-0 11 T 1.05 0.78
1.36 2.63 2.22

3.04 1.07 0.88
1.29 0.90 0.65

1.19

sched-35-0 10 F26.22 24.78
27.71 34.35 32.89

35.87 10.26 9.72
10.80 30.09 28.35

31.88

sched-35-0 13 T 3.43 2.66
4.37 3.53 3.02

4.09 3.86 3.15
4.68 3.14 2.49

3.96

Table VI. Runtimes of Schedule problems
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instance len val 1-lin process step step l.
zeno-3-7b 3 F 0.01 0.01

0.01

zeno-3-7b 4 T 0.01 0.01
0.01

zeno-3-7b 5 F 0.10 0.10
0.10 0.02 0.02

0.02 0.05 0.05
0.06

zeno-3-7b 6 T 0.11 0.10
0.12 0.02 0.02

0.02 0.06 0.05
0.06

zeno-3-8 3 F 0.01 0.01
0.01

zeno-3-8 4 T 0.01 0.01
0.01

zeno-3-8 5 F 0.08 0.08
0.09 0.02 0.02

0.02 0.05 0.05
0.05

zeno-3-8 6 T 0.49 0.45
0.53 0.06 0.06

0.07 0.30 0.27
0.33

zeno-3-8b 3 F 0.01 0.01
0.01

zeno-3-8b 4 T 0.02 0.01
0.02

zeno-3-8b 5 F 0.17 0.16
0.17 0.03 0.02

0.03 0.11 0.11
0.12

zeno-3-8b 6 T 0.54 0.47
0.61 0.16 0.16

0.16 0.31 0.27
0.36

zeno-3-10 4 F 0.05 0.05
0.05

zeno-3-10 5 T 0.02 0.02
0.02

zeno-3-10 6 F 1.77 1.71
1.84 0.51 0.50

0.51 1.17 1.13
1.21

zeno-3-10 7 T 2.68 2.43
2.95 0.76 0.68

0.86 1.79 1.57
2.01

zeno-5-10 3 F 0.10 0.10
0.10

zeno-5-10 4 T 0.23 0.19
0.28

zeno-5-10 5 F 2.23 2.13
2.33 1.03 1.03

1.04 1.47 1.41
1.53

zeno-5-10 6 T 9.34 8.78
9.89 3.17 2.79

3.57 6.53 6.04
7.08

zeno-5-15 5 F -
zeno-5-15 6 T 21.34 17.83

25.10

zeno-5-15 5 F 3.52 3.30
3.75 1.76 1.75

1.76 2.32 2.18
2.48

zeno-5-15 6 ?
zeno-5-15 7 T - 39.34 35.65

43.34 -

Table VII. Runtimes of ZenoTravel problems

columnprocessfor the process semantics encoding in Section 3.3, the columnstepfor the
worst-case quadratic step semantics encoding in Section 3.2.1, and the columnstep l. for
the linear step semantics encoding in Section 3.2.2.

Runtimes for 1-linearization semantics are in most cases reported on their own lines
because its shortest plan lengths differ from the other semantics. Each runtime is followed
by the upper and lower bounds of the 95 per cent confidence intervals. We indicate by a
dash - that some of the runs did not finish within out time out limit of three minutes.

In Table X we compare the semantics in terms of average number of operators in plans.
Blocks World problems are sequential (only one operator can be applied at a time) and
plan lengths equal the number of time points. The average number of operators is followed
by the lowest and the highest number of operators any plan we found had.

In Table XI we present data on formula sizes.

4.4.1 1-linearization semantics vs. step semantics.The lowest runtimes are usually ob-
tained with the 1-linearization semantics. It is often one or two orders of magnitude faster.
On problem instances that are more difficult than those depicted in the tables the runtime
differences are still bigger. Most of the benchmark problems allow parallelism, and in
most of these cases 1-linearization semantics allows more operators in parallel than the
step semantics. For example in many of the problems involving transportation of objects
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instance len val 1-lin process step step l.
depot-13-5646 7 F0.01 0.01

0.01

depot-13-5646 8 T0.01 0.01
0.01

depot-13-5646 8 F 0.02 0.02
0.02 0.01 0.01

0.01 0.01 0.01
0.01

depot-13-5646 9 T 0.27 0.26
0.29 0.04 0.04

0.05 0.08 0.08
0.09

depot-14-7654 9 F0.05 0.05
0.06

depot-14-7654 10 T0.10 0.09
0.11

depot-14-7654 11 F 3.07 2.95
3.19 1.41 1.34

1.48 2.17 2.07
2.29

depot-14-7654 12 T 8.18 7.55
8.82 3.48 3.19

3.78 4.26 3.87
4.66

depot-16-4398 7 F0.01 0.01
0.01

depot-16-4398 8 T0.01 0.01
0.01

depot-16-4398 7 F 0.03 0.03
0.03 0.01 0.01

0.01 0.02 0.01
0.02

depot-16-4398 8 T 0.43 0.41
0.46 0.07 0.06

0.07 0.12 0.11
0.13

depot-17-6587 5 F0.01 0.01
0.01

depot-17-6587 6 T0.01 0.01
0.01

depot-17-6587 6 F 0.24 0.23
0.26 0.02 0.02

0.02 0.13 0.11
0.14

depot-17-6587 7 T 0.69 0.65
0.74 0.03 0.03

0.03 0.27 0.25
0.29

depot-18-1916 11 F0.29 0.28
0.29

depot-18-1916 12 T5.80 5.02
6.61

depot-18-1916 11 F 1.12 1.04
1.20 0.17 0.16

0.17 0.51 0.48
0.54

depot-18-1916 12 T - - -

Table VIII. Runtimes of Depot problems

instance len val 1-lin process step step l.
freecell2-4 4 F 0.01 0.01

0.01 0.01 0.01
0.01 0.01 0.01

0.01 0.01 0.01
0.01

freecell2-4 5 T 0.01 0.01
0.01 0.02 0.01

0.02 0.01 0.01
0.01 0.01 0.01

0.01

freecell3-4 7 F 0.45 0.43
0.47 0.77 0.74

0.81 0.25 0.25
0.25 0.53 0.50

0.55

freecell3-4 8 T 0.13 0.11
0.15 0.25 0.22

0.28 0.18 0.17
0.18 0.11 0.10

0.13

freecell4-4 6 F 0.01 0.01
0.01 0.01 0.01

0.01 0.01 0.01
0.01 0.01 0.01

0.01

freecell4-4 7 T 0.05 0.04
0.05 0.12 0.11

0.13 0.02 0.02
0.02 0.08 0.07

0.08

freecell5-4 12 F 13.60 12.94
14.29 17.34 16.54

18.14 6.75 6.39
7.17 9.19 8.84

9.55

freecell5-4 13 T 59.57 52.44
66.68 63.78 57.28

70.33 35.70 32.55
39.06 53.59 47.44

60.17

Table IX. Runtimes of FreeCell problems
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instance len 1-lin process step step l.
depot-16-4398 8 53.00 53

53 43.22 36
48 43.40 38

50 38.97 35
44

driver-4-4-8 9 54.19 50
61

driver-4-4-8 11 55.45 50
61 52.32 50

58 51.47 50
58

gripper-3 8 23.21 23
24

gripper-3 15 23.00 23
23 23.00 23

23 23.00 23
23

log-16-0 8 122.74 105
131

log-16-0 13 146.47 125
167 123.91 106

141 125.32 108
143

freecell5-4 13 32.99 30
35 32.65 30

33 34.02 31
35 32.46 30

33

elev-str-f24 17 58.38 51
63

elev-str-f24 32 40.00 40
40 40.00 40

40 40.00 40
40

satel-17 4191.55 82
274

satel-17 6 95.00 83
106 122.14 92

158 96.73 85
105

sched-30-0 11 43.88 40
50 50.79 45

53 45.06 39
53 41.63 38

46

zeno-5-10 4 34.36 34
35

zeno-5-10 6 43.32 38
48 46.80 38

58 40.63 35
46

Table X. Numbers of operators in plans

by vehicles, with 1-linearization semantics a vehicle is allowed to leave a location simul-
taneously with the action of loading or unloading an object to or from the vehicle. The
smaller parallel plan lengths directly lead to much faster planning.

For the Schedule benchmark 1-linearization semantics does not allow more parallelism
than the step semantics. The linear-size 1-linearization semantics is as efficient as the
linear-size step semantics encoding, and slightly less efficient than the quadratic-size step
semantics encoding as far as the unsatisfiable formulae are concerned. Interestingly, the
relative efficiency of the encodings reverses for satisfiable formulae corresponding to plans.
Unlike for unsatisfiable, for satisfiable formulae, as shown in Table 5, the SAT solver run-
times more closely reflect the relative sizes of the encodings: the linear-size 1-linearization
encoding is fastest, followed by the linear-size step encoding and the quadratic size step
encoding.

Numbers of operators in plans for the different encodings do not seem to follow any reg-
ular pattern. Sometimes the process semantics plans have the most operators, sometimes
the step semantics or the 1-linearization plans.

4.4.2 Process semantics vs. step semantics.Contrary to our expectations based on the
earlier results by Heljanko [2001] on deadlock detection problems, process semantics does
not provide an advantage over step semantics on these problems although there are often far
fewer potential plans to consider. When showing the inexistence of plans of certain length,
the additional constraints could provide a big advantage similarly to symmetry-breaking
constraints.

The differences to the results by Heljanko are likely to be because of differences between
the application area and the type of SAT solvers and encodings used. The problem with
the planning problems would appear to be high number of long clauses that usually do not
lead to pruning the search space and just add an overhead. In an earlier paper we rejected
full process semantics and just considered clauses with a length below a small constant
[Rintanen, Heljanko, and Niemelä 2004]. In some cases the constraints substantially im-
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instance len 1-lin process step step l.
P

103
C

103 MB P
103

C
103 MB P

103
C

103 MB P
103

C
103 MB

block-18-0 58 58.9 696.8 10.9264.9 1218.8 24.9 58.9 696.8 10.9201.0 1120.1 18.9
block-20-0 60 74.9 937.8 14.8338.4 1607.2 32.9 74.9 937.8 14.8257.7 1482.0 25.2
block-22-0 72108.3 1431.0 22.9490.5 2406.9 49.5108.3 1431.0 22.9374.6 2225.5 38.4
depot-17-6587 7 24.1 256.3 3.9154.7 611.6 12.8 24.1 269.8 4.1144.2 586.2 9.7
depot-18-1916 12 75.7 864.9 13.7484.2 2052.0 45.4 75.7 899.4 14.2457.7 1968.3 34.2
depot-15-4534 20 93.0 882.8 14.5594.8 2360.2 53.7 93.0 918.8 15.0550.2 2243.9 39.4
driver-2-3-6e 12 25.4 110.6 1.6 66.2 206.4 3.7 21.5 157.0 2.3 42.9 174.1 2.6
driver-3-3-6b 11 22.3 93.4 1.4 54.9 178.2 3.3 18.0 144.9 2.1 39.2 153.5 2.3
driver-4-4-8 11 48.5 210.7 3.3117.0 401.3 7.7 37.7 382.5 5.8 89.4 352.3 5.4
gripper-2 11 1.0 4.7 0.1 2.9 8.8 0.1 1.0 5.3 0.1 1.5 7.2 0.1
gripper-3 15 1.8 8.7 0.1 5.0 16.1 0.3 1.8 9.7 0.1 2.7 13.2 0.2
gripper-4 17 2.4 12.5 0.2 6.9 23.1 0.4 2.4 13.9 0.2 3.7 19.0 0.3
log-16-0 13 18.7 105.4 1.5 46.6 174.3 3.1 18.7 139.1 2.0 27.0 146.3 2.2
log-20-0 15 29.1 174.8 2.5 72.4 284.6 5.1 29.1 236.6 3.5 42.5 240.6 3.6
log-24-0 15 37.8 240.8 3.5 94.3 385.1 6.9 37.8 333.0 4.9 55.9 328.2 5.0
elev/str-f8 12 1.0 2.4 0.0 4.1 8.1 0.1 1.0 3.0 0.0 2.1 5.7 0.1
elev/str-f12 14 2.4 5.8 0.1 10.3 21.4 0.3 2.4 7.7 0.1 5.7 15.6 0.2
elev/str-f16 22 6.4 15.7 0.2 27.8 60.7 1.1 6.4 21.0 0.3 16.2 44.7 0.7
elev/str-f20 26 11.5 28.4 0.4 50.5 112.5 2.0 11.5 38.3 0.6 30.2 83.7 1.3
elev/str-f24 28 17.5 43.4 0.7 77.5 174.7 3.1 17.5 58.9 0.9 47.2 131.0 2.0
satel-14 8 37.7 129.6 2.0108.1 347.0 6.7 37.7 267.0 4.1 98.5 309.4 4.8
satel-15 8 49.0 168.5 2.7142.0 454.0 9.2 49.0 327.3 5.1130.1 405.3 6.6
satel-16 6 46.8 161.5 2.6136.6 430.1 8.6 46.8 333.7 5.2125.7 386.3 6.3
satel-17 6 54.0 185.6 3.0160.6 500.1 10.1 54.0 346.7 5.4148.5 449.8 7.5
satel-18 8 31.7 108.5 1.7 91.3 290.2 5.5 31.7 221.1 3.4 82.4 258.1 4.0
sched-10-0 7 7.3 40.2 0.6 16.5 58.4 1.1 3.4 73.5 1.0 11.3 53.0 0.8
sched-20-0 9 18.2 101.5 1.6 40.7 148.4 3.0 8.4 285.0 3.9 28.5 134.8 2.1
sched-30-0 11 32.9 185.3 3.0 72.9 271.7 5.5 15.1 700.0 10.3 51.4 246.6 3.9
sched-40-0 15 58.8 334.3 5.4129.6 492.4 10.9 27.0 1595.3 24.6 91.8 445.9 7.1
sched-50-0 17 82.7 480.3 7.8182.0 704.7 15.9 38.0 2720.7 42.0129.2 638.5 10.9
zeno-3-8b 6 9.1 49.0 0.7 42.0 139.4 2.6 9.1 144.1 2.0 39.5 130.7 2.0
zeno-5-10 6 39.2 220.8 3.6195.2 653.8 13.9 39.2 814.8 12.3190.1 618.9 10.5
zeno-5-15 6 59.0 332.7 5.5291.0 979.0 21.1 59.0 1639.5 25.0283.6 926.6 16.0
zeno-5-15b 6 78.0 309.5 5.5391.9 1182.9 26.3 78.0 2111.3 32.6383.6 1114.4 19.5

Table XI. Sizes of formulae under the different encodings. The columnP
103 gives the number of propositional

variables in thousands, the columnC
103 the number of clauses in thousands, and the column MB the size of the

DIMACS encoded formulae in CNF in megabytes. The data are on the satisfiable formulae corresponding to
the length of shortest existing plans under step semantics. The shortest 1-linearization plans are in many cases
shorter, and the required formulae then correspondingly smaller.
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instance len val 1-lin step step l.
sched-35-0 13 T 3.43 2.65

4.33 3.86 3.13
4.65 3.14 2.46

3.95

sched-35-0 14 T 2.10 1.78
2.44 3.08 2.63

3.62 1.63 1.37
1.90

sched-35-0 15 T 1.39 1.20
1.57 2.81 2.41

3.26 1.83 1.58
2.13

sched-35-0 16 T 1.41 1.22
1.62 2.30 1.99

2.65 1.43 1.22
1.69

sched-35-0 17 T 1.28 1.13
1.43 3.08 2.66

3.53 1.43 1.24
1.63

sched-35-0 18 T 1.22 1.07
1.37 3.95 3.28

4.82 1.52 1.26
1.86

sched-35-0 19 T 1.20 1.04
1.37 5.62 4.73

6.56 1.40 1.25
1.54

sched-35-0 20 T 1.31 1.17
1.46 4.77 4.18

5.39 1.41 1.24
1.59

sched-35-0 21 T 1.04 0.90
1.19 4.80 4.26

5.36 1.07 0.93
1.24

sched-35-0 22 T 1.37 1.20
1.58 14.97 13.44

16.58 1.38 1.23
1.54

sched-35-0 23 T 1.16 1.02
1.31 6.17 5.36

7.05 1.26 1.10
1.44

sched-35-0 24 T 1.64 1.44
1.83 10.14 8.89

11.51 2.13 1.85
2.42

sched-35-0 25 T 1.68 1.47
1.90 20.52 18.31

22.69 1.83 1.58
2.12

sched-35-0 26 T 1.54 1.37
1.71 17.65 15.64

19.71 2.11 1.82
2.42

sched-35-0 27 T 1.77 1.53
2.02 13.46 11.74

15.36 1.56 1.34
1.80

sched-35-0 28 T 1.56 1.38
1.76 22.96 20.09

26.10 2.22 1.86
2.64

Fig. 5. Runtimes for the satisfiable formulae for different plan lengths

proved runtimes, but in most cases there was no effect because of the very small number
of additional short clauses.

4.4.3 Linear vs. quadratic step encoding.It is interesting to make a comparison be-
tween the quadratic and linear size encodings of the step semantics constraints respec-
tively discussed in Sections 3.2.1 and 3.2.2. Even though the worst-case formula sizes are
smaller with the linear encoding, this did not directly translate to smaller formulae and im-
proved runtimes. First of all, even though the encodings from Section 3.2.1 is worst-case
quadratic, the number of clauses¬o ∨ ¬o′ is often small because not all pairs of operators
interfere. Also many pairs of interfering operators cannot be simultaneously applied, and
hence the corresponding clauses are not included in the formulae.

The only benchmark series in which the linear-size encoding substantially improves on
the worst-case quadratic-size encoding is Schedule. This is because in this benchmark
there is a very high number of pairs of interfering operators that can be applied simulta-
neously, and the quadraticity therefore very clearly shows up. Hence the linear-size en-
coding leads to much smaller formulae. Better runtimes are however obtained only for
plan lengths higher than the shortest existing plans, as shown in Figure 5. On still bigger
instances the differences become still more pronounced. These differences between the
linear and quadratic size encodings often mean much bigger differences in total runtimes
on planners that use more sophisticated evaluation algorithms than the standard sequential
one, for example the algorithm we consider in Section 5.3.

4.4.4 Sizes of strong components of disabling graphs.Some of the sizes of SCCs of
disabling graphs are depicted in Table XII. We only give the SCC sizes for one instance of
each benchmark series, because the SCC sizes on all instances of each series are similar.
For example, all SCCs of all instances of the Blocks World, Depot, Gripper, Elevator,
Logistics, Satellite and ZenoTravel have size 1. On the other benchmarks, the SCC sizes
are a function of some of the problem parameters, like the number of vehicles.

Only few or no constraints on parallel operators are needed if all the strong compo-
nents of the disabling graphs are small. This directly contributes to the small size of the
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instance SCCs
block-34-0 2312× 1
depot-22-181722252× 1
grip-5 98× 1
elev/str-f60 3600× 1
log-41-0 7812× 1
satel-20 4437× 1
zeno-5-25b 31570× 1
driver-4-4-8 16× 10 16× 9 32× 8 48× 7 16× 6 32× 5 32× 4 1312× 1
sched-51-0 1× 1173 1× 51 1× 1
freecell8-4 1× 6882 99× 1

Table XII. Sizes of SCCs of Disabling Graphs:n × m means that there aren SCCs of sizem.

formulae for the 1-linearization semantics. However, it is not clear whether this per se
is a reason for the efficiency of 1-linearization semantics. On problems in which short-
est 1-linearization and shortest step plans have the same length, for example the blocks
world problems, 1-linearization encoding is not more efficient than the corresponding step
semantics encoding.

4.4.5 Quadratic step encoding vs. the BLACKBOX encoding.The BLACKBOX plan-
ner of Kautz and Selman [1999] is the best-known planner that implements the satisfiability
planning paradigm. Our quadratic encoding of the step semantics (Section 3.2.1) is closest
to the planning graph based encoding used in the BLACKBOX planner. We give a com-
parison between the runtimes for our quadratic step semantics encoding and the encoding
used by BLACKBOX in Table XIII,4 and between the formula sizes in Table XIV.

The planning graph [Blum and Furst 1997] is a data structure representing constraints
¬ot ∨ ¬o′t for pairs of interfering operators, 2-literal invariants, as well as 1-literal and 2-
literal clauses that indicate that certain values of state variables and application of certain
operators are not possible at given time points. The 2-literal clauses in planning graphs
are calledmutexes. A peculiarity of planning graphs is the notion of NO-OPs, a special
class of operators that are used as a marker for the fact that a given state variable does not
change its value. The problem encoding used by BLACKBOX is based on translating the
contents of planning graphs to 1-literal and 2-literal clauses.

On some of the easiest problems the BLACKBOX encoding is slightly more efficient
than the quadratic step semantics encoding (the Logistics problems and some instances of
the Depot problem), but in many cases it is much less efficient, most notably on the Blocks
World, Driver and Gripper problems. We believe that BLACKBOX’s efficiency on the
easier problems is due to the explicit reachability information in the planning graph that
with our step semantics encoding has to be inferred, and the inefficiency in general is due
to the bigger formulae BLACKBOX produces.

The BLACKBOX encoding results in much bigger formulae than the quadratic step
encoding, on the biggest instances by factors up to 25. The main reason for this is the
very straightforward translation of planning graphs to propositional formulae BLACKBOX
uses. This includes many redundant interference mutexes for operators that can be also

4We were not able to test all the benchmarks with BLACKBOX because of certain bugs.
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instance len val step blackbox
block-12-1 33 F 0.06 0.06

0.06 0.20 0.20
0.21

block-12-1 34 T 0.05 0.05
0.05 0.22 0.21

0.23

block-14-1 35 F 0.35 0.34
0.35 18.02 16.91

19.29

block-14-1 36 T 0.12 0.11
0.14 5.65 4.97

6.39

block-16-1 53 F 0.65 0.63
0.68 33.38 31.10

35.66

block-16-1 54 T 0.38 0.36
0.40 13.85 12.52

15.25

block-18-0 57 F 2.29 2.22
2.36 -

block-18-0 58 T 1.07 0.98
1.17 24.15 21.61

26.90

log-17-0 13 F 1.97 1.89
2.05 0.42 0.40

0.44

log-17-0 14 T 3.22 2.91
3.56 1.06 0.91

1.22

log-18-0 14 F 5.83 5.50
6.18 3.25 2.98

3.55

log-18-0 15 T 7.84 6.74
9.07 2.21 1.86

2.59

log-19-0 14 F 11.22 10.52
12.01 4.55 4.30

4.82

log-19-0 15 T 29.10 25.25
33.00 13.74 11.99

15.53

log-20-0 14 F 10.63 9.96
11.36 7.88 7.52

8.26

log-20-0 15 T - 15.94 13.97
18.01

depot-14-7654 11 F 1.41 1.34
1.48 0.30 0.28

0.31

depot-14-7654 12 T 3.48 3.19
3.78 1.17 1.06

1.29

depot-16-4398 7 F 0.01 0.01
0.01 0.01 0.01

0.01

depot-16-4398 8 T 0.07 0.06
0.07 0.01 0.01

0.01

depot-18-1916 11 F 0.17 0.16
0.17 28.41 23.75

33.44

depot-18-1916 12 T - -

driver-2-3-6d 15 F 19.09 18.22
19.98 43.44 40.04

46.98

driver-2-3-6d 16 T 8.04 7.16
9.00 18.94 17.72

20.16

driver-2-3-6e 11 F 1.13 1.07
1.19 0.60 0.56

0.63

driver-2-3-6e 12 T 1.27 1.10
1.45 1.51 1.28

1.73

driver-3-3-6b 10 F 0.82 0.77
0.87 0.60 0.56

0.65

driver-3-3-6b 11 T 1.07 0.90
1.25 0.76 0.64

0.89

driver-4-4-8 10 F 1.30 1.26
1.33 0.56 0.52

0.61

driver-4-4-8 11 T 5.92 5.34
6.50 19.35 17.88

20.89

gripper-2 10 F 0.08 0.08
0.09 0.34 0.32

0.36

gripper-2 11 T 0.02 0.01
0.02 0.12 0.10

0.15

gripper-3 14 F 3.91 3.49
4.35 41.07 36.15

45.84

gripper-3 15 T 0.32 0.19
0.46 2.82 2.08

3.63

Table XIII. Runtimes of the quadratic step semantics encoding vs. the BLACKBOX encoding



· 44

instance len step blackbox
P

103
C

103 MB P
103

C
103 MB

block-12-1 34 15.71 152.4 2.2313.12 1035.3 14.80
block-14-1 36 22.44 233.7 3.4724.88 2938.5 44.59
block-16-1 54 43.54 485.1 7.5142.73 6012.7 94.72
block-18-0 58 58.88 696.8 10.9261.79 11091.9 176.58
log-17-0 14 20.12 149.8 2.1610.41 431.8 6.15
log-19-0 15 29.08 236.6 3.4615.47 897.1 12.98
log-21-0 16 30.98 252.3 3.7019.97 1301.6 19.43
log-23-0 16 40.22 355.1 5.2924.13 1973.5 29.97
log-25-0 15 56.66 556.3 8.4228.70 3419.9 52.70
depot-14-7654 1230.99 357.5 5.5212.79 1952.6 27.96
depot-16-4398 813.72 143.5 2.10 4.12 237.7 3.33
depot-18-1916 1275.67 899.4 14.1833.42 14599.4 230.82
driver-2-3-6d 16 23.00 168.5 2.5115.60 1809.6 26.44
driver-2-3-6e 12 21.52 157.0 2.3211.45 1432.2 20.47
driver-3-3-6b 11 17.97 144.9 2.12 8.86 972.9 13.87
driver-4-4-8 11 37.73 382.5 5.8115.54 3406.7 49.92
gripper-2 11 1.01 5.3 0.06 1.15 15.2 0.19
gripper-3 15 1.76 9.7 0.12 2.13 36.7 0.48
gripper-4 19 2.72 15.5 0.20 3.39 71.6 0.97

Table XIV. Formula sizes of the quadratic step semantics encodings vs. the BLACKBOX encoding

otherwise inferred not to be simultaneously applicable as well as many mutexes between
NO-OPs and operators.

The step semantics formulae often have almost twice as many propositional variables
as the BLACKBOX formulae. This is due to the reachability information in the planning
graphs that allows to infer that only certain operators are applicable and only certain state
variable values are possible at some of the early time points. Roughly the same reduc-
tion could be obtained for our step semantics formulae by performing unit resolution and
eliminating all occurrences of propositional variables occurring in a unit clause by unit
subsumption.

We conclude that the BLACKBOX encoding is roughly comparable to our quadratic
encoding for the step semantics, and hence in many cases much less efficient than our
encoding for the 1-linearization semantics. Further, the formulae for the BLACKBOX
encoding are often several times bigger.

5. EVALUATION ALGORITHMS

Earlier research on classical planning that split plan search into finding plans of given fixed
lengths, for instance the Graphplan algorithm [Blum and Furst 1997], planning as satisfia-
bility [Kautz and Selman 1996], and related approaches [Rintanen 1998; Kautz and Walser
1999; Wolfman and Weld 1999; van Beek and Chen 1999; Do and Kambhampati 2001],
have without exception adopted a sequential strategy. This strategy starts with (parallel)
plan length 0, and if no such plans exist, continues with length 1, length 2, and so on,
until a plan is found. When every time step consists of exactly one operator, the standard
sequential strategy is guaranteed to find a plan that is optimal with respect to number of
time points.
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Fig. 6. SAT solver runtimes on two problems instances for formulae corresponding to different plan lengths

It seems that when we want to preserve this sequential optimality property, the sequential
strategy cannot in general be improved. For example, a strategy that increases the plan
length by more than one until a satisfiable formula is found and then performs a binary
search to find the shortest plan does not typically improve runtimes because the cost of
evaluating the unsatisfiable formulae usually increases exponentially as the plan length
increases.

However, when we want to find a plan of any quality, or when the sequential optimality
criterion loses its meaning because one time step is allowed to contain several operators,
we can use strategies that take the exponentially growing cost of the unsatisfiable formulae
and the possibly much lower cost of the first satisfiable formulae into account.

When plan quality (number of time points) is not a concern, we would like to run a sat-
isfiability algorithm on the satisfiable formula for which the runtime of the algorithm is the
lowest. Of course, we do not know which formulae are satisfiable and which have the low-
est runtime. With an infinite number of processors we could find in smallest possible time
a satisfying assignment for one of the formulae: just let each processori ∈ {0, 1, 2, . . .}
test the satisfiability of the formula fori time points. However, we do not have an infi-
nite number of processors, and we cannot even simulate an infinite number of processors
running at the same speed by a finite number of processors. But we can approximate this
scheme.

Our first algorithm uses a finite numbern of processes/processors. Our second algorithm
uses one processor (or a small number of processors) to simulate an infinite number of
processors, but the simulation runs the processes at variable rates so that for every formula
φt and every amountk there is a time point when the simulation has spentk seconds of
CPU time for testing the satisfiability ofφt. If all processes were simulated at the same
rate, this property could not be fulfilled.

Why would our algorithms speed up planning? Consider the diagrams in Figures 6, 7
corresponding to some standard benchmarks problems, as well as 8, corresponding to some
difficult 20 state variable problem instances sampled from the phase transition region [Rin-
tanen 2004b], each diagram representing the CPU time needed to detect the satisfiability
or unsatisfiability of formulae representing the existence of a plan of given lengths.

Except for the rightmost diagram in Figure 7 and the leftmost diagram in Figure 8, the
diagrams depict steeply growing costs of determining unsatisfiability of a sequence of for-
mulae followed by small costs of determining satisfiability of formulae corresponding to
plans. This pattern could be abstracted as the diagram in Figure 9. The strategy imple-
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Fig. 7. SAT solver runtimes on two problems instances for formulae corresponding to different plan lengths
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Fig. 8. SAT solver runtimes on two problems instances for formulae corresponding to different plan lengths
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Fig. 9. Evaluation cost of the unsatisfiable formulae for plan lengths 1 to 6 and the satisfiable formulae for plan
length 7 and higher. With 3 processes, process 1 finds the first plan (satisfying assignment) after evaluating the
formulae for plan lengths 1, 4 and 7 in 0.1+1+0.5 = 1.6 seconds. This is3 × 1.6 = 4.8 seconds of total CPU
time. The sequential strategy needs0.1 + 0.1 + 0.2 + 1 + 5 + 10 + 0.5 = 16.9 seconds. With 4 processes the
plan would be found by process 3 in0.2 + 0.5 = 0.7 seconds of CPU time, which is4 × 0.7 = 2.8 seconds of
total CPU time.
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procedureAlgorithmS()
i := 0;
repeat

test satisfiability ofφi;
if φi is satisfiablethen terminate;
i := i + 1;

until 1=0;

Fig. 10. Algorithm S

mented by our first algorithm distributes the computation ton concurrent processes and
initially assigns the firstn formulae to then processes. Whenever a process finds its for-
mula satisfiable, the computation is terminated. Whenever a process finds its formula un-
satisfiable, the process is given the first unevaluated formula to evaluate. This strategy can
avoid completing the evaluation of many of the expensive unsatisfiable formulae, thereby
saving a lot of computation effort.

An inherent property of the problem is that unsatisfiable (resp. satisfiable) formulae later
in the sequence are in general more expensive to evaluate than earlier unsatisfiable (resp.
satisfiable) formulae. The difficulty of the unsatisfiable formulae increases asi increases
because the formulae become less constrained, contradictions are not found as quickly,
and search trees grow exponentially. The increase in the difficulty of satisfiable formulae
is less clear. For example, for the first satisfiable formulaφs there may be few plans while
for later formulae there may be many plans, and the formulae would be less constrained
and easier to evaluate. However, as formula sizes increase, the possibility of getting lost
in parts of the search space that do not contain any solutions also increases. Therefore
increase in plan length also later leads to an increase in difficulty.

The new algorithms are useful if a peak of difficult formulae precedes easier satisfiable
formulae, for example when it is easier to find a plan of lengthn than to prove that no
plans of lengthn − 1 exists, and, if the first strongly constrained satisfiable formulae cor-
responding to the shortest plans are more difficult to evaluate than some of the later less
constrained ones. The experiments show that with many problems one or both of these
conditions hold.

We discuss the standard sequential algorithm and the two new algorithms in detail next.

5.1 Algorithm S: sequential evaluation

The standard algorithm for finding plans in the satisfiability and related approaches to
planning is to test the satisfiability of formulae starting from the one for plan length 0, one
at a time, until a satisfiable formula is found [Blum and Furst 1997; Kautz and Selman
1996]. This algorithm is given in Figure 10. This algorithm, like the ones discussed next,
can be extended so that it terminates whenever no plans exist. This is by the observation
that withn Boolean state variables there are at most2n reachable states and hence if a
plan exists then a plan of length less than2n exists. This, however, provides only an
impractical termination test. More practical tests exist [McMillan 2003; Mneimneh and
Sakallah 2003].

5.2 Algorithm A: multiple processes

The first algorithm is based on parallel or interleaved evaluation of a fixed numbern of
formulae byn processes. As the special casen = 1 we have Algorithm S. Whenever
a process finishes the evaluation of a formula, it is given the first unevaluated formula
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procedureAlgorithmA(n)
P := {φ0, . . . , φn−1};
uneval :=n;
found := false;
repeat

P ′ := P ;
for eachφ ∈ P ′ do

continue evaluation ofφ for ε seconds;
if evaluation ofφ terminatedthen

P := P ∪ {φuneval}\{φ};
uneval := uneval + 1;
if φ is satisfiablethen found := true;end if

end if
end do

until found

Fig. 11. Algorithm A

to evaluate. The algorithm is given in Figure 11. The constantε determines in how big
increments the evaluation proceeds. Thefor eachloop in this algorithm and in the next can
be implemented so that several processors are used in parallel.

There is a simple improvement to the algorithm: when formulaφi is found unsatisfi-
able, the algorithm terminates the evaluation of allφj for j < i because they must all be
unsatisfiable. However, this modification does not usually have any effect because of the
monotonically increasing evaluation cost of the unsatisfiable formulae:φj would already
have been found unsatisfiable whenφi with i > j is found unsatisfiable. We ignore this
improvement in the following.

5.3 Algorithm B: geometric division of CPU use

In Algorithm A the choice ofn is determined by the (assumed) width and height of the peak
preceding the first satisfiable formulae, and our experiments indicate that small differences
in nmay make a substantial difference in the runtimes. Our second algorithm addresses the
difficulty of choosing the valuen in Algorithm A. Algorithm B evaluates in an interleaved
manner an unbounded number of formulae. The amount of CPU given to each formula
depends on its index: if formulaφk is givent seconds of CPU during a certain time interval,
then a formulaφi, i ≥ k is givenγi−kt seconds. This means that every formula gets only
slightly less CPU than its predecessor, and the choice of the exact value of the constant
γ ∈]0, 1[ is far less critical than the choice ofn for Algorithm A.

Algorithm B is given in Figure 12. Variablet which is incrementally increased byδ
characterizes the total CPU timet1−γ available so far. Because the evaluation ofφi pro-

ceeds only if it has been evaluated for at mosttγi − ε seconds, CPU is actually consumed
less than t

1−γ , and there will be at time t
1−γ only a finite numberj ≤ logγ

ε
t of formulae

for which evaluation has commenced.
In a practical implementation of the algorithm, the rate of increaseδ of t is increased

as the computation proceeds; otherwise the innerforeachloop will later often be executed
without evaluating any of the formulae further. We could chooseδ for example so that the
first unfinished formulaφi is evaluated further at every iteration (δ = ε

γi ).
The constantsn andγ respectively for Algorithms A and B are roughly related byγ =

1− 1
n : of the CPU capacity1n = 1− γ is spent evaluating the first unfinished formula, and
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procedureAlgorithmB(γ)
t := 0;
found := false;
for each i ≥ 0 do done[i] = false;
for each i ≥ 0 do time[i] = 0;
repeat

t := t + δ;
for each i ≥ 0 such that done[i] = falsedo

if time[i] + nε ≤ tγi for some maximaln ≥ 1 then
continue evaluation ofφi for nε seconds;
time[i] := time[i] + nε;
if evaluation ofφi terminatedthen done[i] := true;end if
if φi was found satisfiablethen found := true;end if

end if
end do

until found

Fig. 12. Algorithm B

the lower bound for Algorithm B is similarly related to the lower bound for Algorithm A.
Algorithm S is the limit of Algorithm B whenγ goes to 0.

5.4 Properties of the algorithms

We analyze the properties of the algorithms.

Definition 43 (Speed-up)Thespeed-upof an algorithm X (with respect to Algorithm S)
is the ratio of the runtimes of Algorithm S and the Algorithm X.

If the speed-up is greater than 1, then the algorithm is faster than Algorithm S.
In our analysis we assume that the constantε in Algorithm A is infinitesimally small,

and hence, after a process finishes with one formula, the evaluation of the next formula
starts immediately, and the algorithm terminates immediately after a satisfiable formula is
found.

If there is no peak, that is, the last unsatisfiable formulae are not more difficult than
some of the first satisfiable ones, then Algorithm A withn ≥ 2 may needn times more
CPU than Algorithm S becausen− 1 satisfiable formulae are evaluated unnecessarily. We
formally establish worst-case bounds for Algorithm A.

Theorem 44 The speed-up of Algorithm A withn processes is at least1n . This lower bound
is strict.

PROOF. The worst case1n can show up in the following situation. Assume the first
satisfiable formula is evaluated in timet, the preceding unsatisfiable formulae are evaluated
in time 0, and the following satisfiable formulae are evaluated in time≥ t. Then the total
runtime of Algorithm A istn, while the total runtime of Algorithm S ist.

Assume the runtimes (CPU time) of the formulae aret0, t1, . . . , ts, . . ., andφs is the
first satisfiable formula. The total runtime of Algorithm S is

∑s
i=0 ti. This is also an upper

bound on the CPU time consumed by Algorithm A onφ0, . . . , φs. Additionally, Algorithm
A may spend CPU evaluatingφs+1, φs+2, . . .. The evaluation of these formulae starts at
the same time or later than the evaluation of the first satisfiable formulaφs. Becausen− 1
processes may spend all their time evaluating these formulae after the evaluation ofφs
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has started, the total CPU time spent evaluating them may be at most(n − 1)ts. Hence
Algorithm A spends CPU time at most

s∑
i=0

ti + (n− 1)ts

in comparison to
s∑

i=0

ti

with Algorithm S. The speed-up is therefore at least∑s
i=0 ti∑s

i=0 ti + (n− 1)ts
=

1
1 + (n− 1) tsPs

i=0 ti

≥ 1
1 + n− 1

=
1
n
.

In the other direction, there is no finite upper bound on the speed-up of Algorithm A
in comparison to Algorithm S for any number of processesn ≥ 2. Consider a problem
instance with evaluation timet0, t1 andt2 respectively for the first three formulae, the first
two of which are unsatisfiable and the third satisfiable. Lett0 = t2 andt1 = ct2. The
constantc could be arbitrarily high. Algorithm S runs in(c + 2)t2 time, while Algorithm
A with n = 2 runs in2t2 time. Hence the speed-upc+2

2 can be arbitrarily high.
Next we analyze the properties of Algorithm B assuming that the constantsδ andε are

infinitesimally small, that is, the evaluation of all of the formulaeφi proceeds continuously
at rateγi.

Theorem 45 The speed-up of Algorithm B is at least1− γ. This lower bound is strict.

PROOF. As with Algorithm A the worst case is achieved when all unsatisfiable formulae
preceding the first satisfiable formulaφs are evaluated and, additionally, the evaluation
of many of the satisfiable ones has proceeded far. The disadvantage in comparison to
Algorithm S is the unnecessary evaluation of many of the satisfiable formulae. Hence
Algorithm B spends CPU time at most

s∑
i=0

ti +
∑
i≥1

tsγ
i =

s∑
i=0

ti +
1

1− γ
ts − ts

in comparison to
s∑

i=0

ti

with Algorithm S. The speed-up is therefore at leastPs
i=0 tiPs

i=0 ti+
1

1−γ ts−ts
= 1

1+
1

1−γ
ts−tsPs

i=0 ti

≥ 1

1+
1

1−γ
ts−ts

ts

= 1
1+ 1

1−γ −1
= 1− γ.

This lower bound is strict: ifφi is satisfiable, evaluation times forφj , j < i are 0, and
evaluation times forφi, i > 1 are not lower than that ofφ1, then the speed-up is only
1− γ.
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So the worst-case speed-ups of these algorithms are the same if we observe the equation
γ = 1− 1

n relating their parameters.
Algorithm B does not have plan quality guarantees but Algorithm A has.

Theorem 46 If a plan exists, Algorithm A with parametern ≥ 1 is guaranteed to find a
plan that is at mostn− 1 steps longer than the shortest existing one.

PROOF. So assume Algorithm A finds a plan witht steps. This means that the process
for formulaφt determined that the formula is satisfiable. There are at mostn−1 processes
for formulaeφs with s < t, and all formulaeφs for s < t for which a process terminated are
unsatisfiable. All formulae preceding an unsatisfiable formula are unsatisfiable. Consider
formulaφt−n.

If the process evaluatingφt−n has terminated, the formula must have been unsatisfiable,
and hence the plan fromφt is at mostn − 1 steps longer than the shortest existing one
which much have length overt− n.

If the process evaluatingφt−n has not terminated, then the evaluation of one of the
n− 1 formulaeφt−n+1, . . . , φt−1 must already have been terminated, because there aren
processes and two of them were evaluatingφt−n andφt. Becauseφt was the first one found
satisfiable, one of the formulaeφt−n+1, . . . , φt−1 that was evaluated was unsatisfiable, and
hence must the formulaφt−n also be unsatisfiable, yielding the same lower bound for the
plan length.

5.5 Empirical evaluation

We illustrate properties of the algorithms on a collection of problems from the AIPS plan-
ning competitions. Plans for most of these problems can be found in polynomial time by
simple domain-specific algorithms, and planners using heuristic search [Bonet and Geffner
2001] have excelled on these problems, while they had been considered difficult for plan-
ners based on satisfiability testing or CSP techniques.

For each problem instance we generate formulae for plan lengths up to 10 or 30 beyond
the first (assumed) satisfiable formula according to the 1-linearization semantics encoding
in Section 3.4.4. We used the linear-size encoding of the parallelism constraints if it was
less than half of the size of the obvious quadratic encoding that does not require introduc-
ing auxiliary propositional variables to avoid exceeding Siege’s upper bound of 524288
propositional variables.

Then we test the satisfiability of every formula and cancel the run if the satisfiability had
not been determined in 60 minutes of CPU time. Like in the experiments in Section 4, we
use the Siege V4 SAT solver by Lawrence Ryan of the Simon Fraser University on a 3.6
GHz Intel Xeon computer.

Then we compute from the runtimes of all these formulae the total runtimes under algo-
rithms A and B with different values for the parametersn andγ. Algorithm S is the special
casen = 1 of Algorithm A. The constantsε andδ determining the granularity of CPU time
division are set infinitesimally small. Formulae that were beyond the plan-length horizon
or that took over 60 minutes to evaluate were considered as having infinite evaluation time.
The times do not include generation of the formulae.

The runtimes on a number of problems from the AIPS planning competitions of 1998,
2000 and 2002 are given in Table XV. For most benchmarks we give the runtimes of the
most difficult problems, which in some cases are the last ones in the series, as well as some
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of the easier ones. Most of the runtimes not given are below one second for any evaluation
strategy. Some of the benchmark series cannot be efficiently solved until the end, and we
give data just for some of the most difficult instances that can be solved. We discuss these
benchmarks below.

The Movie, MPrime and Mystery benchmarks from the 1998 competition and Rovers
from 2002 are very easy for every evaluation strategy (fraction of a second in most cases)
but we cannot produce the biggest MPrime instance because of a memory restriction.

The Logistics (1998 and 2000) and Satellite (2002) series are solved completely. Proving
inexistence of plans slightly shorter than the optimal plan length is in some cases difficult
but the new evaluation algorithms handle this efficiently.

The Depots (2002) problems are also relatively easy but in contrast to most other bench-
marks the new evaluation algorithms in some cases increase the runtimes up to the theo-
retical worst case.

The DriverLog and ZenoTravel (2002) problems are solved quickly except for some of
the biggest instances. We cannot find satisfiable formulae for the last ZenoTravel problem
within our time limit5, and finding plans for the preceding two instances of ZenoTravel and
the last two of DriverLog is also slow. The difficulty lies in finding tight lower bounds of
plan lengths, that is, the runtimes of the SAT solver on the unsatisfiable formulae.

Blocks World (2000) problems lead to very big formulae (size over 100 MB and over
524288 propositions), and we can solve only two thirds of the series.

Elevator (2000), Schedule (2000) and Gripper (1998) are a challenge because only very
loose lower bounds on plan length are easy to prove. Finding plans corresponding to a
given satisfiable formula is very easy (some seconds at most) but locating these formulae
is very expensive. Increasing parametersn andγ improves runtimes.

The formulae generated for FreeCell (2002) are too big (hundreds of megabytes) for the
current SAT solvers to solve them efficiently. This benchmark series along with the blocks
world problems are the only ones that are not solved almost entirely.

All in all, it seems that a conservative use of the new algorithms (especially Algorithm
B with γ ∈ [0.7..0.9]) leads to a general improvement in the runtimes in comparison to
Algorithm S.

Decrease in plan quality is indirectly related to decrease in runtime. This depends on
whether the first satisfiable formulae are the easiest ones. In general, satisfying valuations
that are found for plan lengths much higher than the shortest plan length correspond to
plans with more operators, but not always.

6. RELATED WORK

6.1 Encodings of planning in the propositional logic

Kautz and Selman [1992] introduced the idea of doing planning by using satisfiability
algorithms. Following the introduction of the GraphPlan algorithm that successfully uti-
lized parallel plans [Blum and Furst 1997] also Kautz and Selman [1996, 1999] introduced
problem encodings based on parallel plans and Graphplan’s planning graphs.

Ernst et al. [Ernst, Millstein, and Weld 1997] investigated different ways of translating
sequential planning into the propositional logic showing how to utilize regularities in the
set of operators to obtain compact problem encodings.

5The number of propositions in formulae for plan lengths much higher than the presumed shortest plan length
exceeds Sieges upper bound 524288.
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Algorithm A with n Algorithm B with γ easiest
instance 1 2 4 8 16 0.5000 0.7500 0.8750 0.9375
block-18-0 8.6 7.8 7.6 5.8 6.6 8.0 7.9 7.7 9.3 0.1
block-20-0 11.3 12.2 13.8 16.9 15.5 13.0 16.5 20.1 18.3 0.2
block-22-0 122.4 106.9 96.7 77.0 35.4 106.0 62.2 33.5 27.0 0.3
block-24-0 2877.5 2675.7 1854.0 829.0 167.42087.3 583.3 284.8 246.8 0.7
block-26-0 5347.5 5000.0 4640.1 3103.9 539.04116.7 1140.0 242.6 126.3 0.9
block-28-0 3447.8 3413.4 3246.8 1984.3 813.32867.0 1746.1 1027.6 336.4 1.1
block-30-0 - - 13949.9 7541.0 6349.113934.0 6577.4 1717.4 503.9 1.9
block-32-0 - - - 28695.4 14326.9> 27h 36417.3 8182.8 2245.7 11.3
block-34-0 227.6 227.8 224.2 231.5 208.8 238.4 248.2 264.6 188.5 1.9
driver-4-4-8 0.5 0.6 0.3 0.5 0.8 0.6 0.6 0.7 1.1 0.1
driver-5-5-10 731.2 549.5 631.6 237.7 440.2 969.8 507.0 472.4 651.1 27.5
driver-5-5-15 72.4 36.1 50.4 100.4 200.6 56.0 72.7 120.5 219.8 12.5
driver-5-5-20 1018.2 690.1 792.4 940.7 17.8 967.5 148.2 35.4 24.0 0.5
driver-5-5-25 - 6433.9 2218.9 3542.3 4132.24553.4 4100.7 5800.5 7865.5258.2
driver-8-6-25 - - 13333.9 11081.4 22162.627447.3 24120.5 22377.1 31375.31385.2
satel-12 31.1 5.1 1.4 1.8 2.7 4.0 2.5 3.1 4.6 0.2
satel-13 14.8 14.2 18.2 14.9 17.9 21.0 29.0 24.1 22.8 0.5
satel-19 45.1 28.4 21.6 5.0 5.6 42.3 13.1 9.4 10.1 0.3
satel-20 - 1806.4 266.6 33.0 35.0 187.1 69.3 55.3 63.5 2.1
gripper-5 3443.2 1053.7 35.5 7.2 5.0 31.7 16.2 2.1 0.9 0.0
gripper-6 - - 2679.6 23.4 10.4 121.9 45.6 4.1 1.7 0.0
gripper-7 - - - 491.3 28.3 1968.0 128.2 7.9 2.8 0.0
gripper-8 - - - 13285.5 293.157298.9 790.1 27.3 4.7 0.0
gripper-9 - - - - 832.6 > 27h 589.7 37.7 13.0 0.1
gripper-10 - - - - 216.3 31496.5 569.3 126.8 17.1 0.1
gripper-11 - - - - - > 27h 87479.2 2308.0 335.4 0.8
gripper-12 - - - - - > 27h > 27h 8306.4 1117.5 0.8
gripper-13 - - - - - > 27h > 27h 15918.8 516.6 0.5
gripper-14 - - - - - > 27h > 27h 56733.1 5247.9 0.4
zeno-5-10 0.3 0.3 0.2 0.2 0.5 0.3 0.2 0.3 0.6 0.0
zeno-5-15 154.2 77.1 8.7 2.3 4.5 17.7 5.1 4.8 6.6 0.3
zeno-5-15b 40.5 25.3 7.1 9.4 9.1 24.4 14.6 17.6 17.7 0.5
zeno-5-20 - - 9036.9 6422.6 2896.016459.9 1364.2 126.8 64.8 1.1
zeno-5-20b - - - 10822.9 18744.687164.6 23385.8 21683.0 30471.31171.5
zeno-5-25 - - - 12987.1 25914.9> 27h 37341.0 29810.9 39109.31619.7
sched-33-0 79.0 53.7 13.0 5.0 6.7 22.8 10.9 10.1 11.3 0.2
sched-35-0 2225.2 1435.5 19.5 3.6 2.9 14.3 7.8 4.9 5.2 0.2
sched-37-0 346.2 184.4 92.8 8.6 9.6 80.4 24.2 19.4 19.5 0.6
sched-39-0 - - - 592.2 140.3 5889.8 1084.6 437.6 221.9 1.9
sched-41-0 - - - 479.1 35.4 3040.7 237.1 91.7 80.7 1.3
sched-43-0 - 1565.2 23.9 11.6 17.4 47.3 20.0 21.4 23.7 0.4
sched-45-0 - - 1398.1 109.5 41.6 786.6 257.8 100.2 73.3 1.5
sched-47-0 - - - 14066.9 245.062768.3 1708.6 607.0 215.4 2.2
sched-49-0 - - - 9511.7 561.624913.2 2609.9 426.4 169.2 2.1
sched-51-0 - - - - 1151.2 > 27h 8327.0 1692.6 889.2 7.6
depot-09-5451 14.1 24.8 43.9 85.8 171.5 24.8 46.3 89.1 174.8 10.7
depot-12-9876 255.4 509.7 1018.6 2036.9 4073.6 509.9 1019.1 2037.5 4074.2254.6
depot-15-4534 42.8 79.3 154.8 305.4 609.9 80.9 157.1 309.6 614.4 38.1
depot-18-1916 5.9 11.2 21.9 43.5 86.9 11.4 22.2 43.9 87.4 5.4
depot-19-6178 0.2 0.2 0.3 0.4 0.6 0.3 0.3 0.5 0.8 0.0
depot-20-7615 34.2 66.7 131.9 262.1 10.4 67.0 35.6 18.5 18.7 0.4
depot-21-8715 0.2 0.1 0.2 0.3 0.6 0.2 0.3 0.4 0.7 0.0
depot-22-1817 27.1 50.8 98.9 194.8 389.4 51.4 100.1 197.5 392.2 24.3
log-20-0 3.4 2.8 0.6 0.7 0.5 1.3 1.1 0.9 0.8 0.0
log-24-0 0.9 0.4 0.6 1.0 1.6 0.6 0.8 1.2 1.8 0.0
log-28-0 87.7 53.3 13.8 1.9 3.5 15.0 4.1 3.8 3.9 0.1
log-32-0 - 53.1 18.9 37.4 16.3 37.9 33.7 26.6 16.6 0.3
log-36-0 - 101.1 20.2 30.1 11.8 58.7 46.5 29.2 14.5 0.2
log-40-0 - - 111.2 4.6 7.2 37.5 10.6 9.9 13.5 0.4
log-41-0 - - 52.4 20.0 5.4 175.3 14.8 9.1 9.8 0.3

Table XV. Columnn = 1 is Algorithm S. Dash indicates a missing upper bound on the runtime when some
formulae were not evaluated in 60 minutes. The last column indicates the lowest time it took to determine the
satisfiability of a formula for some plan length.

Following the work by Kautz and Selman, translations of planning to many other for-
malisms have been proposed [Dimopoulos, Nebel, and Koehler 1997; Kautz and Walser
1999; Wolfman and Weld 1999; van Beek and Chen 1999; Do and Kambhampati 2001]
but all these works – with the exception of Dimopoulos et al. – use the notions of parallel
and sequential plans already used by Kautz and Selman.
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Dimopoulos et al. [1997] noticed that the notion of parallel plans used by Blum and
Furst [1997] can be relaxed to what we have formalized as 1-linearization semantics. They
called this ideapost-serializabilityand showed how to transform operators for some plan-
ning problems to make them post-serializable. They did not propose a general translation
from arbitrary planning problems as we have done in this work. Rintanen [1998] imple-
mented this idea in a constraint-based planner and Cayrol et al. [2001] in the GraphPlan
framework.

The preconditions-effects graphs of Dimopoulos et al. [1997] are a subclass of our
disabling graphs. Dimopoulos et al. used these graphs for defining a notion of plans
similar to our 1-linearization plans but did not use them for deriving efficient encodings
of planning problems. The definition of preconditions-effects graphs often requires many
more edges than the definition of disabling graphs does, and consequently the SCCs of the
former may be much bigger than the SCCs of the latter. The small size of the SCCs of
disabling graphs is often critical in obtaining compact and efficient problem encodings.

Outside planning, an idea similar to 1-linearization has been recently used by Ogata and
Tsuchiya [2004] in the context of 1-safe Petri nets.

6.2 Evaluation algorithms

The algorithms in Section 5 are new. The idea behind them have some resemblance to par-
allelized Las Vegas algorithms, see for example the work by Luby and Ertel [1994], and
randomized restarts in combinatorial search [Gomes, Selman, Crato, and Kautz 2000], but
the problems are not directly related. In our case, we have an infinite sequence of problem
instances (existence of a plan of length0, 1, 2, . . .) with a certain presumed runtime profile
(exponential growth in runtimes of the unsatisfiable formulae preceding the satisfiable for-
mulae), whereas in the other two works the question is about utilizing the properties of the
distribution of runtimes of one problem instance with a randomized algorithm.

7. CONCLUSIONS

We have given translations of semantics for parallel planning into SAT and shown that
one of them, for 1-linearization semantics, is very efficient, often being one or two orders
of magnitude faster than previous encodings. This semantics is superior because with
our encoding the number of time steps and parallelism constraints is small. Interestingly,
the process semantics, a refinement of the standard step semantics that imposes a further
condition on plans, typically did not improve planning efficiency in our tests.

The 1-linearization encoding combined with the novel strategies for finding satisfiable
formulae that correspond to plans sometimes lead to substantial improvements in efficiency
of satisfiability planning.
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