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Abstract

In this paper test selection strategies in formal confor-
mance testing are considered. As the testing conformance
relation we use theioco relation, and extend the previously
presented on-the-fly test generation algorithms forioco to
include test selection heuristic based on a specification cov-
erage metric. The proposed method combines a greedy test
selection with randomization to guarantee completeness.
As a novel implementation technique we employ bounded
model checking for lookahead in greedy test selection.

1 Introduction

Conformance testing aims to show that a particular im-
plementation conforms to its specification. It is particularly
useful in testing implementations of communication proto-
cols. In tele- and data communication field the products of
different vendors must be able to cooperate, and this can
achieved by conforming to a common specification.

Formal conformance testing formalizes the concepts of
conformance testing [16]. Essential notions include the im-
plementation, the specification and conformance relation
between these two. In this work we useioco conformance
relation [17]. Previously there has been work implementing
on-the-fly-testers [4] forioco conformance relation. These
basically test whether the implementation behaves accord-
ing to the specification. The tester has to make choices:
what inputs it gives to the implementation and when it waits
for an output. How to make these choices well is the prob-
lem we concentrate on. All possible test cases cannot be
executed, as there often are infinitely many of them. Mak-
ing good choices reduces the amount of executed test events
or raises the quality of testing. We approach this problem
with test selection methods based on coverage.

In this paper we introduce a method for using specifica-
tion coverage to guide test selection by extending the ex-
isting on-the-fly algorithm of [4] to include coverage based

test selection heuristic while still preserving the complete-
ness of procedure. (See [7] for another approach to intro-
duce probabilities to the same algorithm.) We have selected
a specification based coverage metric and implemented an
on-the-fly testing framework employing this method. Ini-
tial experiments to evaluate the efficiency of the suggested
approach are presented. We are able to demonstrate cases
where the suggested approach is very efficient. Experi-
ments on a more real life case study, the conference pro-
tocol, demonstrate that the method is feasible, however, the
achieved improvements are not as dramatic.

Coverage has been used in software testing [1], e.g.,
statement, branch and path coverage, and we try to apply
similar ideas to formal conformance testing. Using cov-
erage one might for example wish to execute all the lines
of source code at least once. Unfortunately, in black box
testing this is not possible, because we do not know the in-
ternals of the actual implementation. Instead, we assume
that the implementation resembles the specification and try
to cover the specification. From a pragmatic point of view,
if the implementation is made according to the specification
(or vice versa) it is somewhat likely that they resemble each
other. Therefore we take the assumption that in many cases
arising in practical test settings, specification based cover-
age can “approximate” coverage used in white box testing.

Existing work has investigated selecting tests and mea-
suring coverage based on traces [8], test selection using test
purposes [3], using coverage information to find bugs faster
in model checking Java programs [9], using heuristic meth-
ods for test selection [14], using bounded model checking
in test sequence generation [18], and using coverage criteria
in test generation for white box testing [15].

We assume that the sending and receiving testing events
from the implementation is the most time consuming task.
For example, test generation is considered to take a lot less
time than executing the tests. Therefore our target is to re-
duce the amount executed test events while preserving the
quality of test suite, e.g., the capability to detect errors.
The test selection heuristic combines a greedy algorithm



with randomization. As a novel implementation technique
we use bounded model checking [2] for lookahead in the
greedy part of the heuristic. Bounded model checking is an
interesting new technology which enables new algorithms
also in the area of testing. We believe that the suggested
method is a very interesting application area for bounded
model checking, as trying to navigate in a non-deterministic
specification to an uncovered part of the specification can be
seen as a model checking subroutine. Furthermore, failing
to find a counterexample (for example due to a user imposed
time limit on the bounded model checker) will only result
in the test selection algorithm falling back to randomized
test selection strategy, which only degrades the test selec-
tion performance, but does not affect the soundness or com-
pleteness of the procedure. As an alternative to bounded
model checking also some random walk lgorithms could be
used instead. However, their performance on some specifi-
cations, like the combination lock example in Sect. 8, will
not be as good as those obtained using a bounded model
checker.

The main contribution of the paper is a new test selection
method based on specification coverage. The algorithm can
be seen as an extension of the algorithm of [4]. We have
implemented the method, and demonstrate the feasibility of
the approach using a small set of experiments. The imple-
mentation uses bounded model checking as a novel imple-
mentation technique.

The structure of the the rest of this paper is as follows. In
Sect. 2 we introduce the labelled transition systems (LTS’s
for short) and in Sect. 3 we introduce the conformance re-
lation ioco for LTS’s. Section 4 describes the on-the-fly
testing and Sect. 5 introduces our specification formalism,
labelled 1-safe Petri nets, and the coverage metric we use.
Section 6 contains the new algorithms for on-the-fly testing.
Section 7 introduces the conference protocol case study,
Sect. 8 describes the experiments made, and finally Sect. 9
contains the conclusions.

2 Labelled Transition Systems

Labelled transition systems (abbreviated as LTS) are a
well known formalism to specify system behavior. The
iococonformance relation has been introduced using LTS’s,
and we next will introduce the needed notation.

Definition 1 A labelled transition systemis a four tuple
(S,L, ∆, s0), whereS is set of states,L is a finite set of
labelswith a special symbolτ /∈ L, ∆ ⊆ S× (L∪{τ})×S
is the transition relation, ands0 is theinitial state.

We will not always distinguish between an LTS and its ini-
tial state, and for convenience often use the initial state to
also denote the LTS itself. When testing systems we have

visible actions and hidden internal actions. We define the
set of visible actions as follows.

Definition 2 The set of visible transitions of an LTSp =
(S,L, ∆, s0) is ∆v =def {(s, a, s′) ∈ ∆ | a ∈ L}.
We use notationL∗, whereL is a finite set of labels, to
denote the set of finite sequences overL. The following
notation is been defined to be identical with [4]

Definition 3 Let p = (S, L, ∆, s0) be an LTS. We define
the following notation, wheres, s′ ∈ S, S′ ⊆ S, µ, µi ∈
L ∪ {τ}, a, ai ∈ L:

s
µ−−−→ s′ =def (s, µ, s′) ∈ ∆,

s
µ1...µn−−−→ s′ =def ∃s1, s2, . . . , sn−1 :

s
µ1−−−→ s1 · · · sn−1

µn−−−→ s′,

s
µ1...µn−−−→ =def ∃s′ : s

µ1...µn−−−→ s′,

s
µ1...µn−−6−→ =def ¬s

µ1...µn−−−→,

s
ε===⇒ s′ =def s = s′ ∨ s

τ...τ−−−→ s′,

s
a===⇒ s′ =def ∃s1, s2 :

s
ε===⇒ s1

a−−−→ s2
ε===⇒ s′,

s
a1...an===⇒ s′ =def ∃s1 . . . sn−1 :

s
a1===⇒ s1 · · · sn−1

an===⇒ s′,

s
σ===⇒ =def ∃s′ : s

σ===⇒ s′,

s
σ

==6=⇒ =def ¬s
σ===⇒,

traces(s) =def {σ ∈ L∗ | s σ===⇒},
init(s) =def {µ ∈ L ∪ {τ} | s µ−−−→},

s after σ =def {s′ | s σ===⇒ s′},
init(S′) =def

⋃

s∈S′
init(s), and

S′ after σ =def

⋃

s∈S′
s after σ.

Definition 4 A divergence free (i.e, strongly convergent)
LTS does not contain an infinite execution ofτ transi-
tions, i.e., ∃n ∈ N : ∀s1, s2, . . . , sn : if s1

τ−−−→
s2 · · · sn−1

τ−−−→ sn then it follows thatsn

τ

−−6−→ sn+1.

We make the same restrictions of LTS’s as [4]. We re-
strict ourselves to divergence free labelled transition sys-
tems, which are denoted asLT S. To distinguish between
inputs and output, we define a subclass of labelled transition
systems calledinput-output transition systemsto represent
the implementation under test. We also require that IOTS
must always accept all inputs. The IOTS are very closely
related to I/O Automata of Lynch et. al, see e.g., [4].



Definition 5 An input-output transition system(abbrevi-
ated as IOTS) is an LTS with the following restrictions. The
set of labelsL is divided into input labelsLI and output
labelsLU , such thatL = LI ∪ LU andLI ∩ LU = ∅. Fur-
thermore for an IOTS it is required that∀s ∈ S : ∀a ∈ LI :
s

a===⇒. We denote the set of all input-output transition
systems withIOT S.

3 Conformance Relation ioco

We defineioco for labelled transition systems as in [4].
Often system under testing (SUT) has states, where no out-
put can be observed. To model such behaviour with the
theory, thequiescenceconcept is introduced.

Definition 6 A states of i ∈ LT S (withLU andLI defined

as for IOTS) is quiescent iff∀µ ∈ LU ∪ {τ} : s
µ

−−6−→.
A quiescent states is denoted byδ(s).

The concept of out sets will be introduced to represent the
possible outputs of some particular state.

Definition 7 Let s be a state ofi ∈ LT S (with LU andLI

defined as for IOTS), then

out(s) =def {a ∈ LU | s a===⇒} ∪ {δ | δ(s)}.
Suspension traces are the traces including suspensions, i.e.,
apart from having symbols from the label setL, they also
haveδ symbols to denote suspensions.

Definition 8 For this definition extend thes
µ−−−→ s′ no-

tation. It is defined to include the suspensions in following

way: If δ(s), thens
δ−−−→ s. After this changes

a===⇒ s′

as well as other notations in Def. 3 are extended to use the
redefineds

µ−−−→ s′ as a basis for them. The set of sus-
pension traces is defined as follows.

Straces(s) =def {σ ∈ (L ∪ {δ})∗ | s σ===⇒}.

Now we have introduced required concepts to define the
iococonformance relation.

Definition 9 Let i ∈ IOT S be a implementation ands ∈
LT S be a specification, then

i iocos =def ∀σ ∈ Straces(s) :
out(i after σ) ⊆ out(s after σ).

In other words, an implementationi will be non-conformant
if after a trace of the specification (σ ∈ Straces(s)), it pro-
duces an output, saya, which the specification cannot match
(a 6∈ out(safter σ)). Do note that non-deterministic speci-
fications are allowed by the formulation above.

4 On-the-fly Testing

In on-the-fly testing the running of a test and the gen-
eration of a test case are combined into one algorithm.
This is quite useful in practice as often the behavior of
the implementation restricts the set of possible tests runs.
An efficient on-the-fly testing tool has been presented for
the ioco conformance relation in [4] based on the model
checkerSPIN [12]. The starting point of our work was the
on-the-fly testing algorithm presented in [4]. Their algo-
rithm for test selection is fully non-deterministic, and we
have come up with a coverage based test selection algorithm
as an alternative to test selection.

The Algorithm 1 is the main on-the-fly testing rou-
tine. This routine is parameterized by the selection of
the subroutineTestMove(S). If we use the Algorithm 2
(RandomTestMove(S)) as the subroutineTestMove(S), we
basically get a randomized implementation of the on-the-fly
testing algorithm of [4]. Later we will replaceTestMove(S)
by another subroutine calledHeuristicTestMove(S), and the
development of this subroutine is the main contribution of
this work. If Algorithm 1 terminates the implementation is
not aniococonformant one. We do not discuss in this paper
how other test runs should be terminated, as those details
are similar to [4].

5 Petri Nets

Petri nets [5] are a formalism, which enables a more
compact representation of systems, than simple labelled
transition systems as introduced in Def. 1. A similar com-
pact representation could also be achieved using synchro-
nizations of such simple labelled transition systems, but for
this work we chose labelled 1-safe Petri nets. They are guar-
anteed to induce LTS’s with finite set of reachable states. As
we also had a bounded model checker available for 1-safe
Petri nets [11], we felt that choosing 1-safe Petri nets for the
task would be convenient.

A three tupleN = (P, T, F ) is a net, whereP andT
are finite sets ofplacesand transitions, respectively. The
place and transition sets are distinct, i.e.,P ∩ T = ∅. The
flow relationis F ⊆ (P × T ) ∪ (T × P ). Transition and
places can also be callednodes. By F (x, y) we denote the
characteristic functionof F . It is defined as(x, y) ∈ F ⇒
F (x, y) = 1 and(x, y) /∈ F ⇒ F (x, y) = 0.

A markingof a net(P, T, F ) is a functionM : P →
N, whereN is the set of natural numbers including zero.
Marking associates a number of tokens with each place.

A four tuple N = (P, T, F,M0) is a Petri net if
(P, T, F ) is a net, andM0 is a marking of this net. A transi-
tion t is enabledin a markingM , iff ∀p : M(p) ≥ F (p, t).
If transitiont is enabled in a markingM , it can occur lead-
ing to markingM ′, where∀p ∈ P : M ′(p) = M(p) −



Algorithm 1.

procedureOnTheFlyTest(IOT S i, LT S s){
terminate :=false; failure := false;
S :={s0} after ε; // Calculate all the initial states
while (terminate =false) {

move :=TestMove(S); // Returns move∈ LI ∪ {output}
if (move∈ LI ) then {

x := move; // We havex ∈ (init(S) ∩ LI )
Stimulate(i, x); // Stimulate the implementation
TestLog(S, x); // Log the input
S := Safter x; // Update spec state set

} else{ // move =output
x = ObserveOutput(i);
TestLog(S, x); // Log the output or timeout observed
if (x ∈ out(S)) then {

S := Safter x; // Update spec state set
} else{

failure := true; terminate :=true;
}

}
}
return failure;

}
Algorithm 2.

procedureRandomTestMove(superstate S){
inputs :=init(S) ∩ LI ; // Calculate possible inputs
move :=output ;
if (inputs 6= ∅) then {

if (TrueWithProbability(Prob input)) then {
move :=PickRandomElement(inputs); // Pick an input

}
}
return move;

}

Figure 1. The on-the-fly testing algorithm
main loop and randomized test selection sub-
routine

F (p, t) + F (t, p). This is denoted byM
t→ M ′.

In further discussion we will discriminate between
reachable markingsand all markings.

Definition 10 Let N = (P, T, F,M0) be a Petri net. The
set of reachable markings RM(N) is defined to be the small-
est set fulfilling following two conditions:

(i) M0 ∈ RM(N), and

(ii) if M ∈ RM(N) andM
t→ M ′ thenM ′ ∈ RM(N).

A marking M is reachable, iffM ∈ RM(N).

In 1-safe Petri nets for all markingsM ∈ RM(N) it holds
that∀p ∈ P : M(p) ≤ 1. We will restrict ourselves to 1-
safe Petri nets in this work. To make a connection between

Petri nets and LTS’s we define a labelling on the transitions
of the Petri net.

Definition 11 A labelled netis a four tuple(P, T, F, λ),
where(P, T, F ) is a net, andλ : T → L ∪ {τ} attaches
labels to transitions from a finite set of labelsL.

To use ouriococonformance relation defined for LTS’s, we
have to define how an LTS is formed on the basis of a Petri
net. We include the reachable markings as the states of such
LTS and if some transition exists between the states then we
include an arc with a corresponding label to the LTS. We
define an induced LTS of a labelled Petri net as follows

Definition 12 A labelled Petri netN = (P, T, F, λ, M0)
induces a labelled transition system defined as LTS(N) =
(S,L, ∆, s0), whereS = RM(N), L is the set of labels in

the labelled Petri net,∆ = {(M, l,M ′) | M
t→ M ′ ∧

λ(t) = l}, ands0 = M0.

As a side note, we remind the reader we have extended
the notation ofs

µ−−−→ s′ to include the suspension arcs

s
δ−−−→ s for all LTS, including LTS(N). We assume in

the rest of this work that LTS(N) fulfills all the restrictions
put on LTS’s in the previous section.

In testing context it is important to discriminate between
visible actions and internal actions. The visible actions are
those in the setL, and the only internal action is the labelτ .

Definition 13 Visible transitionsof labelled Petri netN =
(P, T, F, λ) are transitionst ∈ T , such thatλ(t) 6= τ . We
denote with vistrans(N) the set of visible transitions ofN .

Assume that during on-the-fly testing we have run a test se-
quenceσ. We want to define a coverage metric that records
which visible transitions of the net have been covered dur-
ing the test run. We require that the coverage metric should
be monotone, in the sense that a longer test sequence always
covers at least as many visible transitions as a shorter one.

Definition 14 Let N be a specification Petri net, and let
LTS(N) be the induced LTS. A test runσ ∈ (L ∪ {δ})∗ cov-
ers the transitiont ∈ vistrans(N), iff there existsσ′, σ′′ ∈
(L ∪ {δ})∗, s ∈ S, andM, M ′ ∈ RM(N) such that:

(i) σ = σ′ · λ(t) · σ′′,

(ii) s0
σ′===⇒ s = M , and

(iii) M
t→ M ′.

The intuition behind the visible net transition coverage is
the following. After the test sequenceσ′ our on-the-fly
testing algorithm has computed a superstateS which con-
tains the states, corresponding to the markingM of the net.
When we at that point continue testing by (input or output)
λ(t), we have to also consider the case where the net tran-
sition t is fired when computingS after λ(t), and at that
point the transitiont becomes covered.



6 Coverage Based Test Selection

The approach to using specification coverage to guide
test selection in this work is very pragmatic. When testing
a system we have usually only a finite amount of test re-
sources available. In this work we assume that the number
of test moves, in other words inputs sent to the implementa-
tion and outputs observed from it, can be used as a measure
of the resources used for testing. We would like to minimize
the amount of testing needed to detect non-conforming im-
plementations.

When seen from a theoretic perspective, our work might
seem futile. If we see testing as a game against a truly non-
deterministic black-box implementation with no limitations
to its internal structure, using a fully non-deterministic test
selection strategy will surely be the best we can do from a
theoretical perspective.

However, from a pragmatic point of view, often the test
setting is far from the worst case scenario. The internal
structure of the implementation can be similar to the internal
structure of the specification, and the implementation might
be deterministic or randomized (instead of playing against
us). This gives us hope that increasing coverage on the spec-
ification side during testing will also lead to increasing cov-
erage on the implementation side, and more importantly to
finding non-conforming implementations more effectively.
Again, from a pragmatic point of view, only practical ex-
perimentation will show whether this hope in using specifi-
cation based coverage metrics for testing is unfounded.

6.1 Coverage Based Test Selection Heuristic

The on-the-fly testing main loop in Algorithm 1 is kept as
is when incorporating coverage based heuristics, as it basi-
cally just executes test moves provided by theTestMove(S)
subroutine. The first extension is to keep track of the used
coverage metric. The subroutineTestLog(S, x) can be ex-
tended to keep track of the coverage metric in use. In the
experiments presented in this work we use visible transi-
tion coverage of the specification Petri net (see Def. 14),
but any other specification coverage metric could alterna-
tively be used. The second change is to use the Algorithm 3
(HeuristicTestMove(S)) as the subroutineTestMove(S). It
will with probability Prob greedy (which should always be
< 1) call a greedy coverage based test selection subrou-
tine, Algorithm 4. With probability(1−Prob greedy), and
also in cases the greedy test selection subroutine could not
provide anything, we call the already presented random test
selection subroutine, Algorithm 2.

The motivation behind Algorithm 4 is as follows. We
take an optimistic view of the test setting, in which the im-
plementation plays on our side to increase specification cov-
erage. Then we greedily choose either to fire an uncovered

Algorithm 3.

procedureHeuristicTestMove(SuperState S){
move :=none;
if (TrueWithProbability(Prob greedy)) then {

move :=GreedyTestMove(S);
}
if (move =none) then {

move :=RandomTestMove(S);
}
return move;

}
Algorithm 4.

procedureGreedyTestMove(SuperState S){
input uncovered :=UncoveredInputIsEnabled(S);
outputuncovered :=UncoveredOutputIsEnabled(S);
if (input uncovered∧ outputuncovered)then {

if (TrueWithProbability(Prob input)) then {
choice :=input ;

} else{
choice :=output ;

}
} elsif (input uncovered∧ ¬outputuncovered)then {

choice :=input ;
} elsif (¬input uncovered∧ outputuncovered)then {

choice :=output ;
} else{

choice :=none;
}
if (choice =input) then {

move :=PickRandomUncoveredInput(S);
} elsif (choice =output) then {

move := output;
} else{

move :=LookaheadTestMove(S);
}
return move;

}

Figure 2. Heuristic test selection algorithm
and coverage based greedy test selection
subroutine for it.

input (guaranteed to increase coverage), or ask for an output
(increases coverage only when the implementation gives us
an uncovered output, which we optimistically assume it will
do for us). If the greedy heuristic could not find a move to
take, we employ Algorithm 5 to find a coverage improving
test sequence. If such a sequence could be found, we choose
the test move based on the first action of that test sequence.
In some sense Algorithm 5 can be seen as a generalization
of Algorithm 4 for deeper ”lookahead” into the set of pos-
sible test executions starting from superstateS.



Algorithm 5.

procedureLookaheadTestMove(SuperState S){
With limited computational resources try to find a (preferably)
short execution:S

σ
===⇒ S′, such that any test run beginning

with σ increases coverage.
move :=none;
if (σ was found)then {

Let x be the first action ofσ
if (x ∈ LI ) then {

move := x;
} else{

move :=output ;
}

}
return move;

}

Figure 3. An abstract subroutine description
for coverage based lookahead

6.2 Implementing Lookahead with Bounded
Model Checking

Our implementation of the Algorithm 5 is based on the
bounded model checking (BMC) algorithm for 1-safe Petri
nets described in [11], incorporating the process semantics
optimization described in [10]. Bounded model checking is
a recently introduced method [2] for exploring all the pos-
sible behaviors of a finite state system (such as a sequential
digital circuit or a 1-safe Petri net) up to a fixed boundk.
The idea is roughly the following. Given e.g., a sequential
digital circuit, a (temporal) property to be verified, and a
boundk, the behavior of the sequential circuit is unfolded
up to k steps as a Boolean formulaS and the negation of
the property to be verified is represented as a Boolean for-
mulaR. The translation to Boolean formulae is done so that
S ∧ R is satisfiable iff the system has a behavior violating
the property of length at mostk.

In our case the temporal property to be verified says that
all executions of lengthk (of the specification) starting from
a statesi ∈ S, whereS is the current superstate of the spec-
ification, are such that the last visible event of that execution
is either invisible, or a covered transition. Thus a property
violation is an execution of lengthk with a last transition
which is both visible and uncovered. Tests beginning with
such an execution lead to increasing coverage.

Our implementation tries to find an execution of length
k by trying values from2 to 10. If no execution could be
found with bound of10 we give up, and fall back to fully
random test move selection. We try several initial states
si for each boundk, thus increasing our chances to find a
suitable execution. The maximum number of initial states

randomly sampled from the superstateS is picked from the
sequence(32, 16, 8, 4, 2, 1, 1, 1, 1), e.g., fork = 3 we gen-
erate16 different BMC instances.

The Algorithm 5 can in our implementation also be dis-
abled, in which case we call the algorithm ”greedy heuris-
tic”. When it is enabled, we call it a ”BMC heuristic”.

7 Conference Protocol

The conference protocol implements a chat service. It
enables users to form conferences, and exchange messages
with other partners in the conference [6, 4]. The entities of
the protocol are depicted in Fig. 4, and are as follows.

Conference service access point(abbreviated CSAP) of-
fers the service primitives: join(nickname, conference),
datareq(message), dataind(nickname, message) and leave().
At first user has to join a conference. Once an active mem-
ber of a conference, user is able to send messages to other
members using datareq and receive such messages sent by
others using dataind. Once finished conferencing, the user
may issue leave() primitive.

Conference protocol entity(abbreviated CPE) uses User
Datagram Protocol (abbreviated UDP) as a lower level ser-
vice to implement the conference service. Each service
primitive maps as one or more received or sent UDP proto-
col data unit (PDU). The CPE has two sets, a preconfigured
set of all potential conference partners and a dynamic set of
current conference partners.

Issuing a join primitive causes CPE to send all the poten-
tial partners a UDP PDU, called join-pdu, containing who is
joining to which conference. Existing members of the con-
ference then add the joiner to their dynamic member sets
and reply with answer pdu, called answer-pdu. Receiving
answer-pdu causes corresponding CPE add the sender of
pdu to their conference partner set. Once datareq primitive
is issued, CPE sends data-PDU to all partners in the set of
current conference partners. Receiving data-PDU causes a
dataind primitive to be issued in respective CPE. Receiv-
ing leave-PDU causes respective CPE to remove the sender
from conference member set. Sending the leave-PDU is
caused by leave primitive at CSAP, and it is sent to all the
members of the current conference. For more defaults on
the case study, see [6, 4].

7.1 Our Model of Conference Protocol

We have created a specification as a high level net, which
was converted to a 1-safe Petri net using the Maria tool [13]
and then used as an input to our testing tool. The specifica-
tion is inspired by the Promela specification available in the
WWW [6].

Basically our specification model contains no buffer-
ing of the inputs. The buffering is not required, because
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Figure 4. Conference protocol with 3 entities
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Figure 5. Conference protocol test setup

there could be any input available anyway. The outputs
are buffered by having a place, which contains tokens cor-
responding data packets in transit. The capacity of this
place is restricted to hold at most one packet with each
(receiver,sender,type)-combination. While we believe that
our specification is quite faithful, our limited buffering
of outputs makes the specification subtly different from
the (Promela) specification of [6]. The chosen model-
ing of buffers made the specification finite state, and en-
abled us to use BMC model checker of [11]. The speci-
fication is available fromhttp://www.tcs.hut.fi/
˜tpyhala/ACSD2003 .

8 Experimental Results

We ran two kinds of experiments: Combinatoric lock
and conference protocol. First is chosen to be a example
of a case where our coverage metric performs exceptionally

s0
0 //a 6=0,a∈LI

''
s1

1 //

a 6=1,a∈LI

±±
s2

2 //

a 6=2,a∈LI

RR s3
3 //

a 6=3,a∈LIzz
s4
DoorOpens//

Li

ff s5

Figure 6. Combinatoric lock LTS

well, and latter is more realistic case where we do not see so
dramatic advantages. In both examples we used parameters
Prob greedy = 0.75,Prob input = 0.5.

The combinatoric lock example models locks often
found in doors, where one is able to press digits and af-
ter entering the correct sequence and waiting for a while the
door opens. We use a code of length 4 and we have made
mutations, where code differs. We wish to detect these mu-
tants using our testing tool. This requires one to enter either
the correct code detecting the door staying locked, or to en-
ter the wrong code detecting the door opening with wrong
code. An LTS specifying a combinatoric lock with code
0123 is presented in Fig. 6.

The experiments ran show that BMC based heuristic is
able to find faulty implementations several decades faster
than random walk. The greedy seems to be a bit better than
random, but no significant advantage is observed, which
is due to the limited lookahead capabilities of the greedy
heuristic. The results are visualized on the left in Fig. 7. The
numbering of heuristics in figures is: “Heur 0” is the ran-
dom heuristic, “Heur 1” is the greedy heuristic, and “Heur
2” is the BMC heuristic. The figure contains the cumula-
tive number of detected mutants versus the amount of test-
ing events. The mutants have been produced by varying the
two last digits of the code and each mutant was ran 10 times
with different random seeds.

Similar cases to this might of course occur in practice
also. Consider, for example, a situation where a protocol
contains complicated handshake before accessing the core
functionality of the protocol. If random tester gets stuck
with handshake, it will never test the actual functionality of
the protocol. Also implementing the lookahead functional-
ity with random walk algorithms instead of using bounded
model checking might suffer similar problems.

We also analyzed how effective our approach is when
testing conference protocol, which is more complicated that
the simple combinatoric lock example. The results are on
the right in Fig. 7. The mutants used are the same 25
ioco non-conforming mutants from [4, 6]. In the results we
do not see dramatic advantage, although generally speaking
the BMC and greedy heuristic are detecting the bugs faster,
which is a promising result.

We provide per mutant results in Table 1. This table con-
tains the average length of test sequence needed to detect
a mutant (mutants have numeric names) using each of the
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Figure 7. Cumulative number of detected mutants versus number of testing events. Combinatoric
lock on the left, conference protocol on the right.

heuristics, and the ratio of test events required to detect a
mutant on the average using BMC heuristic versus using a
random heuristic. If we look at these results, we can see
that the majority of mutants could in fact be detected faster
on the average using a BMC based heuristic instead of a
random one. However, there are mutants, which are actu-
ally detected slower than with random walk, for example
mutant “398”, which needs on the average roughly 10 per-
cent more test events with BMC heuristic. Thus, indeed
sometimes our coverage metric will work against us. Con-
sider for example a cycle in the specification state space. If
we traverse the cycle, our simple coverage metric will not
consider it useful to to traverse it again before other parts
of the specification have been covered. However, travers-
ing the cycle might have left the internal state of the imple-
mentation corrupted and detectable only by traversing cycle
again! Unfortunately, our coverage metric suggests us to
explore other parts of the state space. Thus we draw the
conclusion, that for the coverage based test selection to be
truly useful, the used coverage metric should better match
the expected failures to be detected. How this could be done
is left for future work.

9 Conclusions

In this work a new test selection strategy for formal con-
formance testing is presented. The method is based on using
specification coverage to guide test selection. The presented
algorithm extends the on-the-fly testing algorithm of [4]
with a specification coverage based test selection heuristic.

The test selection heuristic combines a greedy method
with randomization to guarantee completeness. The greedy
part of the implementation uses a bounded model checker

Table 1. Average number of required events
to detect the mutants

Mutant Heur 0 Heur 1 Heur 2 H2/H0 ratio

467 74.5 48.8 36.5 0.49
687 68.8 39.7 36.3 0.52
293 80.0 48.4 43.8 0.54
856 97.3 70.6 53.8 0.55
214 103.3 51.3 58.7 0.56
777 103.3 51.3 58.7 0.56
332 122.6 74.8 71.8 0.58
348 93.6 74.1 59.0 0.63
294 154.4 156.4 105.7 0.68
111 38.9 29.2 27.4 0.70
247 38.8 29.2 27.2 0.70
674 15.1 10.6 10.6 0.70
345 55.2 38.9 40.2 0.72
945 45.2 34.0 32.7 0.72
749 20.3 15.2 15.2 0.74
358 45.5 35.7 34.4 0.75
289 73.1 52.3 56.1 0.76
276 23.2 18.0 18.0 0.77
384 47.8 43.2 39.0 0.81
548 75.3 88.9 62.8 0.83
462 84.7 59.5 71.8 0.84
738 84.7 59.5 71.8 0.84
100 42.1 38.8 41.2 0.97
836 42.1 38.8 41.2 0.97
398 94.7 79.4 103.6 1.09



presented in [11] as a novel implementation technique.
To experiment with the proposed method we have de-

veloped an on-the-fly-test system. We were able to demon-
strate cases where the suggested approach is very efficient.
Furthermore, experiments on more real life case study, the
conference protocol, demonstrate that the method is feasi-
ble, however, the achieved improvements are not as dra-
matic. We consider the initial results encouraging, while
keeping in mind that the coverage metric employed was a
very simple one.

As future work different specification coverage metrics
should be considered, using some kind of hypothesis of the
mutants to be detected by the method to select an appropri-
ate coverage metric. Also a formal framework for compar-
ing test selection strategies is required. We speculate that
different formulations of two player games could be an in-
teresting starting point for such a framework.
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