
Efficient Model Checking of PSL Safety Properties

Tuomas Launiainen Keijo Heljanko

Tommi Junttila

Aalto University

School of Science

Department of Information and Computer Science

PO Box 15400, FI-00076 Aalto, Finland

{Tuomas.Launiainen,Keijo.Heljanko,Tommi.Junttila}@tkk.fi

April 8, 2011

Abstract

Safety properties are an important class of properties as in the industrial

use of model checking a large majority of the properties to be checked are

safety properties. This work presents an efficient approach to model check

safety properties expressed in PSL (IEEE Std 1850 Property Specification

Language), an industrial property specification language. The approach can

also be used as a sound but incomplete bug hunting tool for general (non-

safety) PSL properties, and it will detect exactly the finite counterexamples

that are the informative bad prefixes for the PSL formulae in question. The

presented technique is inspired by the temporal testers approach of Pnueli and

co-authors, but unlike theirs, our approach is aimed at finding finite counter-

examples to properties. The new approach presented in this paper handles

a larger syntactic subset of PSL safety properties than earlier translations

for PSL safety subsets and has been implemented on top of the open source

1



NuSMV 2 model checker. The experimental results show the approach to be

a quite competitive model checking approach when compared to a state-of-

the-art implementation of PSL model checking.

1 Introduction

Safety properties are an important class of properties as in the industrial use of

model checking a large majority of the properties to be checked are safety properties.

Safety properties are also interesting from the point of view that they can be reduced

to invariant checking without a blow-up in the number of state variables in the

system to be checked. This enables a larger variety of model checking algorithms

to be applied to them, such as the use of interpolants [22], that are restricted to

invariant properties.

In this work we present an approach for model checking of safety properties

expressed in PSL (IEEE Std 1850 Property Specification Language), an industrial

property specification language. PSL combines temporal operators from linear tem-

poral logic (LTL) with regular expressions, and is therefore strictly more expressive

than LTL [6]. Our approach can also be used as a sound but incomplete bug hunt-

ing tool for general (non-safety) PSL properties, and it will detect exactly the finite

counterexamples that are the informative bad prefixes (see Section 2.3) for the PSL

formulae in question. The semantics in our approach is based on [11] which coincides

with the latest revision of the semantics of PSL [10]. Our approach extends to PSL

the approach of [19] for finding informative bad prefixes for linear temporal logic

(LTL) formulae. Thus our approach is sound for all PSL formulae in the following

sense: If our approach finds a counterexample then a counterexample exists by the

semantics of PSL. Otherwise, if our approach does not find a counterexample, then

there is no informative bad prefix ([19], see also Section 2.3) for the PSL formula

in question. On the technical level our approach is inspired by [18], and similar

2



to [23], but instead of general (non-safety) properties with temporal testers on in-

finite words or words ending in a deadlock, our approach is tailored for discovering

finite counter-examples to safety properties with transducers. Additionally, our pa-

per uses an updated version of the PSL semantics. The transducer we generate is

translated into a NuSMV observer module that has an invariant specification. This

technique resembles the classical LTL model checking approach where LTL formu-

las are translated into Büchi-automata that are implemented as SMV modules with

fairness constraints [9]. Our technique differs from that by searching for finite word

counterexamples instead of infinite ones. This paper is an extended version of [21],

with fixes, complete proofs, and more examples.

There are a number of papers that encode smaller syntactic subsets of PSL

safety properties than our encoding. The most widely known is the so called safety

simple subset [1, 16, 15, 4]. Our encoding handles a strictly larger syntactic subset

of PSL safety properties but is not directly suitable for runtime monitoring, as

we use nondeterminism in the generated transducers for better succinctness. Our

approach is designed to be used in combination with model checking algorithms

and is thus significantly more succinct than the approach of [12] tailored to be used

in runtime monitoring of PSL in a simulation setting. The approach of [19] for

encoding informative bad prefixes for LTL formulae has been implemented in the

scheck tool [20] in the context of explicit state model checking. Our approach is

different in the way that it is a symbolic model checking approach detecting all

informative bad prefixes of PSL formulae.

One could argue that using the liveness-to-safety reduction [25, 26, 2] eliminates

the need for any specialized model checking algorithms for safety properties as it

can reduce model checking of general (non-safety) properties to invariant checking,

and as such only optimizing algorithms for invariant checking would suffice. How-

ever, this reduction doubles the number of system state variables and is thus often

3



impractical from an efficiency perspective. While our approach also reduces the

model checking problem to invariant checking, ours adds much less state variables1.

This is an important distinction especially with model checking techniques such as

symbolic model checking with BDDs [5] that are quite sensitive to the number of

state bits in the model. A more traditional approach to model checking general

(non-safety) properties with BDDs is to find accepting cycles using nested fixpoint

computations, see e.g. [13]. There is also a symbolic algorithm with a better the-

oretical worst-case complexity [3]. The problem with these fixpoint algorithms is

that their use often leads to slow running times in BDD-based model checkers when

compared to simple invariant checking used by algorithms for safety properties.

In our experiments we compare to the state-of-the-art symbolic encoding of all

PSL properties [8]. The experiments show that the approach presented in this work

is a very efficient model checking approach. Especially in combination with BDD-

based symbolic model checking it avoids the use of costly algorithms used to find

accepting cycles with BDDs and instead relies on simple and more efficient invariant

checking.

The structure of the rest of the paper is as follows. Section 2 describes the

syntax and semantics of PSL, as well as introduces the central notion of informative

bad prefixes. In Section 3 transducers are introduced and it is shown how one can

construct a transducer for a PSL formula. In Section 4 the implementation of model

checking based on transducers encoded as NuSMV modules is described. Section 5

reports on the experiments and Section 6 presents the conclusions.

1I.e. only a linear amount w.r.t. the size of the PSL formula, where the size of a Sequential

Regular Expression is the number of states in the automaton that represents them.

4



2 PSL syntax and semantics

This section formally defines the syntax and semantics of PSL and is based on the

revised standard [10, 11]. The semantics are divided into three variants: strong,

neutral, and weak. The three variants are identical for infinite paths, but differ

for finite paths. The full set of PSL operators is supported by this work, including

several operators that can be easily rewritten using those presented here. The PSL

extensions with local variables suggested in [10] as well as the Optional Branching

Extension are not considered.

2.1 Syntax

This section presents the syntax of PSL, which is similar to the one in [10]. Assume

a non-empty set of atomic propositions AP . The syntax of Sequential Extended

Regular Expressions (SERE) is defined by the grammar

r ::= [∗0] | p | ¬p | r1[+] | r1 · r2 | r1 ◦ r2 |

r1 ∪ r2 | r1 ∩ r2,

where p varies of over atomic propositions in AP and r1 and r2 are SEREs. A

SERE defines a language of words over the alphabet 2AP . Intuitively, [∗0] denotes

the empty word, r1[+] is the Kleene plus operator, r1 ·r2 is the concatenation of two

SEREs, r1 ◦ r2 is the concatenation of two SEREs with an overlap of a single state,

and ∪ and ∩ denote the standard union and intersection. Additionally, we write

r[∗] to denote r[+]∪ [∗0], true to denote (p∪¬p), and false to denote (p∩¬p) for

some p ∈ AP . PSL also uses a conjunction operator (r1 & r2) to denote words that

match both operand SEREs but one need not be matched tightly. We omit this

operator because it can be rewritten with (r1 ∩ (r2 · true[∗]))∪ ((r1 · true[∗])∩ r2).

5



The syntax of PSL formulae is defined by the grammar

φ ::= p | ¬φ1 | φ1 ∧ φ2 | φ1 ∨ φ2 | φ1 U φ2 | φ1 R φ2 |

X! φ1 | X φ1 | r 7→ φ1 | r �→ φ1 | r | r!,

where φ1 and φ2 are PSL formulae, r is a SERE, and p varies over atomic propo-

sitions in AP . As usual, we also use the abbreviations true ≡ (p ∨ ¬p) and

false ≡ (p ∧ ¬p) for some p ∈ AP . The X!, X, U and R operators are the “strong

next”, “weak next”, “until” and “releases” temporal operators also used in LTL.

The key difference between PSL and LTL are the SERE operators. Using SEREs

in temporal properties allows a different style of specifying some properties that

are equivalent to LTL properties, but also specifying properties that would not be

possible to express with LTL. An example of such a property would be ((a·a)[+]·b)!,

since LTL has no means of ensuring that a holds in an even number of states. The

tail conjunction operator �→ is the dual of the standard PSL tail implication oper-

ator 7→. Given a word, tail implication r 7→ φ1 states that whenever a prefix of the

word matches the SERE r, then the corresponding postfix with one state of overlap

must satisfy φ1; tail conjunction r �→ φ1 holds if there exists some prefix of the

word that matches r and the corresponding overlapping postfix satisfies φ1. The

tail conjunction is not part of the official PSL syntax but is also introduced in [8]

to allow transforming formulae into negation normal form.

2.2 Semantics

As previously mentioned, the semantics of PSL are divided into three different vari-

ants. All of the three variants are identical when considering only infinite paths.

The variants treat finite paths differently, however. Intuitively, all operators are

considered to be strong operators in the strong semantics, i.e. they require that the

path is of sufficient length to satisfy the requirements of the operator. Correspond-

6



ingly, in the weak semantics all operators are considered to be weak operators, i.e. if

the path is too short to know if a continuation would satisfy the requirements of

the operator, it is assumed to be satisfied. The neutral semantics considers strong

operators to be strong and weak operators to be weak.

We define a state s to be the set of atomic propositions that hold in it, i.e. s ⊆

AP . The set of all possible states is denoted by S, i.e. S = 2AP . A path is a

finite or an infinite sequence of states. In the following definitions, s ∈ S while

π, π1, π2, . . . ∈ S? are finite paths. For each SERE r, we define three different

languages: L(r), Lpref(r), and Lloop(r). The first is the base language of the SERE,

similar to the one used in other flavours of regular expressions. The second is the

prefix language, defined as the set of proper prefixes of paths in the base language.

The third is the loop language, which consists of the infinite paths where some

repetition operator is repeated infinitely many times. These three languages for

regular expressions are needed to define the three variants of PSL semantics. The

base language L(r) ⊆ S? of a SERE r is defined inductively as follows:

• L([∗0]) = {ε}, where ε is the empty path.

• L(p) = {s ∈ S | p ∈ s} and L(¬p) = {s ∈ S | p /∈ s} for each p ∈ AP . Note

that this does not restrict other atomic propositions from being true in s.

• L(r[+]) = {π | ∃n ≥ 1 : π = π1π2 . . . πn and ∀i, 1 ≤ i ≤ n : πi ∈ L(r)}.

• L(r1 · r2) = {π1π2 | π1 ∈ L(r1) and π2 ∈ L(r2)}.

• L(r1 ◦ r2) = {π1sπ2 | π1s ∈ L(r1) and sπ2 ∈ L(r2)}.

• L(r1 ∪ r2) = L(r1) ∪ L(r2).

• L(r1 ∩ r2) = L(r1) ∩ L(r2).

As an example, the path {a, b}{a, d}{b} belongs to L(a[+] · (b ∪ c)) but the path

{a, b}{a, d}{a} does not.

7



The prefix language Lpref(r) ⊆ S? for a SERE r is defined to consist of all finite,

proper prefixes of paths in L(r):

Lpref(r) = {π ∈ S? | ∃π′ ∈ S+ : ππ′ ∈ L(r)}.

As an example, the path {a, b}{a, b} is in Lpref(a[+] · (b ∪ c)) but {a, b}{b} is not.

The loop language Lloop(r) ⊆ Sω for a SERE r is defined inductively as follows:

• Lloop([∗0]) = ∅.

• Lloop(p) = ∅.

• Lloop(r[+]) = {π1π2 | π1 ∈ L(r[+])∪{ε} and π2 ∈ Lloop(r)}∪{π | π ∈ Sω, π =

π1π2π3 . . . ,∀i ∈ Z+ : πi ∈ L(r)}. This case characterises the loop language.

The first case captures those words where a repetition is done infinitely many

times inside r, and the second case is the concatenation of infinitely many

words from r, i.e. making the outermost repetition infinitely many times.

• Lloop(r1 · r2) = Lloop(r1) ∪ {π1π2 | π1 ∈ L(r1) and π2 ∈ Lloop(r2)}.

• Lloop(r1 ◦ r2) = Lloop(r1) ∪ {π1sπ2 | π1s ∈ L(r1) and sπ2 ∈ Lloop(r2)}.

• Lloop(r1 ∪ r2) = Lloop(r1) ∪ Lloop(r2).

• Lloop(r1 ∩ r2) = Lloop(r1) ∩ Lloop(r2).

For example, the language Lloop(a[+] · (b ∪ c)) contains the infinite path {a}ω =

{a}{a} . . ., but also for example the infinite path {a, b}ω = {a, b}{a, b} . . ., since

{a, b} ∈ L(a). Another example is the language Lloop((a[+] · (b ∪ c))[+]) which

contains the infinite path {a}ω, but also the infinite paths ({a}{b})ω, ({a}{c}){a}ω,

and ({a}{b}{a}{a}{c})ω, among others, since the infinite repetition can be done

with either of the repeat operators.

Assume a non-empty path π = s1s2 . . . ∈ S+ ∪ Sω. For each i ∈ Z+ and each

v ∈ {strong,neutral,weak}, we define the relation |=v
i by the following inductive

rules:

8



• π |=v
i p iff p ∈ si, where p ∈ AP .

• π |=v
i ¬φ iff



v = strong and π 6|=weak
i φ, or

v = neutral and π 6|=neutral
i φ, or

v = weak and π 6|=strong
i φ.

• π |=v
i φ ∧ ψ iff π |=v

i φ and π |=v
i ψ.

• π |=v
i φ ∨ ψ iff π |=v

i φ or π |=v
i ψ.

• π |=v
i X! φ iff


i < |π| and π |=v

i+1 φ, or

v = weak and i = |π|.

• π |=v
i X φ iff


i = |π| or π |=v

i+1 φ, and

v 6= strong or i < |π|.

• π |=v
i φ1 U φ2 iff


∃j, i ≤ j ≤ |π| : (π |=v

j φ2) ∧ (∀k, i ≤ k < j : π |=v
k φ1), or

v = weak and π ∈ S+ and ∀k, i ≤ k ≤ |π| : π |=v
k φ1.

• π |=v
i φ1 R φ2 iff


∀j, i ≤ j ≤ |π| : (π |=v

j φ2) ∨ (∃k, i ≤ k < j : π |=v
k φ1), and

v 6= strong or π ∈ Sω or ∃k, i ≤ k ≤ |π| : π |=v
k φ1.

• π |=v
i r 7→ φ iff


∀j, i ≤ j ≤ |π| : si . . . sj ∈ L(r)⇒ π |=v

j φ, and

v = strong⇒ si . . . s|π| /∈ Lpref(r).

• π |=v
i r �→ φ iff


∃j, i ≤ j ≤ |π| : si . . . sj ∈ L(r) ∧ π |=v

j φ, or

v = weak and si . . . s|π| ∈ Lpref(r).

• π |=v
i r! iff


∃j, i ≤ j ≤ |π| : si . . . sj ∈ L(r), or

v = weak and π ∈ S+ and si . . . s|π| ∈ Lpref(r).

9



• π |=v
i r iff



π |=v
i r!, or

π ∈ Lloop(r), or

v 6= strong and π ∈ S+ and si . . . s|π| ∈ Lpref(r).

We use π |=v φ to denote π |=v
1 φ and say that “φ holds on π”, or that “π satisfies

φ”, if π |=v φ.

Example 2.1. An example of a useful PSL formula is (Nil[∗] · Acquire · Nil[∗] ·

Release)[+] �→X! (Nil U (Destroy∧ XG Nil)). Here we use Nil as an abbrevia-

tion for ¬Acquire ∩ ¬Release and r[∗] as an abbreviation for r[+] ∪ [∗0]. It states

that on the path Acquire and Release must alternate, beginning with Acquire,

ending with Release, containing at least one of both, and after the last Release,

Destroy must eventually follow. It is also assumed that in the system only one of

Acquire, Release, and Destroy may be true simultaneously. (This could be veri-

fied with a different formula). The time between actions is specified to be irrelevant.

For instance, the path

{}{Acquire}{}{Release}{}{}{Destroy}

satisfies the formula.

In the rest of the paper, all formulae are assumed to be written in negation nor-

mal form where negations only appear in front of atomic propositions. The follow-

ing equalities can be used to rewrite formulae: ¬(φ ∨ ψ) ≡ (¬φ ∧ ¬ψ), ¬(φ ∧ ψ) ≡

(¬φ ∨ ¬ψ), ¬(X! φ) ≡ (X ¬φ), ¬(X φ) ≡ (X! ¬φ), ¬(φ U ψ) ≡ (¬φ R ¬ψ),

¬(φ R ψ) ≡ (¬φ U ¬ψ), ¬(r 7→ ψ) ≡ (r �→ ¬ψ), and ¬(r �→ ψ) ≡ (r 7→ ¬ψ).

With these, every formula can be rewritten to an equivalent one in the negation

normal form.

In the rest of the paper we will only apply the strong semantics for finite paths.

Since X! φ and X φ are equivalent in the strong semantics, we only use X! φ from

10



now on. For the same reason we use r �→ true instead of r and r!. Strong semantics

is used because it has the desired property that if a finite prefix of an infinite or

a finite path satisfies a property with this semantics, then the whole path satisfies

the property with any of the three semantics (weak, neutral, or strong) presented

in [10, 11]. This is formally captured by the following:

Proposition 2.2. [11] If π |=strong φ holds for a finite path π = s1...sk and a PSL

formula φ, then π′ |=v φ holds for all finite or infinite paths π′ having π as a prefix

and for all semantics v ∈ {strong,neutral,weak}.

This is convenient when searching for finite counter-examples to properties. If a

path satisfies the negation of some property with the strong semantics, then every

extension of it satisfies the negated property as well, and therefore the path is a

counter-example for the non-negated property. Thus, finite counter-examples for a

PSL formula φ can be searched for with the following steps:

• Negate φ to get ¬φ.

• Transform ¬φ to the equivalent negation normal form formula ψ.

• Search for a finite path that satisfies ψ with the strong semantics.

The negation normal form is used because negating a formula changes the semantic

variant it needs to be evaluated in. Pushing negations next to atomic propositions

allows us to evaluate all sub-formulas with the strong semantics. This would not

be possible if arbitrary negations were allowed. E.g. the formula ¬(a · b 7→ c U d)

holds in the strong semantics if the path begins with {a}{b} and c U d does not

hold in the second state with the weak semantics. After the transformation to the

formula a · b �→ ¬c R ¬d, only strong semantics needs to be considered.

11



2.3 Informative bad prefixes

As mentioned above, if a finite prefix π of an infinite or a finite path satisfies a

property φ under the strong semantics (i.e. π |=strong φ), the whole path satisfies

the property under any of the three semantics (weak, neutral, or strong). In the

model checking context this means that if π |=strong ¬φ holds, then the property

φ cannot hold on the path π (or any extension of it) and thus π serves as a fi-

nite counterexample for φ. Following the terminology of [19], we formalize this by

defining that a finite path π ∈ S? is an informative bad prefix for a formula φ if

π |=strong ¬φ. For the LTL subset (i.e. PSL formulae without tail implications and

tail conjunctions and thus without SEREs), the semantics here is equivalent to the

definition of informativity in [19] and thus the definition of informative bad prefixes

is also equivalent to the one in [19].

As our model checking approach constructs an observer (defined in the next two

sections) for the negation ¬φ of the formula φ under consideration and the observer

uses the strong semantics to accept paths of the observed system, we can find

all the finite paths in the system that violate φ and are informative bad prefixes

for φ. However, observe that some safety formulae do not have informative bad

prefixes. As an example of such “pathologically safe” formulae (taken from [19]),

the LTL safety formula ψ = (G q)∨ (G r)∨ (G (q∨ FG p)∧ G (r∨ FG ¬p)), where

G φ ≡ false R φ and F φ ≡ true U φ, does not have informative bad prefixes

although no finite path with ¬q and ¬r holding in some states can be extended to

a path satisfying ψ.

As a consequence, our model checking approach cannot detect (i) counter-

examples to such “pathologically safe” formulae or (ii) infinite counter-examples

to general (non-safety) formulae. However, it should be reminded that this is ex-

actly what the strong semantics for PSL described above dictates, and our approach

exactly matches the strong semantics for finite paths.

12



On the other hand, observe that also general (non-safety) properties can have

informative bad prefixes and these are detected by our model checking approach.

As an example, τ = (F ¬p) ∧ (G ¬r) is a non-safety property as the infinite path

{p}{p}... satisfying ¬τ does not have a finite bad prefix (i.e. a prefix that cannot be

extended to a (finite or infinite) path satisfying τ). But τ also has informative bad

prefixes, such as {p}{p, r}, and these are detected by our approach. In fact, any

linear time property can be decomposed into a conjunction of two parts, where the

other part is pure a non-safety property, and the other is a pure safety property [24].

A more detailed discussion on the classification temporal properties can be found

in [7].

3 Observers

This work uses a custom formalism, similar to temporal testers in e.g. [18, 17],

for defining observers to PSL formulae. The custom formalism makes it easy to

combine observers for sub-formulae into an observer for the whole formula. They

are also relatively simple to convert directly to NuSMV modules.

3.1 Transducers

Transducers in this paper are a symbolic variant of finite state automata. Unlike

traditional automata, their state and input are represented by a set of boolean

variables, and they can signal acceptance at multiple points in the execution. In

this work the latter property is used to build transducers that accept at those points

in the execution where a PSL formula holds. Formally, a transducer T is a tuple

(Q,Qin, qout, I, F, δ), where:

• Q is a finite set of state variables.

• Qin is a finite set of input variables, disjoint from Q.

13



• qout ∈ Q is the output variable.

• Every subset of Q ∪ Qin is a state of the transducer. A variable v is said to

be true in a state s ⊆ Q ∪Qin if and only if v ∈ s.

• I ⊆ 2Q∪Q
in

is the set of initial states of the transducer.

• F ⊆ 2Q∪Q
in

is the set of final states of the transducer, not to be confused with

accepting states in traditional finite state automata.

• δ ⊆ 2Q∪Q
in × 2Q∪Q

in

is the transition relation.

Let T = (Q,Qin, qout, I, F, δ) be a transducer. An execution of T is a finite

non-empty sequence of transducer states, s1, s2, . . . , sn, such that s1 ∈ I, sn ∈ F ,

and ∀i, 1 ≤ i < n : (si, si+1) ∈ δ. The set of initial states I restricts what may be

the first state of an execution, the set of final states F restricts what may be the

last state of an execution, and the transition relation restricts what states may be

adjacent in the sequence. An input of T is a sequence π = p1, . . . , pn ∈ (2D)+, where

each pi is a set of input variables from some input domain D such that Qin ⊆ D.

An execution s1, s2, . . . , sn of T is defined to be an execution for π if the execution

and the input path agree on input variables, i.e. for every input variable v ∈ Qin

and for every i, 1 ≤ i ≤ n the following holds: v ∈ si ⇔ v ∈ pi. The transducer

accepts at a state si of an execution if qout ∈ si.

Example 3.1. The following example of a transducer, presented in Figure 1, ac-

cepts at states which precede a state where its sole input variable i is true. This

is equivalent to accepting at states where the formula X! i is true. The output

variable is q, which is also the only state variable. The state-space is every subset

of {q, i}, i.e.:

• ∅, corresponding to the situation where the input i is not true and won’t be

in the next state either,

14



• {q}, corresponding to the situation where the input i is not true but it will

be in the next state,

• {i}, corresponding to the situation where the input i is true but it won’t be

in the next state, and

• {q, i}, corresponding to the situation where the input i is true and will be in

the next state as well.

All of these states are initial, since any of the situations can occur in the initial

state. The final states are the ones where the output is not true, namely ∅ and

{i}. This is because i can not be true in the next state when the execution is in its

last state. An example of an execution of the transducer is: {q}, {i}, {q}, {q, i}, {i},

which corresponds to the input sequence ∅, {i}, ∅, {i}, {i}.

Formally, the transducer is defined as the tuple TX! = ({q}, {i}, q, I, F, δ) such

that (i) all states are initial: I = 2{q,i}, (ii) a state is final iff q is false in it:

F =
{
s ∈ 2{q,i} | q /∈ s

}
, and (iii) the transition relation δ is defined so that the

variable q is true in a state iff the variable i is true in the next state: (s, s′) ∈ δ iff

(q ∈ s)⇔ (i ∈ s′).

3.2 Transducer composition

Transducer composition is a way to combine two transducers so that one transducer

can use information from the other. This is done by plugging the output variable

of one transducer to one input variable of the other in a circuit-like manner.

Here we use S[a/b] to denote that an element a from the set S is renamed to b.

Similarly, (S, S′)[a/b] is used to denote (S[a/b], S′[a/b]) for a pair of sets.

Now let T1 = (Q1, Q
in
1 , q

out
1 , I1, F1, δ1) and T2 = (Q2, Q

in
2 , q

out
2 , I2, F2, δ2) be two

transducers such that Q1 ∩Q2 = ∅. The composition of T1 and T2, with respect to

some input variable qin ∈ Qin
2 , is denoted as T1 Bqin T2, and defined as (QB, Q

in
B ,

15



qoutB , IB, FB, δB), where:

• QB = Q1 ∪Q2,

• Qin
B = Qin

1 ∪ (Qin
2 \ {qin}) and the plugged input variable cannot exist in Qin

1 ,

i.e. qin /∈ Qin
1 ,

• qoutB = qout2 ,

• IB = {s1 ∪ s2[qin/qout1 ] |

s1 ∈ I1, s2 ∈ I2, and qout1 ∈ s1 ⇔ qin ∈ s2, and∧
v∈Qin

1 ∩Qin
2

v ∈ s1 ⇔ v ∈ s2},

• FB = {s1 ∪ s2[qin/qout1 ] |

s1 ∈ F1, s2 ∈ F2, and qout1 ∈ s1 ⇔ qin ∈ s2,

and
∧

v∈Qin
1 ∩Qin

2

v ∈ s1 ⇔ v ∈ s2}, and

• δB = {(s1 ∪ s2, s′1 ∪ s′2)[qin/qout1 ] |

(s1, s
′
1) ∈ δ1, (s2, s′2) ∈ δ2, and

(qout1 ∈ s1 ⇔ qin ∈ s2) ∧ (qout1 ∈ s′1 ⇔ qin ∈ s′2), and∧
v∈Qin

1 ∩Qin
2

[(v ∈ s1 ⇔ v ∈ s2) ∧ (v ∈ s′1 ⇔ v ∈ s′2)]}.

Note that the condition qin /∈ Qin
1 can always be satisfied by renaming if necessary.

The intuitive description of the composition is that the initial states, final states

and the transitions from each transducer are combined, but only when they agree

on the value of the variable to be plugged and the input variables that they share.

States and transitions where the transducers disagree on these variables are dropped.

Example 3.2. The following example of transducer composition combines the pre-

vious example with itself to create a transducer that accepts when the formula

X!X! i is true. First, a copy of the transducer is made with the state variable

renamed to p and the input variable renamed to j to avoid conflicts. This means

16



that the semantics of the variable q is to be true when X! i holds and the semantics

of the variable p is to be true when X! j holds. Let TX! be the transducer in the

previous example, and T ′X! be the copy. The transducer TX!X! is then the compo-

sition TX! Bj T ′X!, which is presented in Figure 2. Each transition pair that agrees

on the plugged variable is combined, e.g. ({i}, {q}) and ({p}, {p, j}) together yield

the transition ({p, i}, {q, p}). Now that q is plugged to j, p holds when X! q holds,

meaning that it holds when X!X! i holds. The output variable is p, every state is

initial, and the final states are ∅ and {i}.

3.3 Transducers for formulae

In this section we define how transducers for formulae are built inductively, starting

from atomic propositions. We first formally define what “a transducer for a formula”

means:

Definition 3.3. A transducer T is a transducer for a formula φ if for every input

π = p1, . . . , pn ∈ (2D)+, where AP ⊆ D, the following hold:

• there exists an execution γ = s1, . . . , sn of T for π such that T accepts at a

state sj iff π |=strong
j φ, and

• there are no executions γ = s1, . . . , sn of T for π such that T accepts at a

state sj and π 6|=strong
j φ.

The first condition in the definition states that there exists at least one exe-

cution of the transducer that correctly evaluates the formula at every state of the

given input. The second condition states that the other executions the transducer

may have must be under-approximations of the correct evaluation. That is, the

transducer cannot signal that the formula evaluates to true at a state even though

it does not; however, it may signal that a formula evaluates to false even though

it evaluates to true. This is similar to the behaviour of a non-deterministic finite

17



automaton. If a single execution from many possible ones is an accepting one, then

acceptance is assumed.

Atomic propositions are represented by input variables, meaning that AP ⊆ D,

and transducers for larger formulae are built with composition from transducers for

their sub-formulae as explained below.

3.3.1 Logical operators

The transducer for the ∨-operator has two input variables for the operands and

a single state variable that is also the output variable. The initial and final state

constraints, as well as the transition are defined so that the state variable is true

exactly when at least one of the input variables is true. Formally, the transducer is

T∨ = (Q,Qin, qout, I, F, δ), where:

• Q = {q},

• Qin = {qleft, qright},

• qout = q,

• I = F = {∅, {qleft, q}, {qright, q}, {qleft, qright, q}}, and

• δ = {(s, s′) | q ∈ s⇔ (qleft ∈ s ∨ qright ∈ s) and

q ∈ s′ ⇔ (qleft ∈ s′ ∨ qright ∈ s′)}.

The transducer for the entire formula φ1∨φ2 is obtained as the composition Tφ1∨φ2
=

T1 Bqleft (T2 Bqright T∨). The transducers for the ∧ and ¬-operators are defined in a

similar way.

Lemma 3.4. If T1 and T2 are transducers for φ1 and φ2, respectively, then Tφ1∨φ2
=

T1 Bqleft (T2 Bqright T∨) is a transducer for the formula φ1 ∨ φ3.

Proof. Omitted.

18



3.3.2 The next operator

The transducer TX! for the next operator is presented in Example 3.1. The trans-

ducer for the entire formula X! φ is obtained with the composition TφBi TX!, where

Tφ is a transducer for φ.

Lemma 3.5. If Tφ is a transducer for φ, then Tφ Bi TX! is a transducer for the

formula X! φ.

Proof. Omitted.

3.3.3 The until operator

First, recall the strong semantics of the until operator for a finite path π = s1...sn:

π |=strong
i (φ1 U φ2) iff ∃j, i ≤ j ≤ |π| : (π |=strong

j φ2)∧(∀k, i ≤ k < j : π |=strong
k φ1).

The intuition behind the transducer for the until-operator is that the until-formula

φ1 U φ2 holds if and only if φ2 holds, or φ1 holds and the whole formula holds in the

next state i.e. φ1 U φ2 ≡ φ2∨ (φ1∧ X! (φ1 U φ2)). We make use of this by having a

variable qU that represents the truth value of the formula. The transition relation

restricts the variable so that it is true when φ2 is true or when φ1 is true and the

variable itself is true in the next state. The transducer for the until operator is

TU = (Q,Qin, qout, I, F, δ), where:

• Q = {qU},

• Qin = {qleft, qright},

• qout = qU,

• I = 2Q∪Q
in

,

• F =
{
s | qU ∈ s⇔ qright ∈ s

}
, and

• δ = {(s, s′) | qU ∈ s⇔ (qright ∈ s ∨ (qleft ∈ s ∧ qU ∈ s′))}.

19



The transducer for the entire formula φ1 U φ2 is obtained as the composition

Tφ1Uφ2
= T1 Bqleft (T2 Bqright TU), where T1 is a transducer for φ1 and T2 is a

transducer for φ2.

Lemma 3.6. If T1 and T2 are transducers for φ1 and φ2, respectively, then Tφ1Uφ2 =

T1 Bqleft (T2 Bqright TU) is a transducer for the formula φ1 U φ2.

Proof. See Appendix A.

3.3.4 The releases operator

The strong semantics for the releases-operator in the case of finite paths is

π |=strong
i (φ1 R φ2) iff ∃j, i ≤ j ≤ |π| :(π |=strong

j φ1)∧(∀k, i ≤ k ≤ j : π |=strong
k φ2).

The intuition behind the transducer for the releases-operator is that the formula

φ1 R φ2 holds if and only if both φ1 and φ2 hold, or φ2 holds and the entire formula

holds in the next state. As with the until-operator, we use a variable qR to represent

the truth value of the entire formula, and the transition relation restricts it so that

it holds when both φ1 and φ2 hold or when φ2 holds and the variable holds in the

next state. The transducer for the releases operator is TR = (Q,Qin, qout, I, F, δ),

where:

• Q = {qR},

• Qin = {qleft, qright},

• qout = qR,

• I = 2Q∪Q
in

,

• F =
{
s | qR ∈ s⇔

(
qleft ∈ s ∧ qright ∈ s

)}
, and

• δ = {(s, s′) | qR ∈ s⇔ qright ∈ s ∧ (qleft ∈ s ∨ qR ∈ s′))}.

20



For the entire formula φ1 R φ2, we define the transducer Tφ1Rφ2 = T1Bqleft (T2Bqright

TR), where T1 is a transducer for φ1 and T2 is a transducer for φ2.

Lemma 3.7. If T1 and T2 are transducers for φ1 and φ2, respectively, then Tφ1Rφ2
=

T1 Bqleft (T2 Bqright TR) is a transducer for the formula φ1 R φ2.

Proof. See Appendix A.

It can also be noted that in the strong semantics φ1 R φ2 is equivalent to

φ1 U (φ1∧φ2), so this transducer could be formed with the transducers for the until

and conjunction operators. Our implementation considers the releases operator

separately, however, so we present it here.

3.3.5 Tail implication

In describing the tail implication r 7→ φ and tail conjunction r �→ φ, we use

AP (r) to denote the set of atomic propositions appearing in the SERE r. For each

SERE r we also define a function `r : 2Q
in∪Q → 2AP (r) that maps the states of a

transducer to the atomic propositions in r that hold in the state: `r(s) = s∩AP (r).

Additionally, in both cases we assume that the base language L(r) is not empty; if

L(r) = ∅, r 7→ φ can be rewritten to true and r �→ φ can be rewritten to false.

The intuition behind the transducer for the tail implication operator is that an

automaton is created for the SERE r, and multiple copies of the automaton are

simulated, which yields the matches for the SERE. When a simulated copy accepts,

φ should hold.

Let Ar = (Qr,Σ, δr, q0, Fr) be a finite, non-deterministic automaton that sat-

isfies the following requirements: (i) at least one state in Fr is reachable from

every state, i.e. there are no rejecting states, (ii) there are no ε-transitions, (iii)

L(Ar) = L(r), and (iv) Σ = 2AP (r). From basic automata theory we know that

such an automaton can always be constructed. Using Ar, we can construct a trans-

21



ducer

Tr 7→ = (Q,Qin, qout, I, F, δ)

for the tail implication operator, where:

• Q = Qr,

• Qin = AP (r)∪{qφ}, where qφ is the input variable that signals when φ holds,

• qout = q0, the initial state of Ar,

• I = 2Q∪Q
in

,

• F = {s | s ∩Qr = ∅}, and

• δ = {(s, s′) | ∧(v,σ,v′)∈δr ((v ∈ s ∧ `r(s) = σ) ⇒ v′ ∈ s′) and Fr ∩ s′ 6= ∅ ⇒

qφ ∈ s}.

The transducer for the entire formula r 7→ φ is obtained with the composition

Tr 7→φ = TφBqφ Tr 7→, where Tφ is a transducer for φ. Intuitively, the first part of the

transition relation handles simulating copies of the automaton for the SERE, and

the second part states that when the simulated automaton accepts, φ must hold.

The final state constraint states that no copies of the simulated automata can be

left running, which takes care of the requirement that the suffix of the path cannot

belong to the prefix language of r.

Since input to finite state automata is given on a transition from one state

to another, combining them with transducers in the described way introduces a

slight inconvenience. The atomic propositions that are used for the input of the

automaton are a part of the states in the transducer, as opposed to the transitions.

Therefore, in the transducer, the state of the automaton changes one step after the

input. Combined with the fact that the final state of the transducer cannot contain

state variables from the automaton, in some cases the transducer needs to be run

for two additional steps even though a counter-example has already been detected.

22



Lemma 3.8. If Tφ is a transducer for φ, then Tr 7→φ = Tφ Bqφ Tr 7→ is a transducer

for the formula r 7→ φ.

Proof. See Appendix A.

Example 3.9. The following example illustrates a transducer for the formula {a ·

b} 7→ c. The automaton for the SERE part is shown in Figure 3. The automaton

dictates the transition relation of the transducer, which is:

{(s, s′) | ((q0 ∈ s ∧ `r(s) = {a})⇒ q1 ∈ s′) ∧

((q0 ∈ s ∧ `r(s) = {a, b})⇒ q1 ∈ s′) ∧

((q1 ∈ s ∧ `r(s) = {b})⇒ q2 ∈ s′) ∧

((q1 ∈ s ∧ `r(s) = {a, b})⇒ q2 ∈ s′) ∧

(q2 ∈ s′ ⇒ c ∈ s)}

For the path {a}{b, c}∅∅, on which the formula holds, there exists an execution of

the transducer that accepts at the first state, namely: {a, q0}{b, c, q1}{q2}∅. For

the path {a}∅∅, for which the formula holds as well since there is no match for the

SERE, there exists the execution of the transducer {a, q0}{q1}∅. In both cases the

execution must continue until a valid end state is reached, i.e. one that does not

have any state variables from the automaton.

3.3.6 Tail conjunction

The intuition behind the transducer for the tail conjunction r �→ φ is a non-

deterministically simulated automaton for the SERE r, combined with enforcing

that φ must hold when the simulated automaton accepts. The simulation is different

from the tail implication, because only one match needs to be captured, instead of

all possible matches.

Let Ar = (Qr,Σ, δr, q0, Fr) be a finite, non-deterministic automaton that sat-

isfies the following requirements: (i) at least one state in Fr is reachable from

23



every state, i.e. there are no rejecting states, (ii) there are no ε-transitions, (iii)

L(Ar) = L(r), and (iv) Σ = 2AP (r). With the help of Ar, we can construct a

transducer

Tr�→ = (Q,Qin, qout, I, F, δ)

for the tail conjunction operator, where:

• Q = Qr,

• Qin = AP (r)∪{qφ}, where qφ is the input variable to which the output of Tφ

is connected,

• qout = q0, the initial state of Ar,

• I = 2Q∪Q
in

,

• F = {s | s ∩Qr = ∅}, and

• δ = {(s, s′) | ∧
v∈Qr

[v ∈ s⇒ ∨
(v,σ,v′)∈δr

`r(s) = σ∧(v′ ∈ s′∨(v′ ∈ Fr∧qφ ∈ s))]}.

The transducer for the entire formula r �→ φ is obtained as the composition

Tr�→φ = Tφ Bqφ Tr�→, where Tφ is a transducer for φ. Intuitively, the transition

relation takes care of the simulation of the automaton, except for the expression in

the innermost parenthesis, which allow for the termination of the simulation if a

match is found and φ holds. The state variables can be seen as a promise to find

a match starting from that state of the automaton, and the final state constraint

enforces that no such promise is left unfulfilled when the execution stops.

Lemma 3.10. If Tφ is a transducer for φ, then Tr�→φ = TφBqφTr�→ is a transducer

for the formula r �→ φ.

Proof. See Appendix A.

Example 3.11. As an example of a transducer for a tail conjunction, the following

is a transducer for the formula {a·b} �→ c. The automaton for the SERE is the same

24



as in the example for the tail implication, presented in Figure 3. The transition

relation for the transducer is:

{
(s, s′) |

(
q0 ∈ s⇒ (`r(s) = {a, b} ∧ q1 ∈ s′) ∨

(`r(s) = {a} ∧ q1 ∈ s′)
)

∧
(
q1 ∈ s⇒ (`r(s) = {a, b} ∧ (q2 ∈ s′ ∨ c ∈ s)) ∨

(`r(s) = {b} ∧ (q2 ∈ s′ ∨ c ∈ s))
)

∧
(
q2 ∈ s⇒ false

)}
For the path {a}{b, c}∅, for which the formula holds, there exists the following

accepting execution of the transducer: {a, q0}{b, c, q1}∅. Again, as with the tail

implication example, the execution must continue until a valid end state is reached,

i.e. one that does not contain any state variables from the automaton.

4 Observer implementation

Model checking with the transducers can be done in the following way:

To detect informative bad prefixes for any PSL formula φ, a transducer

for ¬φ (in negation normal form) is constructed. It is then converted to

a NuSMV module including an invariant specification, and run together

synchronously with the model to be verified. If a run exists where the

output variable for the observer is true in the first state and the invariant

is violated, that run violates the property φ.

Converting transducers to NuSMV modules that can be used as observers is

straightforward. A bad prefix is found if the transducer accepts at the first state

of an execution. A NuSMV module is used to check whether this is possible, but

the execution of the module is not directly comparable to the execution of the

transducer. More specifically, the NuSMV module will have executions that are not

valid executions of the transducer, and bad prefixes are detected by checking if an

25



execution of the module is a valid execution of the transducer.

The executions of the module are such that they obey the transition relation

and initial state constraints of the transducer, and the top level output variable is

forced to be true in the initial state. Executions where the top level output variable

is not true in the first state are not interesting since that would mean that ¬φ need

not hold there, so they would not be counter-examples. The module then checks if

a valid final state can be reached using an invariant specification, which means that

the transducer has a corresponding run ending in a valid final state.

The state variables of a transducer are represented by local variables of a NuSMV

module, input variables are represented by parameters to the module, the initial

states are set with an INIT-block in the module, and the transition relation is

enforced with a TRANS-block. The output variable is set to true in the initial state

with an INIT-block, and then the reachability of a valid final state is checked for

by adding a new special purpose unconstrained variable fs that represents a valid

final state. The final state constraints are represented by an invariant constraint

that allows fs to become true only in a valid final state. The reachability check can

then be done by adding the invariant specification INVARSPEC !fs to the module,

and running it synchronously together with the model to be checked. Converting

SEREs to finite state automata for the construction is done in the usual way, e.g. like

in [27].

Example 4.1. The transducer for the formula p U q is translated into the following

NuSMV module:

26



MODULE observer(p,q)

VAR

u : boolean;

INVAR

fs -> (u <-> q)

TRANS

u <-> (q | p & next(u))

INIT

u

INVARSPEC !fs

The module would be generated to check for the formula ¬p R ¬q, which is the

negation of p U q. Note that the INIT- and INVARSPEC-blocks are present because

this is the module for the top-level transducer.

The actual implementation that was done for this work is a proof-of-concept,

whose main purpose is to verify the feasibility of such an implementation and to

allow experimentation with the algorithm. It is available online at http://www.

tcs.hut.fi/~tlauniai/psl-observer/.

5 Experiments

To experiment with our algorithm, we ran two sets of benchmarks. All tests were

done on a Debian Linux machine with an Intel Core Duo 1.86 GHz processor and

2 GiB RAM. Both benchmark sets were against the state-of-the-art PSL imple-

mentation that is presented in [8]. That implementation is also built on top of

NuSMV. For the first comparison, the same set of benchmarks is used as in the

paper [8], which includes both general (non-safety) and safety properties. Their

27



BDD-based algorithm, with syntactic optimisations turned on, is compared with

the BDD-based invariant checking of NuSMV 2.4.3, combined with our transducer

encoding based observer. Their approach combined with the simple bounded model

checking (SBMC) approach [14] implemented in NuSMV is compared against the

transducer encoding of this paper combined with SBMC LTL checking of NuSMV

2.4.3 where the invariant is expressed with a globally-operator. In order to provide

a fair comparison, both SBMC algorithms were run with the completeness flag set

(i.e. they only stop when they can either prove or disprove the property, see [14]).

From the benchmark set, we filtered out instances for which our tool cannot guar-

antee a correct answer: namely the properties for which an informative bad prefix

could not be detected. This left us with about 38% of the original instances, and

13% of the included properties were safety properties. There were no safety prop-

erties in the excluded part, i.e. all safety properties had a counter-example. These

results are presented in Figure 4.

In the second set of benchmarks we used the real life models from [2], excluding

the ones that are not compatible with the current implementation of NuSMV 2.4.3

due to modelling language grammar changes in new NuSMV versions. For these

models we randomly generated PSL properties for which every counterexample is

informative. This was done by syntactically limiting the properties to be safety

properties. These models where then checked with both implementations as in the

previous benchmark set. The results of this benchmark set are shown in Fig. 5.

The benchmarks show that our tool has a clear advantage over the state-of-

the-art PSL model checker. While the real world tests with SBMC-checking are

somewhat even, all the other benchmark sets, especially the BDD model checking

based ones, show that our implementation is clearly faster in the majority of cases.

It should be noted here that our approach does not benefit from any of the syntactic

PSL simplifications described in [8] unlike the approach we compare against. Sum-

28



ming up, our approach is certainly viable for model checking PSL safety properties,

as well as finding bugs with non-safety properties.

Some tests were also run with random generated models and properties, but with

the exact setup used the runtime of those benchmarks seemed to depend only on

the size of the model and the size of the formula, not the implementation they were

checked with or the particular instance. That seems to imply that the checking of

the property was trivial once the property and model were interpreted and encoded

from the input file.

Unfortunately we do not know of a freely available implementation of the safety

simple subset of PSL [1, 16, 15, 4], and therefore cannot run benchmarks against

those. With regards to approaches based on the safety simple subset our main con-

tribution is that we impose no syntactic restrictions on the model checked formulae

unlike the safety simple subset that is quite restricted in its allowed syntax. In com-

parison to the explicit automata approach of [20] we can state that our symbolic

encoding is exponentially more compact and also handles a larger set of properties,

not only the LTL subset.

As a summary, the experiments show that for finding bugs by detecting finite,

informative counter-examples to general (non-safety) properties, as well as for model

checking safety properties, our tool is competitive compared to the state-of-the-art.

6 Conclusions

We have detailed a fast PSL model checking algorithm for safety properties. The

approach uses transducers implemented symbolically, inspired by temporal testers

of [17]. The formal semantics of PSL capturing the informative bad prefixes was

defined in Section 2 and is based on the latest revision of PSL semantics [10, 11].

The transducers formalism used to construct the observers is detailed in Section 3.

29



We would like to stress that every PSL property can be expressed with the subset

presented here, but only informative bad prefixes of the properties can be detected

by our approach. Thus the subset we use is strictly larger than for example the PSL

safety simple subset [1], which is used by many runtime monitoring implementations.

For example, the formula (p R q) R r is a safety property that is not syntactically

in the safety simple subset without rewriting the formula. Because of the inclusion

of regular expressions in the safety simple subset, many safety properties can be

rewritten to it, but this makes the specified properties much harder to understand,

and we are not aware of any automated tool that rewrites formulae into the safety

simple subset. The experimental results show the approach to be a quite competitive

bug finding tool and safety property model checker when compared to a state-of-

the-art implementation of PSL model checking. Especially in combination with

symbolic model checking with BDDs it avoids the use of costly algorithms used to

find accepting cycles with BDDs and instead relies on simple and more efficient

invariant checking.

There are interesting topics for further work. The approach presented in this

work is a complete model checking method for many PSL properties used in practical

specification work. For example, the LTL subset of PSL contains many syntactic

subsets that result in formulae where every counterexample has an informative bad

prefix. Similar careful characterization of all of PSL properties should result in

larger syntactic subsets of PSL properties where our approach can fully replace

general PSL model checking algorithms.

On the algorithmic side, the paper [20] describes a tool that analyzes an LTL

specification used in model checking, and detects exactly those formulae for which

our approach is a complete model checking approach. Namely, given a specification,

the tool looks for an infinite counterexample word that does not have a finite infor-

mative bad prefix. If no such infinite counterexample can be found, the transducer

30



we generate for it is called fine [19], and for these LTL formulae our model checking

approach can fully replace a generalized PSL model checking approach. The same

approach should be extended to all of PSL in future work. This can clearly be done

using the same basic approach as presented in [20].

Acknowledgements

The financial support of Academy of Finland (projects 126860, 128050, and 139402)

and Technology Industries of Finland Centennial Foundation is gratefully acknowl-

edged. In addition we would like to thank the anonymous reviewer of this paper

for very detailed and constructive comments.

References

[1] Shoham Ben-David, Dana Fisman, and Sitvanit Ruah. The safety simple sub-

set. In Hardware and Software Verification and Testing, First International

Haifa Verification Conference, Haifa, Israel, November 13-16, 2005, volume

3875 of Lecture Notes in Computer Science, pages 14–29. Springer, 2005.

[2] Armin Biere, Keijo Heljanko, Tommi Junttila, Timo Latvala, and Viktor

Schuppan. Linear encodings of bounded LTL model checking. Logical Methods

in Computer Science, 2(5), 2006.

[3] Roderick Bloem, Harold N. Gabow, and Fabio Somenzi. An algorithm for

strongly connected component analysis in n log n symbolic steps. Formal

Methods in System Design, 28(1):37–56, 2006.

[4] Marc Boule and Zeljko Zilic. Automata-based assertion-checker synthesis of

PSL properties. ACM Transactions on Design Automation of Electronic Sys-

tems, 13(1), 2008.

31



[5] Jerry R. Burch, Edmund M. Clarke, Kenneth L. McMillan, David L. Dill, and

L. J. Hwang. Symbolic model checking: 1020 states and beyond. Information

and Compututation, 98(2):142–170, 1992.

[6] Doron Bustan, Dana Fisman, and John Havlicek. Automata construction for

PSL. Technical report, The Weizmann Institute of Science, 2005.

[7] Edward Chang, Zohar Manna, and Amir Pnueli. The safety-progress classi-

fication. Technical report, Dept. of Computer Science, Stanford University,

1992.

[8] Alessandro Cimatti, Marco Roveri, and Stefano Tonetta. Symbolic compilation

of PSL. IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, 27(10):1737–1750, 2008.

[9] Edmund M. Clarke, Orna Grumberg, and Kiyoharu Hamaguchi. Another Look

at LTL Model Checking. Formal Methods in System Design, 10(1):47–71, 1997.

[10] Cindy Eisner and Dana Fisman. Formal Syntax and Semantics of IEEE

Std 1850 Property Specification Language. Retrieved on 13th Octo-

ber, 2008, from http://www.eda.org/ieee-1850/ieee-1850-issues/hm/

att-0690/Final_Annex_B_08.pdf.

[11] Cindy Eisner and Dana Fisman. Structural contradictions. In Hardware and

Software: Verification and Testing, 4th International Haifa Verification Con-

ference, HVC 2008, Haifa, Israel, October 27-30, 2008. Proceedings, volume

5394 of Lecture Notes in Computer Science, pages 164–178. Springer, 2008.

[12] Bernd Finkbeiner and Lars Kuhtz. Monitor circuits for LTL with bounded

and unbounded future. In Runtime Verification, 9th International Workshop,

RV 2009, Grenoble, France, June 26-28, 2009. Selected Papers, volume 5779

of Lecture Notes in Computer Science, pages 60–75. Springer, 2009.

32



[13] Ronald H. Hardin, Robert P. Kurshan, Sandeep K. Shukla, and Moshe Y.

Vardi. A new heuristic for bad cycle detection using BDDs. Formal Methods

in System Design, 18(2):131–140, 2001.

[14] Keijo Heljanko, Tommi Junttila, and Timo Latvala. Incremental and com-

plete bounded model checking for full PLTL. In Computer Aided Verification,

17th International Conference, CAV 2005, Edinburgh, Scotland, UK, July 6-10,

2005, Proceedings, volume 3576 of Lecture Notes in Computer Science, pages

98–111. Springer, 2005.

[15] Naiyong Jin and Chengjie Shen. Dynamic verifying the properties of the simple

subset of PSL. In First Joint IEEE/IFIP Symposium on Theoretical Aspects

of Software Engineering, TASE 2007, June 5-8, 2007, Shanghai, China, pages

229–240. IEEE Computer Society, 2007.

[16] Naiyong Jin, Chengjie Shen, Jun Chen, and Taoyong Ni. Engineering of an

assertion-based PSLSimple-Verilog dynamic verifier by alternating automata.

In Proceedings of the 1st International Workshop on Harnessing Theories for

Tool Support in Software (TTSS 2007), volume 207 of Electronic Notes in

Theoretical Computer Science, pages 153–169. Elsevier, 2008.

[17] Yonit Kesten, Amir Pnueli, and Li-on Raviv. Algorithmic verification of linear

temporal logic specifications. In Automata, Languages and Programming, 25th

International Colloquium, ICALP’98, Aalborg, Denmark, July 13-17, 1998,

Proceedings, volume 1443 of Lecture Notes in Computer Science, pages 1–16.

Springer, 1998.

[18] Yonit Kesten, Amir Pnueli, Li-On Raviv, and Elad Shahar. Model Checking

with Strong Fairness. Formal Methods in System Design, 28(1):57–84, 2006.

[19] Orna Kupferman and Moshe Y. Vardi. Model Checking of Safety Properties.

Formal Methods in System Design, 19(3):291–314, 2001.

33



[20] Timo Latvala. Efficient Model Checking of Safety Properties. In Model Check-

ing Software, 10th International SPIN Workshop. Portland, OR, USA, May

9-10, 2003, Proceedings, volume 2648 of Lecture Notes in Computer Science,

pages 74–88. Springer, 2003.

[21] Tuomas Launiainen, Keijo Heljanko, and Tommi Junttila. Efficient model

checking of PSL safety properties. In Proceedings of the 10th International

Conference on Application of Concurrency to System Design (ACSD’2010),

pages 95–104, Braga, Portugal, June 2010.

[22] Kenneth L. McMillan. Applications of Craig interpolation to model checking.

In Applications and Theory of Petri Nets 2005, 26th International Conference,

ICATPN 2005, Miami, USA, June 20-25, 2005, Proceedings, volume 3536 of

Lecture Notes in Computer Science, pages 15–16. Springer, 2005.

[23] Amir Pnueli and Aleksandr Zaks. On the merits of temporal testers. 25 Years

of Model Checking, pages 172–195, 2008.

[24] Fred B. Schneider. Decomposing properties into safety and liveness. Technical

report, Cornell University, 1987.

[25] Viktor Schuppan and Armin Biere. Efficient reduction of finite state model

checking to reachability analysis. International Journal on Software Tools for

Technology Transfer, 5(2–3):185–204, 2004.

[26] Viktor Schuppan and Armin Biere. Shortest counterexamples for symbolic

model checking of LTL with past. In Tools and Algorithms for the Construction

and Analysis of Systems, 11th International Conference, TACAS 2005, Held as

Part of the Joint European Conferences on Theory and Practice of Software,

ETAPS 2005, Edinburgh, UK, April 4-8, 2005, Proceedings, volume 3440 of

Lecture Notes in Computer Science, pages 493–509. Springer, 2005.

34



[27] Michael Sipser. Introduction to the Theory of Computation. Course Technology,

December 1996.

A Proof of Lemmas 3.6 to 3.10

This appendix presents the proofs for the important lemmas in this paper, i.e. the

ones that prove the correctness of the transducer constructions.

A.1 Correctness of the transducer for the until operator

The following lemma proves the correctness of the transducer for the until operator.

Lemma 3.6. If T1 and T2 are transducers for φ1 and φ2, respectively, then Tφ1Uφ2
=

T1 Bqleft (T2 Bqright TU) is a transducer for the formula φ1 U φ2.

Proof. This can be proven by backward induction from the last state of the execu-

tion.

• Base case: In the last state the final state constraint is equivalent to the

semantics: since there is no next state in the execution, π |=strong
n φ1 U φ2 if

and only if qright ∈ sn.

• Induction assumption: The lemma holds for states sn−k with some limit for

k.

• Induction step: The transition relation states that qU ∈ sn−(k+1) ⇔ (qright ∈

sn−(k+1) ∨ (qleft ∈ sn−(k+1) ∧ qU ∈ sn−k)). Clearly qright ∈ sn−(k+1) implies

π |=strong
n−(k+1) φ1 U φ2. Moreover, since qU ∈ sn−k if and only if π |=strong

n−k

φ1 U φ2, qleft ∈ sn−(k+1) ∧ qU ∈ sn−k implies both ∃j > i : qright ∈ sj and

∀l : n − (k + 1) ≤ l < j : qleft ∈ sl. Therefore qleft ∈ sn−(k+1) ∧ qU ∈ sn−k

implies π |=strong
n−(k+1) φ1 U φ2.

35



On the other hand, π |=strong
n−(k+1) φ1 U φ2 implies that either π |=strong

n−(k+1) φ2

or ∃j > i : qright ∈ sj and ∀l : n − (l + 1) ≤ l < j : qleft ∈ sl. The latter

implies that π |=strong
n−k φ1 U φ2, and therefore qU ∈ sn−k. As a consequence,

π |=strong
n−(k+1) φ1 U φ2 implies qright ∈ sn−(k+1)∨ (qleft ∈ sn−(k+1)∧qU ∈ sn−k).

Now we have established that qU ∈ sn−(k+1) ⇔ qright ∈ sn−(k+1) ∨ (qleft ∈

sn−(k+1) ∧ qU ∈ sn−k) is equivalent to π |=strong
n−(k+1) φ1 U φ2, so the lemma

holds for k + 1, and by induction for any k.

A.2 Correctness of the transducer for the releases operator

The following lemma proves the correctness of the transducer for the releases oper-

ator.

Lemma 3.7. If T1 and T2 are transducers for φ1 and φ2, respectively, then Tφ1Rφ2 =

T1 Bqleft (T2 Bqright TR) is a transducer for the formula φ1 R φ2.

Proof. This can be proven by backward induction from the last state of the execu-

tion.

• Base case: In the last state the final state constraint is equivalent to the

semantics: since there is no next state in the execution, π |=strong
n φ1 R φ2 if

and only if qleft ∈ sn ∧ qright ∈ sn.

• Induction assumption: The lemma holds for states sn−k with some limit for

k.

• Induction step: The transition relation states that qR ∈ sn−(k+1) ⇔ (qright ∈

sn−(k+1) ∧ (qleft ∈ sn−(k+1) ∨ qR ∈ sn−k)). Dividing the right side of the

equivalence, we see that qright ∈ sn−(k+1)∧qleft ∈ sn−(k+1) implies π |=strong
n−(k+1)

φ1 R φ2. Additionally, since qR ∈ sn−k if and only if π |=strong
n−k φ1 R φ2, the

36



other part, qright ∈ sn−(k+1)∧qR ∈ sn−k implies both ∃l, n−k ≤ l ≤ n : qleft ∈

sl and ∀j, n− (k+ 1) ≤ j ≤ n : qright ∈ sj . Therefore qright ∈ sn−(k+1) ∧ qR ∈

sn−k implies π |=strong
n−(k+1) φ1 R φ2.

On the other hand, π |=strong
n−(k+1) φ1 R φ2 implies that either π |=strong

n−(k+1) φ1

and π |=strong
n−(k+1) φ2, or that ∃l, n − k ≤ l ≤ n : qleft ∈ sl and ∀j : n −

(l + 1) ≤ j ≤ l : qright ∈ sl. The latter implies that π |=strong
n−k φ1 R φ2,

and therefore qR ∈ sn−k. As a consequence, π |=strong
n−(k+1) φ1 R φ2 implies

qright ∈ sn−(k+1) ∧ (qleft ∈ sn−(k+1) ∨ qR ∈ sn−k).

Now we have established that qR ∈ sn−(k+1) ⇔ qright ∈ sn−(k+1) ∧ (qleft ∈

sn−(k+1) ∨ qU ∈ sn−k) is equivalent to π |=strong
n−(k+1) φ1 R φ2, so the lemma

holds for k + 1, and by induction for any k.

A.3 Correctness of the transducer for the tail implication

operator

The following lemmas prove the correctness of the transducer for the tail implication

operator. Lemma A.1 formalises the automation simulation, lemma A.2 states that

the transducer cannot accept unless the condition that φ holds is satisfied, and

lemma A.3 does the same with the condition that no matches are possible in any

continuation of the execution. Lemma A.4 summarises these by stating that there

are no bad executions for the transducer.

Lemma A.1. If Ar has a sequence of transitions for an input σi, σi+1, . . . , σj−1

that takes Ar from some state vi to some state vj, and vi ∈ si, then for every

execution si, . . . , sj, where ∀l, i ≤ l < j : `r(sl) = σl, vj ∈ sj.

Proof. Proof by induction over j:

• Base case: i = j, so vj ∈ sj is equivalent to vi ∈ si.

37



• Induction assumption: The above statement holds when j ≤ k.

• Induction step: For every (v, σ, v′) ∈ δr and (s, s′) ∈ δ, (v ∈ s ∧ `r(s) = σ)⇒

v′ ∈ s′. In other words, if v is true in some transducer state s and `r(s) = σ,

then v′ is true in every follower state s′ of s. This means that if Ar has a

transition that takes it from v to v′ with the input `r(s), and v holds in s,

then v′ must hold in every follower state of s. The induction assumption

states that vk ∈ sk. If Ar has a transition (vk, σk, vk+1), then vk+1 ∈ sk+1.

Therefore the above statement holds for j ≤ k + 1 as well, and by induction

for any j.

Lemma A.2. If s1, . . . , sn+1 is an execution of Tr 7→φ, q0 ∈ s1, and `r(s1, . . . , sn−1) ∈

L(r), then Fr ∩ sn 6= ∅ and therefore qφ ∈ sn−1.

Proof. Because `r(s1, . . . , sn−1) ∈ L(r), there exists a sequence of transitions (q0,

`r(s1), q1), (q1, `r(s2), q2), . . ., (qn−2, `r(sn−1), qn−1), each in δr, for some q1, q2,

. . . ∈ Qr and qn−1 ∈ Fr. This, combined with Lemma A.1 implies qn−1 ∈ sn.

Because of δ, this means that qφ ∈ sn−1.

Lemma A.3. If s1, . . . , sn is an execution of Tr 7→φ that accepts at si, then `r(si,

. . . , sn−1) /∈ Lpref(r).

Proof. Suppose that `r(si, . . . , sn−1) ∈ Lpref(r), i.e. `r(si, . . . , sn−1) is a proper

prefix of some word in L(r). Since q0 ∈ si, and because of Lemma A.1, qj ∈

sn for some qj ∈ Qr. This contradicts with sn being a final state of Tr 7→φ, so

`(si, . . . , sn−1) /∈ Lpref(r).

Lemma A.4. If s1, . . . , si, . . . , sn is an execution of the transducer that accepts at

si, then `r(si, . . . , sn−1) /∈ Lpref(r) and ∀j, i < j < n : if si, . . . , sj ∈ L(r) then

qφ ∈ sj.

38



Proof. Follows from Lemmas A.1, A.2, and A.3. Lemmas A.1 and A.2 together

prove that all matches for r are detected whenever q0 is set to true, and Lemma

A.3 proves that the suffix si . . . sn−1 of the path after q0 is true cannot belong to

the prefix language of r.

Lemma A.5 shows how to construct an accepting execution where the output

variable is true in a single state, and lemma A.6 shows how to combine such ex-

ecutions. Lemma A.7 wraps up by stating that there always exists the desired

execution that accepts at all the points where the tail implication property holds.

Lemma A.5. If π = p1, . . . , pn−1 is an input sequence for Tr 7→φ and π |=strong
k r 7→

φ for some k, then there exists an accepting execution s1, . . . , sn of Tr 7→φ for π such

that q0 ∈ sk.

Proof. The execution s0, s1, . . . , sn can be constructed in the following way:

• si = pi when 0 ≤ i < k, i.e. only atomic propositions hold in the states before

sk, all the state variables are false.

• q0 ∈ sk.

• sk \ `r(sk) = {q0}, i.e. q0 is the only state variable that holds in sk.

•
∧

(v,σ,v′)∈δr

(v ∈ si ∧ `r(si) = σ)⇔ v′ ∈ si+1

 when k ≤ i < n, i.e. the impli-

cation in the transition relation is replaced with equivalence after sk.

For the above execution, if q ∈ si for some q ∈ Qr, then there exists an execution

of Ar that takes it from q0 to q with the input sequence `r(sk, . . . , si−1). This is

proven by induction over i:

• Base case: i = k, and the execution of Ar is the empty sequence.

• Induction assumption: The above statement holds when i ≤ j.

39



• Induction step: Let m be any k < m ≤ n. A state variable v′ ∈ Qr holds in the

state sm of the above execution if and only if there is a transition of Ar that

takes it from v to v′ with the input `r(sm−1), and v ∈ sm−1. Thus, for every

state variable in sj+1, there is a transition of Ar with a corresponding state

variable in sj with the input `r(sj). The induction assumption states that for

every state variable in sj a corresponding execution exists, and therefore an

execution exists for every state variable in sj+1, and by induction for every

state variable in any state of the execution.

As a direct consequence, if Fr ∩ sm 6= ∅ for some m, then `r(sk, . . . , sm−1) ∈ L(r).

Since π |=strong
k r 7→ φ, qφ must hold in sm−1. Moreover, since `r(sk, . . . , sn) /∈

Lpref(r), and since every state of Ar has an execution that leads to an accepting

state, sn cannot contain any variables from Qr, so the final state constraint holds.

Lemma A.6. If s1, . . . , sn and s′1, . . . , s
′
n are accepting executions of Tr 7→φ s.t. ∀i, 1 ≤

i ≤ n : `r(si) = `r(s
′
i), then s1 ∪ s′1, . . . , sn ∪ s′n is an accepting execution of Tr 7→φ.

Proof. The final state constraint obviously holds, since sn∩Qr = ∅ and s′n∩Qr = ∅.

The transition relation holds since for any k, 1 ≤ k < n:

∧
(v,σ,v′)∈δr

(v ∈ sk ∧ `r(sk) = σ)⇒ v′ ∈ sk+1

∧
∧

(v,σ,v′)∈δr

(v ∈ s′k ∧ `r(s′k) = σ)⇒ v′ ∈ s′k+1


⇒ ∧

(v,σ,v′)∈δr

((v ∈ sk ∧ `r(sk) = σ)⇒ v′ ∈ sk+1) ∧

((v ∈ s′k ∧ `r(s′k) = σ)⇒ v′ ∈ s′k+1)


⇒

40



∧
(v,σ,v′)∈δr

(v ∈ sk ∧ `r(sk) = σ) ∨ (v ∈ s′k ∧ `r(s′k) = σ)⇒

(v′ ∈ sk+1) ∨ (v′ ∈ s′k+1)


⇒ ∧
(v,σ,v′)∈δr

(v ∈ sk ∨ v ∈ s′k) ∧ (`r(sk) = σ)⇒

(v′ ∈ sk+1) ∨ (v′ ∈ s′k+1)


⇒ ∧
(v,σ,v′)∈δr

(v ∈ (sk ∪ s′k) ∧ `r(sk) = σ)⇒

v′ ∈ (sk+1 ∪ s′k+1)


and: Fr ∩ sk+1 6= ∅ ⇒ qφ ∈ sk
 ∧Fr ∩ s′k+1 6= ∅ ⇒ qφ ∈ s′k


⇒ Fr ∩ sk+1 6= ∅ ∨ Fr ∩ s′k+1 6= ∅

⇒ qφ ∈ sk ∨ qφ ∈ s′k
⇒ Fr ∩ (sk+1 ∪ s′k+1) 6= ∅

⇒ qφ ∈ (sk ∪ s′k)


Lemma A.7. Let π = p1, . . . , pn−1 be an input sequence for Tr 7→φ. There exists

an accepting execution s1, . . . , sn of Tr 7→φ for π such that for every pair of indices

i, j the following holds: if pi, . . . , pj ∈ L(r) and π |=strong
j φ, then q0 ∈ si.

Proof. Follows from Lemmas A.5 and A.6. Lemma A.5 shows how to construct an

execution that accepts at a single state, and Lemma A.6 shows that two executions

that agree on the input sequence can be combined by taking the union of the

corresponding states. This results in an execution where a variable is true in a state

if it was true in either of the combined executions in that state.

With the lemmas above we can prove that the presented transducer is correct

for the tail implication operator.

41



Lemma 3.8. If Tφ is a transducer for φ, then Tr 7→φ = Tφ Bqφ Tr 7→ is a transducer

for the formula r 7→ φ.

Proof. Follows from Lemmas A.4 and A.7.

A.4 Correctness of the transducer for the tail conjunction

operator

The following lemmas prove the correctness of the transducer for the tail implication

operator. Lemma A.8 formalises the automaton simulation, and lemma A.9 proves

that there are no bad executions for the transducer.

Lemma A.8. If si, . . . , sj is an execution of the transducer, qi ∈ si for some

qi ∈ Qr, and ∀l, i ≤ l < j : qφ /∈ sl, then there is some qj ∈ sj s.t. qj ∈ Qr and the

input sequence `r(si, . . . , sj−1) takes Ar from qi to qj.

Proof. Proof by induction over j:

• Base case: i = j and si = sj , so both claims hold trivially.

• Induction assumption: The claims hold when j ≤ k.

• Induction step: There is an execution si, . . . , sk, qi ∈ si, and qk ∈ sk. Because

of the initial assumption, we also assume that qφ /∈ sk. Now we extend the

execution with a single step to sk+1. Note that if the transition relation does

not permit such an extension, then the initial assumption that the execution

exists is broken. Since qφ /∈ sk, the transition relation implies:

qk ∈ sk ⇒
∨

(qk,σ,q′)∈δr

`r(sk) = σ ∧ q′ ∈ sk+1

This means that there exists some q′ ∈ Qr s.t. q′ ∈ sk+1 and (qk, σ, q
′) ∈ δr.

Now both claims of Lemma A.8 hold for sk+1, and by induction for any

execution.

42



Lemma A.9. If s1, . . . , si, . . . , sn is an execution of the transducer that accepts at

si, then there exists some j s.t. i ≤ j < n, qφ ∈ sj, and `r(si, . . . , sj) ∈ L(r).

Proof. Because of Lemma A.8 and the final state constraint of the transducer, there

must be some sj in the execution s.t. qφ ∈ sj . Additionally, there is some qj ∈ sj

such that `r(si, . . . , sj−1) takes Ar from q0 to qj . On the other hand, if there is no

transition (qj , `r(sj), q
′) ∈ δr for some q′ ∈ Fr, then the transition relation at that

point implies:

qj ∈ sj ⇒
∨

(qj ,σ,q′)∈δr

`r(sj) = σ ∧ q′ ∈ sj+1

That would mean that there is some q′ in sj+1, and because of Lemma A.8 the final

state constraint would not be satisfied. That means that there must exist some

transition from qj to an accepting state of Ar with the input `r(sj), which in turn

means that `r(si, . . . , sj) ∈ L(r).

Lemma A.10 shows how to construct an accepting execution where the output

variable is true in a single state, and lemma A.11 shows how to combine such

executions. Lemma A.12 wraps up by stating that there always exists the desired

execution that accepts at all the points where the tail conjunction property holds.

Lemma A.10. If π = p1, . . . , pn−1 is an input sequence for Tr�→φ such that

π |=strong
k r �→ φ for some k, then there exists an accepting execution s1, . . . , sn

of Tr�→φ for π such that q0 ∈ sk.

Proof. Because π |=strong
k r �→ φ, there exists some j, k ≤ j < n s.t. π |=strong

j φ

and pk, . . . , pj ∈ L(r). The execution can then be constructed as follows:

• si = pi when 1 ≤ i < k, i.e. only atomic propositions hold in the states before

sk, all the state variables are false.

• q0 ∈ sk.

43



• sk \ `r(sk) = {q0}, i.e. the only state variable in sk is q0.

• Let (q0, pk, qk+1), (qk+1, pk+1, qk+2), . . . , (qj , pj , qj+1) be a sequence of transi-

tions that takes Ar from q0 to some qj+1 ∈ Fr with the input pk, . . . , pj .

Such a sequence is guaranteed to exist, since pk, . . . , pj ∈ L(r). For each si,

k ≤ i ≤ j, si \`r(si) = qi. In other words, the only state variable in each state

from sk to sj is the state variable from the execution of Ar.

• For each si, j < i ≤ n, `r(si) = si, i.e. no state variables are true after sj .

The final state constraint obviously holds for the above execution. The transition

relation trivially holds for each pair of states (si, si+1) when 1 ≤ i < k, since no

state variables are true, and therefore every implication in the transition relation is

true.

Each pair of states (si, si+1), k ≤ i < j also satisfies the transition relation,

since the state variables are taken from an execution of Ar, and therefore:

qi ∈ si ⇒ (qi, σ, qi+1) ∈ δr ∧ `r(s) = σ ∧ qi+1 ∈ si+1

The rest of the implications are again trivially true, as no other state variables are

true.

The pair of states (sj , sj+1) satisfies the transition relation, because there is a

transition (qj , `r(sj), qj+1) ∈ δr, and therefore:

qj ∈ sj ⇒ (qj , σ, qj+1) ∈ δr ∧ `r(s) = σ ∧ qj+1 ∈ Fr ∧ qφ ∈ sj

Note that qj+1 /∈ sj+1.

For each pair (si, si+1), j < i < n, again no state variables are true, so the

implications in the transition relation hold trivially.

Lemma A.11. If s1, . . . , sn and s′1, . . . , s
′
n are accepting executions of Tr�→φ s.t. ∀i, 1 ≤

i ≤ n : `r(si) = `r(s
′
i), then s1 ∪ s′1, . . . , sn ∪ s′n is an accepting execution of Tr�→φ.

44



Proof. The final state constraint obviously holds, since sn∩Qr = ∅ and s′n∩Qr = ∅.

The transition relation holds since for any k, 1 ≤ k < n:

∧
v∈Qr

v ∈ sk ⇒ ∨
(v,σ,v′)∈δr

`r(sk) = σ ∧ (v′ ∈ sk+1 ∨ (v′ ∈ Fr ∧ qφ ∈ sk))

∧
∧

v∈Qr

v ∈ s′k ⇒ ∨
(v,σ,v′)∈δr

`r(s
′
k) = σ ∧ (v′ ∈ s′k+1 ∨ (v′ ∈ Fr ∧ qφ ∈ s′k))


⇒ ∧

v∈Qr

v ∈ sk ⇒ ∨
(v,σ,v′)∈δr

`r(sk) = σ ∧ (v′ ∈ sk+1 ∨ (v′ ∈ Fr ∧ qφ ∈ sk))

 ∧v ∈ s′k ⇒ ∨
(v,σ,v′)∈δr

`r(s
′
k) = σ ∧ (v′ ∈ s′k+1 ∨ (v′ ∈ Fr ∧ qφ ∈ s′k))



⇒ ∧
v∈Qr

(v ∈ sk ∨ v ∈ s′k)⇒ ∨
(v,σ,v′)∈δr

`r(sk) = σ ∧ (v′ ∈ sk+1 ∨ (v′ ∈ Fr ∧ qφ ∈ sk))

∨ ∨
(v,σ,v′)∈δr

`r(s
′
k) = σ ∧ (v′ ∈ s′k+1 ∨ (v′ ∈ Fr ∧ qφ ∈ s′k))


⇒ ∧

v∈Qr

(v ∈ sk ∨ v ∈ s′k)⇒ ∨
(v,σ,v′)∈δr

`r(sk) = σ ∧ (v′ ∈ sk+1 ∨ (v′ ∈ Fr ∧ qφ ∈ sk)) ∨

`r(s
′
k) = σ ∧ (v′ ∈ s′k+1 ∨ (v′ ∈ Fr ∧ qφ ∈ s′k))



45



⇒ ∧
v∈Qr

(v ∈ sk ∨ v ∈ s′k)⇒ ∨
(v,σ,v′)∈δr

`r(sk) = σ ∧ ((v′ ∈ sk+1 ∨ (v′ ∈ Fr ∧ qφ ∈ sk))∨

(v′ ∈ s′k+1 ∨ (v′ ∈ Fr ∧ qφ ∈ s′k)))


⇒ ∧
v∈Qr

(v ∈ sk ∨ v ∈ s′k)⇒ ∨
(v,σ,v′)∈δr

`r(sk) = σ ∧ ((v′ ∈ sk+1 ∨ v′ ∈ s′k+1)∨

(v′ ∈ Fr ∧ qφ ∈ sk) ∨ (v′ ∈ Fr ∧ qφ ∈ s′k))


⇒ ∧
v∈Qr

(v ∈ sk ∪ s′k)⇒ ∨
(v,σ,v′)∈δr

`r(sk) = σ ∧ ((v′ ∈ sk+1 ∪ s′k+1)∨

(v′ ∈ Fr ∧ qφ ∈ sk ∪ s′k))


Lemma A.12. Let π = p1, . . . , pn−1 be an input sequence for Tr�→φ. There exists

an accepting execution s1, . . . , sn of Tr�→φ for π such that ∀i, 1 ≤ i < n : (∃j, i ≤

j < n : `r(si, . . . , sj) ∈ L(r) and qφ ∈ sj)⇒ q0 ∈ si.

Proof. Follows from Lemmas A.10 and A.11.

With the lemmas above we can prove that the presented transducer is correct

for the tail conjunction operator.

Lemma 3.10. If Tφ is a transducer for φ, then Tr�→φ = TφBqφTr�→ is a transducer

for the formula r �→ φ.

Proof. Follows from Lemmas A.9 and A.12.

46



{i}
{q}

{q, i}
∅

Figure 1: A graphical presentation of the states and the transition relation of a
transducer for the formula X! i

47



{q}
{p, i}

{i}
{q, i}

∅

{q, p, i}

{p}
{q, p}

Figure 2: A graphical presentation of the states and the transition relation of a
transducer for the formula X!X! i

48



q0 q1 q2
{a, b}

{a} {b}

{a, b}

Figure 3: An automaton for the SERE a · b

49



 0.01

 0.1

 1

 10

 100

 1000

 0.01  0.1  1  10  100  1000

BD
D 

im
pl

em
en

ta
tio

n 
fro

m
 N

uS
M

V 
2.

4.
3 

wi
th

 o
bs

er
ve

r

BDD implementation from Cimatti et al. (TCAD 2008)

 0.01

 0.1

 1

 10

 100

 1000

 0.01  0.1  1  10  100  1000

SB
M

C 
im

pl
em

en
ta

tio
n 

fro
m

 N
uS

M
V 

2.
4.

3 
wi

th
 o

bs
er

ve
r

SBMC implementation from Cimatti et al. (TCAD 2008)

Figure 4: Run times (in seconds) of BDD-based implementations (left) and SBMC-
based implementations (right) for the PSL benchmarks.

50



 0.01

 0.1

 1

 10

 100

 0.01  0.1  1  10  100

BD
D

 im
pl

em
en

ta
tio

n 
fro

m
 N

uS
M

V 
2.

4.
3 

w
ith

 o
bs

er
ve

r

BDD implementation from Cimatti et al. (TCAD 2008)

True
False

 0.01

 0.1

 1

 10

 100

 0.01  0.1  1  10  100

SB
M

C
 im

pl
em

en
ta

tio
n 

fro
m

 N
uS

M
V 

2.
4.

3 
w

ith
 o

bs
er

ve
r

SBMC implementation from Cimatti et al. (TCAD 2008)

True
False

Figure 5: Run times (in seconds) of BDD-based implementations (left) and SBMC-
based implementations (right) for the real life benchmarks.

51


