
Coping With Strong Fairness � On-the-�y EmptinessChecking for Streett AutomataTimo Latvala <Timo.Latvala@hut.�>Keijo Heljanko�<Keijo.Heljanko@hut.�>Laboratory for Theoretical Computer ScienceHelsinki University of TechnologyP.O. Box 5400FIN-02015 HUTFinland
AbstractThe model checking approach to veri�cation has proven to be very successful. Statingthe required properties in temporal logic allows the process of veri�cation to be automated.When propositional linear temporal logic (LTL) is used as the speci�cation language Büchiautomata usually are the theoretical constructions of choice. Büchi automata, however,cannot cope with strong fairness e�ciently. Streett automata can easily model strongfairness constraints but the known model checking algorithms are more complex than thealgorithms for Büchi automata. In order to circumvent this problem we present a methodwhich takes advantage of the simpler model checking complexity of Büchi automata whenpossible, and uses Streett automata when faced with strong fairness constraints. Themethod performs the model checking in an on-the-�y fashion and also includes coun-terexample generation. We present memory e�cient algorithms for both the emptinesschecking of Streett automata and counterexample generation.

�Currently visiting Technische Universität München, Fakultät für Informatik1

1 IntroductionThe systems being developed today are more complex than ever. Distribution and concurrencyare e�ective tools for solving many of the problems developers are presented with. Unfortu-nately they also introduce new problems in the form errors which can be extremely hard to�nd.Formal methods has given us new tools to �nd these bugs. However veri�cation, i.e. checkingthat a system conforms to its speci�cation, is a di�cult task. Simple testing has endured asa validation method although it has proven to be a both time consuming and not always asuccessful measure. The model checking approach has emerged as a viable alternative. Modelchecking uses the equivalence between automata on in�nite words and temporal logic to verifyspeci�cations. Given a speci�cation in a temporal logic and a description of the systemsexecutions, model checking automates the process of veri�cation.The applicability of model checking is however seriously limited by the state-space explosionproblem. Due to this verifying complex systems is in many cases an intractable problem. Sev-eral remedies have, however, been suggested for the problem. One such remedy is performingthe model checking on-the-�y. When performing model checking on-the-�y the state-space isconstructed simultaneously while the model checking is done. This means that errors mightbe found before the construction of the complete state space.Büchi automata are frequently used when the speci�cation language used is linear-time propo-sitional temporal logic (LTL). Several schemes have been presented on how to perform on-the-�y veri�cation using Büchi automata [CVWY92, Kur94]. However Büchi automata haveproblems with e�ciently representing systems which contain strong fairness constraints. Sincee�cient modeling of systems requires strong fairness [Fra86], coping with it in an e�cient man-ner would be desirable.A class of automata that can handle strong fairness e�ciently are the Streett automata, i.e.the complemented pairs automata, see e.g. [Tho97]. In this paper we present a method ofhow to perform veri�cation in an on-the-�y fashion using a combination of Büchi and Streettautomata. The method provides e�cient handling of both weak and strong fairness constraintsby avoiding the greater complexity of model checking for Streett automata when possible. Wealso present a memory e�cient algorithm for performing the emptiness check on the Streettautomata. In recognition of the importance of providing a counterexample we also presenta new and e�cient algorithm which �nds short counterexamples when the formula does nothold.2 Automata on In�nite WordsThe theory of automata on in�nite words provides the theoretical foundation for model check-ing.De�nition [Tho97] A �nite !-automaton is a tuple A=(S;�; s0;�;
) where, S is a �nitenonempty set of states, � the input alphabet, s0 2 S the initial state,
 the acceptance2

component and � � S���S is the transition relation. A run of A on a given input !-word� = �(0)�(1)::: with �(i) 2 � is a sequence � = �(0)�(1)::: 2 S! such that �(0) = s0 and(�(i); �(i); �(i+ 1)) 2 � for i � 0:By denoting the quanti�er �there exist in�nitely many� by 9! we can de�ne the setIn(�) = fs 2 Sj9!i �(i) = sg:Consequently In(�) is the set of states that occur in�nitely often in the run �. A Büchiautomaton, see e.g. [Tho97], is then obtained from the !-automaton if we de�ne for theacceptance component the following condition, the Büchi condition: In(�) \ F 6= ; for a setF � S of accepting states. This means that for an accepting run some state from the set ofaccepting states must be visited in�nitely often.A generalized Büchi automaton [Gri88] di�ers from an ordinary Büchi automaton in that itsacceptance component is a �nite set of acceptance sets F = fF0; F1; : : : ; Fn�1g � 2S . A run� = s0s1 : : : of a generalized Büchi automaton is accepting if and only if for all accepting setsFj 2 F there exists some state skj 2 Fj such that it occurs in�nitely many times in the run.Compactly expressed, for an accepting run In(�) \ Fi 6= ; for each Fi 2 F .Fairness was already mentioned as a useful tool in modeling systems. In [Fra86] fairness isde�ned using the notion of enabledness of relevant events. Weak fairness requires that an eventwill not be inde�nitely postponed if it is continuously enabled. A weakly fair Scheduler witha waiting queue, is guaranteed to eventually schedule an event once the event has entered thequeue. Other examples where weak fairness is appropriate are systems with busy waiting andmany resource-allocation processes. Weak fairness does not cover all situations encounteredin modeling. A usual assumption made for communication protocols is that if a message issent repeatedly it will eventually be successfully received. This assumption could be violatedalthough the communication process would be weakly fair. Strong fairness requires that ifan event if in�nitely often enabled it must occur in�nitely often. With strong fairness theassumption made for communications protocols is satis�ed. These de�nitions of fairness canbe adapted to suit most formalisms. Büchi automata, which are commonly used for on-the-�ymodel checking, can represent weak fairness e�ciently. The question arises: how can strongfairness be e�ciently represented?A Street automaton, see e.g. [Tho97], is obtained with the Streett, i.e. the complementedpairs, acceptance condition if we de�ne for the acceptance component: Vki=1(In(�) \ Li =; _ In(�) \ Ui 6= ;) for a sequence
 of pairs (L1; U1); : : : ; (Lk; Uk), where Li and Ui aresubsets of S.Clearly the acceptance condition represents strong fairness conditions as de�ned in [Fra86]and can be read as �for each i, if some state in Li is visited in�nitely often, then some statein Ui is visited in�nitely often�. Obviously Streett automata are the answer to our previousquestion.The de�nitions above are automata where the labels are on the arcs. The algorithms presentedlater, however, use automata where the states are labeled. It is easy to see that arc labeledautomata can easily be transformed into state labeled automata and vice versa.3

The set of in�nite strings an automaton accepts is denoted by L(A), and is called the languageof A. Testing if the language is empty, denoted by L(A) = ;, is referred to as performing anemptiness check.3 Model CheckingBecause it is possible to interpret the behavior of a �nite state system as a set of computations,it is possible to use the equivalence between linear temporal logic and automata on in�nitewords. A computation is a function � : N ! 2Prop, where Prop is a given �nite set of atomicpropositions. The function assigns truth-values to the propositions at each time instant i 2 N.The atomic propositions describe the internal state of the system. Linear-time propositionaltemporal logic is also interpreted over computations. Hence, LTL can be used for specifyingproperties of reactive, non-terminating systems.Computations as can also be viewed as in�nite words. In [SPH84] it was shown that thereis an automaton on in�nite words that accepts exactly the computations that satis�es anLTL formula. Later in [VW94] an explicit construction was given for how to convert an LTLformula ' into a Büchi automaton A', which accepts exactly the same computations. A re�nedalgorithm was presented in [GPVW95] which performed the translation to a generalized Büchiautomaton on-the-�y. That the automaton accepts the same computations as the formulaimplies that satis�ability testing is equivalent to doing an emptiness check of an automaton.It also gives us a method to do model checking using automata-theoretic constructions.The steps performed to verify that a system has a property given by a LTL formula ' are thefollowing [CVWY92, Kur94].1. Generate the reachability graph of the system and interpret it as a Büchi automaton S.2. Construct the automaton A:' corresponding to the negation of the property '.3. Form the product automaton B = A:' � S.4. Check if L(B) = ;.If L(B) = ; the system satis�es the speci�cation. The combination of some of these steps isreferred to as �on-the-�y�. There are several algorithms available on how to do this on-the-�ywith Büchi automata [CVWY92, Kur94].A limitation of the on-the-�y method described in [CVWY92] is that it can only deal with nor-mal (non-generalized) Büchi automata. To handle generalized Büchi automata, the algorithmneeds to translate these into Büchi automata, see e.g. [GPVW95]. This can also be doneon-the-�y, but the number of states of the resulting product automaton can be the number ofstates of the original product automaton times the number of generalized Büchi acceptancesets.As previously mentioned Büchi automata cannot handle strong fairness e�ciently, as there isno polynomial translation form Streett to Büchi automata, see e.g. [Saf89]. Weak fairness,however, is manageable with generalized Büchi automata. By combining the best of both4

worlds it is possible to deal with both strong and weak fairness and verify claims given in LTLin an e�cient manner. We propose the following procedure:1. Construct the generalized Büchi automaton A:'.2. The reachability graph of the system is transformed into an automaton with both Streett(for strong fairness) and generalized Büchi (for weak fairness) acceptance conditions, whichare de�ned in the formal system description.3. The product automaton of the above two is created on-the-�y, with states obtaining accep-tance conditions from both the formula- and the reachability graph-automaton. Simultane-ously Tarjan's algorithm is used to calculate the next maximal strongly connected component(MSCC) of the product automaton.4. When a MSCC of the product automaton has been calculated we check for generalizedBüchi acceptance. If the component does not contain a state from each Büchi acceptance set,i.e. it does not contain a weakly fair counterexample and hence is not accepted, we return tostep 3.5. If a component is accepted as weakly fair and it does not contain strong fairness con-straints we can directly generate a counterexample at step 7 using only generalized Büchi setsinterpreted as Streett acceptance sets Ui and with each Li set initialized to the universal set.6. The MSCC is checked by the Streett emptiness check, with the generalized Büchi acceptancesets interpreted as in step 5. If no weakly and strongly fair execution is found, we continuefrom step 3.7. A counterexample is generated using the subset of vertices of the MSCC, which the empti-ness checking algorithm supplies.Note that steps 4 and 5 are not needed for correctness, they are only an optimization to do theStreett emptiness check only when it is needed. By performing the veri�cation in this mannerit is possible to �nd errors without computing all MSCCs, which might result in faster runningtimes. Also the fact that only components which are weakly fair and contain strong fairnessrequirements are checked for strong fairness, potentially results in less work compared to anaive implementation.4 Emptiness Checking of Streett AutomataThe emptiness algorithm is given a MSCC, S, of the product Streett automaton. The productStreett automaton can be seen as directed graph G = (V;E), where the number of verticesjV j = n and the number of edges jEj = m. The Streett pairs (Li; Ui); Li; Ui � V with1 � i � k are given and bits(S) is de�ned as �ki=1jLij + jUij for S � V . Performing anemptiness check on a Streett automaton is then to see whether G contains a cycle such that: ifthe cycle contains a vertex from Li then it also contains a vertex from Ui, for all i 2 f1; : : : ; kg.5

4.1 Emptiness Checking AlgorithmThe main idea of the emptiness checking algorithm goes back to at least Emerson and Lei[EL87] and it was also independently developed in [LP85]. The algorithm is given a maximalstrongly connected component (MSCC) of the product automaton calculated by a modi�edversion of Tarjan's algorithm [Tar72]. The algorithm begins dynamically modifying the graphby deletion of bad vertices from the MSCC. A vertex is bad if it belongs to some Li set, butthe MSCC it belongs to does not contain a vertex from the corresponding Ui set. All othervertices are good. A MSCC containing only good vertices is said to be a good component.After the deletion of bad vertices the MSCC of the modi�ed graph are now recalculated andagain checked for bad vertices. The algorithm terminates when it has found a non-trivial goodcomponent or it concludes that no such component exists.The algorithm checks if a MSCC is trivial by �rst checking the size of the component. If itis a single vertex the algorithm checks if it has an edge to itself. If the single vertex does nothave an edge to itself the MSCC is trivial. If the single vertex has an edge to itself or thenumber of vertices in the component is two or more the MSCC is non-trivial.The algorithm presented here is similar to [RT97]. The data structures used are simpler, butby modifying them and adding the lock-step search case of their algorithm, we would achievethe same running time.4.2 Data StructuresThe algorithm needs to keep track of bad vertices and into which MSCC di�erent verticesbelong to as the original MSCC may split into several MSCCs. It is also necessary to keeptrack of which fairness sets are present in the currently processed component. The notationin this section has been chosen in order to be consistent with [RT97].We use three global sets L, U and Badsets of size k which are implemented as a combinationof a stack and a bitmap. They require a one-time initialization which takes time O(k). Thisis done the �rst time the emptiness algorithm is called. With this implementation set mem-bership can be tested in O(1) time. Set union A := A [B, di�erence A := A n B, and setclear B := ; can be done in O(jBj) time.The data structure C(S) stores the component information and for each vertex the informationconcerning Li and Ui membership. It is implemented with a doubly linked list which containsthe vertices of the MSCC and their respective component numbers. From each node in thelist there are pointers to set lists which speci�es to which Li and Ui sets the vertex belongsto. These sets are referred to as L:setlist and U:setlist respectively.As the original component may split into several MSCCs during the run of the algorithm aqueue Q is kept where the di�erent components are stored. We de�ne the following operationsfor the data structure C(S): 6

Construct(S) initializes and returns the data structure C(S).Remove(C(S), B) removes B from S and returns C(SnB) for B � S � V .Bad(C(S)) returns S1�i�k S \ LijS \ Ui = ; for S � V .Lemma 1. The operation Construct(S) can be implemented with a running time of O(jSj).Proof. The given vertex list S is traversed. For each vertex an entry in the doubly linked listis created.Lemma 2. The operation Remove(C(S); B) can be implemented with a running time ofO(jBj).Proof. Traversing the given list of bad vertices, B, and removing each entry in C(S) takestime O(jBj).Lemma 3. The operation Bad(C(S)) can be implemented with a running time of O(jSj +bits(S)).Proof. Traverse the set lists of each vertex in C(S). Whenever a vertex is member of an Li setor a Ui set add the set number to L or U respectively. This takes time O(jSj+ bits(S)). Formthe set Badsets = LnU and reset L and U . This can be done in time O(min(k; bits(S)) =O(bits(S)). Add all vertices to a list of bad vertices for which L:setlist \BadSets 6= ;, resetBadsets and then return the list. This takes time O(jSj+ bits(S)) giving a total running timeof O(jSj+ bits(S)).We believe that the simple data structures we use for emptiness checking will use less memorythan the more sophisticated data structures of [RT97], and the fact that we do not requirethe predecessor relation for the reachability graph will compensate for the worse worst-caserunning time of our emptiness checking algorithm.Theorem 4. The emptiness algorithm will �nd a good component if it exists.Proof. The main loop of the algorithm maintains the invariant that all vertices are eitherbad, trivial or still in the queue. The algorithm initially puts all vertices in the queue. Avertex can leave only by being removed by the Remove function in the second while loop orby deemed as trivial. All other vertices are always put back in the queue. Hence the invariantholds and the algorithm will �nd a good component if it exists.Theorem 5. The running time of the algorithm without the Counterexample algorithm isO((m+ bits(V)) min(n; k))Proof. The total cost of the calls to Tarjan's algorithm is O(m min(n; k)) because beforeeach call at least one vertex and one fairness set has been taken care of. The same factormin(n; k) bounds the number of calls to Bad, Construct, Remove. Hence they contributeO((n+ bits(V)) min(n; k)) = O((m+ bits(V)) min(n; k)) to the running time giving a totalof O((m+ bits(V)) min(n; k)).Theorem 6. The memory usage of the emptiness algorithm is bounded by O(m+n+bits(V)+k) 7

proc Empty(S; k) �Queue Q1; Q2;List B;boolean change;InitSets(k); Initialize sets L, U, BadsetsC(S) := Construct(S);put(Q1; C(S));while (Q1 6= ;) doC(S) := get(Q1);change := false;while (B:=Bad(C(S)) 6= ;) doC(S) := Remove(C(S); B);change := true;odif (change AND C(S) 6= ;) then Tarjan(C(S); Q2); recalculate the MSCCsRemoveLargestMSCC (Q2);while Q2 6= ; doB := get(Q2);C(S) := Remove(C(S); B);put(Q1; Construct(B)));odput(Q1; C(S));else Good component found!if (NotTrivial(C(S)))Counterexample(C(S)); Generate a counterexamplereturn true;��odreturn false; No good component exists. Figure 1: The emptiness checking algorithmProof. The memory for representing the vertices and the edge information accounts for theterm n+m. The memory required for the C(S) data structure with the Streett set informationamounts to O(n + bits(V)). Finally the sets Badsets, L and U use O(k) memory giving atotal of O(n+m+ k + bits(V)).4.3 The Modi�ed MSCC searchThe MSCC are found by using a modi�ed version of Tarjan's algorithm [Tar72]. The algorithmis non-recursive and is based on a similar algorithm found in [Hel97]. It performs a search8

restricted to a particular C(S) component for greater e�ciency. When a MSCC is found thestates of that MSCC are stored in a list, which is put into a queue, Q2.4.4 The Counterexample AlgorithmGenerating a counterexample to the given property is very important to ease the location ofdesign errors. The counterexample algorithm given here produces a counterexample after theemptiness algorithm has passed it a good component. Finding a counterexample is non-trivialbecause the counterexample can be a cycle which contains several loops.The algorithm searches in a breadth-�rst manner from the MSCC entry vertex, which we willhenceforth refer to as the root, for a path back to the root. The path must of course satisfy therequirement that if there is a vertex vi 2 Ll in the path, the path must also include a vertexvj 2 Ul, for all 1 � l � k. As the breadth-�rst search spawns a path tree, one must choosewhich path to use. The algorithm freezes the path traversed to the current vertex when� the vertex belongs to an unseen Li set� the vertex belongs to an unseen Ui set corresponding to a previously encountered Li set.The traversed path is then printed from memory, the breadth-�rst search state is reset usinglogs and then search for the root can proceed. While the resetting adds to the running timeof the algorithm it allows one to minimize memory requirements because the algorithm onlykeeps at most one simple cycle of the path traversed in memory. The algorithm terminates if itreaches the root and the traversed path satis�es the requirements. To know when to terminate,the algorithm keeps track of the number of encountered Li sets for which the correspondingUi set has not been found using the variable unseenL.The function that determines whether to freeze the breadth-�rst search is called checkstate. Itreturns true if we are in a vertex v 2 Li, and no state belonging to Li has been seen before. Italso returns true if the vertex v belongs to an unseen Ui set for which a corresponding vertexu 2 Li has already been seen. The printing of the path from memory is done by lockpath(s).This function also marks all Ui sets in the locked path which have not been encountered beforeas seen Ui sets, and resets the breadth-�rst search state.An interesting special case occurs if the component contains no vertex for which v 2 S1;:::;k Li.In this case the search reduces to a simple breadth-�rst search for a path back to the root.This can be done in linear time and space. The path found is also optimal in the sense thatit involves the minimum number of vertices.Lemma 7. The Counterexample algorithm �nds the counterexample when given a goodcomponent with no vertex belonging to a Li set, and its running time is O(n+m).Proof. Because no vertex belongs to an Li set the algorithm will not reset. Hence it will �nd apath to the root, which is the counterexample and as the algorithm proceeds in a breadth-�rstmanner one can achieve the running time O(n+m).9

proc checkstate(s) �Set seen_L;Set seen_U ;boolean lockpath = false;integer unseen L;forall v 2 s:L:setlist do if (v =2 seen L) then seen L := seen L [fvglockpath := true;if (v =2 seen U) then unseen L++;��odforall v 2 s:U:setlist do if (v =2 seen U AND v 2 seen L) then unseen L��;lockpath := true;�odreturn lockpath;. Figure 2: The checkstate algorithm which determines when the BFS path is frozenLemma 8. The running time of checkstate(s) is O(bits(s)) for s 2 S.Proof. The function traverses the set list of the state and can in O(1) time check if a speci�cset has been taken care of. The time required for the traversal is O(bits(s)).Lemma 9. The running time of lockpath(s) is O(jSj+ bits(S))Proof. The function must reset the log storing the path, and go through the set lists of thevertices in the path and mark all unseen Li sets encountered as seen. This gives a runningtime of O(jSj+ bits(S)).Theorem 10. The Counterexample algorithm for the second case always �nds a counterex-ample when given a good component, and its running time is O((m+ bits(S)) min(n; k)).Proof. The algorithm stores the traversed path up to the reset. After the reset any state isagain visitable (the states are always reachable as we are traversing a MSCC). The algorithmwill always �nd a new si 2 Ll, or a corresponding sj 2 Ul after a reset because all states arereachable and visitable and a new reset will not be performed unless any of the above are foundor it enters the root and can terminate. Hence the algorithm will always �nd an acceptingpath given a good component. The algorithm performs min(n; 2k) resets in the worst case.Consequently the algorithm may have to traverse the graph and perform a checkstate at mostmin(n; 2k) times. This gives a total running time of O((n+m+ bits(S)) min(n; k)).10

proc Counterexample(C(S)) �Queue Q;state s; root; t;put(Q; root := root(C(S)));PrintPathTo(root);visit(root);while (Q 6= ;) dos := get(Q);if (checkstate(s)) then Do we freeze the BFS?lockpath(s); print path and reset the BFS state�forall t 2 succ in comp(s) do Check if we are doneif (t = root AND unseen Li = 0) then return ;�odforall t 2 succ in comp(s) do put the successors of the vertex in the queueif (:(visited(t)) then visit(t);put(Q; t);log_father(t); store the path�odod. Figure 3: The counterexample algorithm.The maximum length of the counterexample is n min(n; 2k). There is a variation of thealgorithm which always goes trough all Ui sets and hence generates a counterexample whichhas a maximum length of n min(n; k) [KPR98]. However, we suspect that in practice it wouldperform worse than the previously presented lazy algorithm. Deciding whether there exists acounterexample of length n, where n is the number of nodes is in fact NP-complete [CGMZ94](proof with a reduction from a Hamiltonian cycle problem).There a few papers which have included counterexample generation from an accepting com-ponent of a Streett automaton. Kesten, Pnueli and and Raviv [KPR98], present a non-lazyalgorithm compatible with BDDs, which in some cases may produce shorter counterexamples.However, as the algorithm always searches for all fairness sets it will in many cases producelonger counterexamples. Another paper which also presents a counterexample algorithm forStreett automata is [HSB94].Theorem 11. The memory usage of the counterexample algorithm is bounded by O(n+m+k + bits(S)).Proof. The functions lockpath and checkstate can use the same sets Bad, L and U for theirbookkeeping as the emptiness algorithm. Consequently the algorithm does not need additional11

data structures to those already created by the emptiness algorithm, except for a breadth-�rstsearch log and father log, which only incurs a linear penalty in the number of states n.5 ConclusionsIncluding both strong and weak fairness usually complicates model checking. Most methodsrequire that the strong fairness constraints are given in the properties to be checked [CVWY92,Kur94]. Giving the constrains in the system description is much more e�cient [KPR98]. Wehave presented a complete method of how to perform an on-the-�y veri�cation in an e�cientmanner when both weak and strong fairness assumptions are present in the system description.The method allows for faster error detection in some cases compared to methods relyingexclusively on the use of Streett automata. As counterexample generation is very importantfor debugging purposes, we also presented a new memory conservative algorithm for �ndingshort counterexamples when the formula to be veri�ed does not hold. To our knowledge thealgorithm should be both faster and produce shorter counterexamples in most cases thanpreviously existing algorithms.We have implemented the emptiness checking algorithm and the counterexample algorithmin Java(tm) and tested it with randomly generated SCCs. A complete verision of the modelchecking algorithm will be implemented in a new analyzer for Many-Sorted Petri Nets, Maria(http://www.tcs.hut.�/html/Maria.html).6 AcknowledgmentsThis research was funded by the National Technology Agency (former Technology develop-ment center of Finland, Tekes), Nokia Research Center, Helsinki Telephone Corporation andthe Finnish Rail Administration. The second author also gratefully acknowledges the �nan-cial support of Helsinki Graduate School on Computer Science and Engineering (HeCSE),the Academy of Finland (Project 8309), the Support Foundation of Helsinki University ofTechnology, and the Eemil Aaltonen Foundation.The authors also wish to thank Tommi Junttila for helpful criticisms and comments.

12

References[CGMZ94] E. Clarke, O. Grumberg, K. McMilllan and X. Zhao. E�cient Generation Coun-terexamples and Witnesses in Symbolic Model Checking. Technical Report TR CMU-CS-94-204, Carnegie Mellon University, School of Computer Science, Pittsburg, 1994.[CVWY92] C .Courcoubetis, M. Vardi, P. Wolper and M. Yannakakis.Memory-E�cient Al-gorithms for the Ver�cation of Temporal Properties. Formal Methods in System Design, vol1. pp. 275-288, 1992.[EL87] E.A. Emerson and C-L. Lei. Modalities for Model Checking: Branching Time LogicStrikes Back. Science of Computer Programming, vol. 8, no. 3, pp 275-306, 1987.[Fra86] N. Francez. Fairness. Springer Verlag, New York, 1986.[GPVW95] R. Gerth, D. Peled, M.Y. Vardi, and P. Wolper. Simple On-the-�y AutomaticVeri�cation of Linear Temporal Logic. Proceedings of the 15th Workshop on Protocol Spec-i�cation, Testing and Veri�cation, pp. 3-18. Chapman and Hall, Warsaw Poland, 1995.[Gri88] P. Gribomont. Temporal Logic, in: From Modal Logic to Deductive Databases (A.Thayse Ed.), pp. 165-234, John Wiley & Sons, Chichester, 1988.[Hel97] K. Heljanko. Model Checking the Branching Time Temporal Logic CTL. ResearchReport A45, Digital Systems Laboratory, Helsinki University of Technology, 1997.[HSB94] R. Hojati, V. Singhal and R.K. Brayton. Edge-Strett/ Edge-Rabin AutomataEnvironment for Formal Veri�cation Using Language Containment. Memorandum No.UCB/ERL M94/12, Electronics Res. Lab., Cory Hall, University of California, Berkeley,1994.[KPR98] Y. Kesten, A. Pnueli and L. Raviv. Algorithmic Veri�cation of Linear TemporalProperties. In K.G. Larsen, S. Skyum, and G. Winskel, editors, Proceedings of the 25thInternational Colloquium on Automata, Languages, and Programming (ICALP 1998), Lec-ture Notes in Computer Science, vol. 1443, pp. 1-16. Springer-Verlag, 1998.[Kur94] R.P. Kurshan. Computer-Aided Veri�cation of Coordinating Processes: TheAutomata-Theoretic Approach. Princeton University Press, Princeton, New Jersey, 1994.[LP85] O. Lichtenstein and A. Pnueli. Checking that �nite state concurrent programs satisfytheir linear speci�cations. Proc. 12th ACM Symp. Princ. of Prog. Lang., pp 97-107, 1985.[RT97] M. Rauch Henzinger, J. Telle. Faster Algorithms for the Nonemptiness of StreettAutomata and for Communication Protocol Pruning. Proceedings of the 5th ScandinavianWorkshop on Algorithm Theory(SWAT'96), pp. 10-20. 1997.[Saf89] S. Safra. Complexity of Automata on In�nite Objects, PhD Thesis, The WeizmannInstitute of Science, 1989.[SPH84] R. Sherman, A. Pnueli and D. Harel. Is the Interesting Part of Process Logic Unin-teresting: a Translation From PL to PDL. SIAM Journal on Computing, vol. 13, no. 4, pp.825-839, 1984. 13

[Tar72] R. Tarjan. Depth-First Search and Linear Graph Algorithms. SIAM Journal of Com-puting, vol. 1, no. 2, pp 146-160, 1972.[Tho97] W. Thomas. Languages, Automata and Logic, in: Handbook of Formal Languages(G. Rozenberg, A. Salomaa, Eds.). Vol III, pp. 385-455, Springer-Verlag, New York, 1997.[VW94] M.Y. Vardi, P. Wolper. Reasoning About In�nite Computations. Information andComputation, vol. 115, no. 1, pp. 1-37, 1994.

14

