
ByteCode 2011

LCT: An Open Source Concolic Testing Tool

for Java Programs 1

Kari Kähkönen, Tuomas Launiainen, Olli Saarikivi,
Janne Kauttio, Keijo Heljanko and Ilkka Niemelä

Department of Information and Computer Science
School of Science
Aalto University

PO Box 15400, FI-00076 AALTO, Finland
{Kari.Kahkonen,Tuomas.Launiainen,Janne.Kauttio,Keijo.Heljanko,

Ilkka.Niemela}@tkk.fi, Olli.Saarikivi@iki.fi

Abstract

LCT (LIME Concolic Tester) is an open source concolic testing tool for sequential Java programs.
In concolic testing the behavior of the tested program is explored by executing it both concretely
and symbolically at the same time. LCT instruments the bytecode of the program under test
to enable symbolic execution and collects constraints on input values that can be used to guide
the testing to previously unexplored execution paths. The tool also supports distributing the test
generation and execution to multiple processes that can be run on a single workstation or even on
a network of workstations. This paper describes the architecture behind LCT and demonstrates
through benchmarks how the distributed nature of the tool makes testing more scalable.

Keywords: Symbolic execution, concolic testing, constraint solving, bytecode instrumentation.

1 Introduction

Automated testing has the potential to improve reliability and reduce costs
when compared to manually written test cases. One such technique that
has recently received interest is concolic testing which combines concrete and
symbolic execution. Based on this technique, we have developed an open

1 Work financially supported by Tekes - Finnish Agency for Technology and Innovation,
Conformiq Software, Elektrobit, Nokia, Space Systems Finland, and Academy of Finland
(projects 126860, 128050 and 139402).

This paper is electronically published in the proceedings of
the 6th Workshop on Bytecode Semantics, Verification, Analysis and Transformation

URL: http://software.imdea.org/ pierreganty/bytecode2011/



Kähkönen et al

source tool called LCT (LIME Concolic Tester) that can automatically explore
different execution paths and generate test cases for sequential Java programs.

In this paper we give an overview of LCT and also demonstrate the dis-
tributed nature of the tool with benchmarks where several Java programs are
tested in a way that multiple instances of the program under test are concur-
rently taking part in the testing process.

The main improvements in LCT over existing Java concolic testing systems
such as jCUTE [10] are the following: (i) the use of bitvector SMT solver
Boolector [1] makes the symbolic execution of Java more precise as integers
are not considered unbounded, (ii) the twin class hierarchy [4] instrumentation
approach of LCT allows the Java core classes to be instrumented, (iii) the tool
architecture supports distributed testing; and (iv) the tool is freely available as
open source. Distributed constraint solving has been previously employed by
the Microsoft fuzzing tool SAGE [6] that uses a distributed constraint solver
Disolver while LCT uses a non-distributed constraint solver but can work on
several branches of the symbolic execution tree in parallel.

The rest of the paper is structured as follows. Section 2 briefly describes
the algorithm behind concolic testing, Section 3 gives an overview of LCT and
Sect. 4 discusses the experiments that have been done with the tool.

2 Concolic Testing

Concolic testing [5,11,2] is a method where a given program is executed both
concretely and symbolically at the same time in order to explore the differ-
ent behaviors of the program. The main idea behind this approach is to, at
runtime, collect symbolic constraints on inputs to the system that specify the
possible input values that force the program to follow a specific execution path.
Symbolic execution of programs is typically made possible by instrumenting
the system under test with additional code that collects the constraints with-
out disrupting the concrete execution. For a different approach that uses a
non-standard interpreter of bytecode instead of instrumentation, see Symbolic
Java PathFinder [9].

Concolic testing starts by first executing a program under test with any
concrete input values. The execution of the program can branch into different
execution paths at branching statements that depend on input values. When
executing such statements, concolic testing constructs a symbolic constraint
that describes the possible input values causing the program to take the true
or false branch at the statement in question. A path constraint is a conjunc-
tion of these symbolic constraints and new test inputs for the subsequent test
runs are generated by solving them. Typically this is done by using SMT
(Satisfiability-Modulo-Theories) solvers with integer arithmetic or bit-vectors
as the underlying theory. By continuing this process, concolic testing can

2



Kähkönen et al

Fig. 1. The architecture of LCT

attempt to explore all distinct execution paths of the given program. These
execution paths can be expressed as a symbolic execution tree which is a struc-
ture where each path from root to a leaf node represents an execution path
and each leaf node has a path constraint describing the input values that force
the program to follow that specific path.

The concrete execution in concolic testing provides the benefit that it
makes available accurate information about the program state which might
not be easily accessible when using only static analysis and allows the program
to contain calls to uninstrumented native code libraries as symbolic values can
always be approximated with concrete ones. Furthermore, as each test is run
concretely, concolic testing reports only real bugs.

3 Tool Details

The architecture of LCT is shown in Figure 1 and it can be seen as consisting
of three main parts: the instrumenter, the test selector and the test execu-
tors. To test a given program, the input locations are first marked in the code
using methods provided by LCT. For example, int x = LCT.getInteger()

generates an int type input value for x. After the input variables have been
marked in the program, it is given to the instrumenter that enables symbolic
execution by instrumenting the program using a tool called Soot [12]. The
resulting program is called test executor. The test selector constructs a sym-
bolic execution tree based on the constraints collected by the test executors
and selects which path in the symbolic execution tree is explored next. The
communication between the test selector and test executors is implemented
using TCP sockets. This way it is easy to distribute the testing process. LCT
reports uncaught exceptions as defects and the executed tests can also be

3



Kähkönen et al

archived as a test suite for offline testing.

LCT provides the option to use Yices [3] or Boolector [1] as a constraint
solver. LCT uses linear integer arithmetic to encode the constraints when
Yices is used and bit-vectors are used with Boolector. LCT has support for
all primitive data types in Java as symbolic inputs with the exception of float
and double data types as there is no native support for floating point variables
in the used constraint solvers. LCT can also generate input objects that have
their fields initialized as new input values in a similar fashion to [10].

3.1 Performing Symbolic Execution

To form symbolic constraints, it is necessary to know for each variable its
symbolic value in addition to the concrete value. To track the symbolic values,
LCT maintains a mapping from variables to their symbolic values. To update
these memory maps and to construct path constraints, LCT follows closely
the approach described in [5,10]. Every assignment statement in the program
is instrumented with symbolic statements to update the symbolic memory
maps. Every branching statement must also be instrumented with statements
that create the symbolic constraints for both resulting branches so that the
necessary path constraints can be constructed. A more detailed description of
the instrumentation process can be found in [7].

The test selector maintains a symbolic execution tree based on the sym-
bolic constraints generated by the test executors. LCT supports multiple
strategies such as depth-first, breadth-first and randomized searches to ex-
plore the tree. For each test run, the test selector chooses an unexplored path
from the symbolic execution tree. To explore this path, the test server sends
the path constraint to a text executor that solves the constraint and uses the
resulting values for a new test run. This way constraint solving is not done in
a single centralized place which could cause a performance bottleneck.

3.2 Limitations

LCT has been designed for sequential Java programs. Multi-threading sup-
port is currently under development and will be released soon in version 2.0.
There are also some cases where LCT can not obtain full path coverage for
supported Java programs. LCT is not able to do any symbolic reasoning if the
control flow of the program goes to a library that has not been instrumented
(e.g., calling a library that has been implemented in a different programming
language). Instrumenting Java core classes can also be problematic, therefore
we have implemented custom versions of some of the most often required core
classes to alleviate this problem. The program under test is then automat-
ically modified to use the custom versions of these classes instead of their
original counterparts. This approach can be seen as an instance of the twin

4



Kähkönen et al

Runtimes / Speedups

Benchmark Paths 1 test executor 10 test executors 20 test executors

AVL tree 3840 16m 57s 2m 6s / 8.1 1m 8s / 15.0

Quicksort (5 elements) 541 3m 11s 21s / 5.2 13s / 8.4

Quicksort (6 elements) 4683 28m 22s 3m 29s / 8.1 1m 39s / 17.2

Greatest common divisor 2070 11m 12s 1m 13s / 9.2 38s / 17.7

Table 1
Results of the experimental evaluation of the distributed architecture of LCT.

class hierarchy approach presented in [4].

LCT also does a similar non-aliasing assumption as the jCUTE tool. The
code “a[i] = 0; a[j] = 1; if (a[i] != 0) ERROR;” is an example of this.
LCT assumes that the two writes do not alias and, thus, does not generate
constraint i = j required to reach the ERROR label.

4 Experiments

We have evaluated LCT (version 1.1.0) and its distributed architecture by
testing multiple Java programs so that varying number of test executors were
running concurrently. The tests included: AVL tree (http://cs-people.bu.
edu/mullally/cs112/code/GraphicalAvlTree.java), Quick sort (http://
users.cis.fiu.edu/~weiss/dsaajava/code/DataStructures/) and Great-
est common divisor (GCD) (http://commons.apache.org/). For AVL tree a
test driver was used that called either add or remove methods nondeterminis-
tically with an integer marked as the input to the methods for five times. For
Quick sort the test driver used the algorithm to sort a fixed size array of in-
put integers and checked afterwards that the array had been sorted correctly.
Finally, for GCD the test driver called the algorithm with integer inputs that
were limited to be between 0 and 50.

The results of our experimental evaluation are shown in Table 4 that shows
the number of execution paths explored, total run-times and speedups com-
pared to running only one test executor. The computers used in the experi-
ments had Intel Core 2 Duo processors running at 1.8 GHz together with 2 GB
of RAM. For single test executor cases, the test selector and executor were run
on the same machine. In our test environment, it made negligible difference
whether this single test executor was run on the same or different machine as
the test selector. For cases with multiple test executors, each computer was
used to run two test executors at the same time while the test server was run
on a separate computer (i.e., the test selector was able to utilize two cores).
As the results show, LCT is able to take advantage of the increased resources
efficiently with speedups ranging from 8.4 to 17.7 in the 20 test executor case.
This is because individual test runs are highly independent. We have also

5

http://cs-people.bu.edu/mullally/cs112/code/GraphicalAvlTree.java
http://cs-people.bu.edu/mullally/cs112/code/GraphicalAvlTree.java
http://users.cis.fiu.edu/~weiss/dsaajava/code/DataStructures/
http://users.cis.fiu.edu/~weiss/dsaajava/code/DataStructures/
http://commons.apache.org/


Kähkönen et al

used LCT to compare it with random testing in the context of Java Card ap-
plets. In this experiment LCT was used on a large number of mutants of the
program under test. Further details of this experiment can be found in [8].

5 Conclusions

This paper introduces the LCT tool that is available together with source code
and user guide from: http://www.tcs.hut.fi/Software/lime/ as part of
the LIME Interface Test Bench. We have demonstrated how the distributed
nature of the tool makes concolic testing more scalable. We are currently
adding support for the C language and multi-threaded Java programs to LCT.

References

[1] Brummayer, R. and A. Biere, Boolector: An efficient SMT solver for bit-vectors and arrays, in:
Proceedings of the 15th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS 2009), Lecture Notes in Computer Science 5505 (2009), pp.
174–177.

[2] Cadar, C., V. Ganesh, P. M. Pawlowski, D. L. Dill and D. R. Engler, EXE: automatically
generating inputs of death, in: Proceedings of the 13th ACM conference on Computer and
communications security (CCS 2006) (2006), pp. 322–335.

[3] Dutertre, B. and L. de Moura, A Fast Linear-Arithmetic Solver for DPLL(T), in: Proceedings
of the 18th International Conference on Computer Aided Verification (CAV 2006), Lecture
Notes in Computer Science 4144 (2006), pp. 81–94.

[4] Factor, M., A. Schuster and K. Shagin, Instrumentation of standard libraries in object-
oriented languages: The twin class hierarchy approach, in: Proceedings of the 19th Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA 2004) (2004), pp. 288–300.

[5] Godefroid, P., N. Klarlund and K. Sen, DART: Directed automated random testing, in:
Proceedings of the ACM SIGPLAN 2005 Conference on Programming Language Design and
Implementation (PLDI 2005) (2005), pp. 213–223.

[6] Godefroid, P., M. Y. Levin and D. A. Molnar, Automated whitebox fuzz testing, in: Proceedings
of the Network and Distributed System Security Symposium, NDSS 2008 (2008), pp. 151–166.

[7] Kähkönen, K., Automated test generation for software components, Technical Report TKK-
ICS-R26, Helsinki University of Technology, Department of Information and Computer Science,
Espoo, Finland (2009).

[8] Kähkönen, K., R. Kindermann, K. Heljanko and I. Niemelä, Experimental comparison of
concolic and random testing for Java Card applets, in: J. van de Pol and M. W. 0002, editors,
SPIN, Lecture Notes in Computer Science 6349 (2010), pp. 22–39.

[9] Pasareanu, C. S., P. C. Mehlitz, D. H. Bushnell, K. Gundy-burlet, M. Lowry, S. Person
and M. Pape, Combining unit-level symbolic execution and system-level concrete execution
for testing NASA software, in: ISSTA, 2008, pp. 179–180.

[10] Sen, K., “Scalable automated methods for dynamic program analysis,” Doctoral thesis,
University of Illinois (2006).

[11] Sen, K. and G. Agha, CUTE and jCUTE: Concolic unit testing and explicit path model-checking
tools, in: Proceedings of the 18th International Conference on Computer Aided Verification
(CAV 2006), Lecture Notes in Computer Science 4144 (2006), pp. 419–423, (Tool Paper).

[12] Vallée-Rai, R., P. Co, E. Gagnon, L. J. Hendren, P. Lam and V. Sundaresan, Soot - a Java
bytecode optimization framework, in: Proceedings of the 1999 conference of the Centre for
Advanced Studies on Collaborative Research (CASCON 1999) (1999), p. 13.

6

http://www.tcs.hut.fi/Software/lime/

	Introduction
	Concolic Testing
	Tool Details
	Performing Symbolic Execution
	Limitations

	Experiments
	Conclusions
	References

