
Experimental Comparison of Concolic and Random
Testing for Java Card Applets?

Kari Kähkönen, Roland Kindermann, Keijo Heljanko, and Ilkka Niemelä

Aalto University, Department of Information and Computer Science
P.O. Box 15400, FI-00076 AALTO, Finland

{Kari.Kahkonen, Roland.Kindermann, Keijo.Heljanko,
Ilkka.Niemela}@tkk.fi

Abstract. Concolic testing is a method for test input generation where a given
program is executed both concretely and symbolically at the same time. This pa-
per introduces the LIME Concolic Tester (LCT), an open source concolic testing
tool for sequential Java programs. It discusses the design choices behind LCT as
well as its use in automated unit test generation for the JUnit testing framework.
As the main experimental contribution we report on an empirical evaluation of
LCT for testing smart card Java applets. In particular, we focus on the problem
of differential testing, where a Java class implementation is tested against a ref-
erence implementation. Two different concolic unit test generation approaches
are presented and their effectiveness is compared with random testing. The ex-
periments show that concolic testing is able to find significantly more bugs than
random testing in the testing domain at hand.

1 Introduction

This paper discusses the use of concolic testing [1–6] to generate tests for Java ap-
plets written for the Sun Java Card platform [7, 8]. In particular, we consider a new
open source concolic testing tool we have developed called the LIME Concolic Tester
(LCT) which is included in the LIME test bench toolset (http://www.tcs.hut.
fi/Research/Logic/LIME2/). The tool can automatically generate unit test data
and also stub code needed for unit testing in the JUnit testing framework. The main im-
provements in LCT over existing Java concolic testing systems such as jCUTE [2] are
the following: (i) the use of state-of-the art bitvector SMT solvers such as Boolector [9]
make the symbolic execution of Java more precise, (ii) the twin class hierarchy instru-
mentation approach of LCT allows the Java base classes to be instrumented unlike in
previous approaches such as jCUTE, (iii) the tool architecture supports distributed test-
ing where the constraint solving is done for several tests in parallel in a distributed man-
ner, (iv) the tool is integrated with runtime monitoring of interface specifications [10]
and the runtime monitors are used to guide the test generation order; and (v) the tool is
freely available as open source. Distributed constraint solving has been previously em-
ployed by the Microsoft Whitebox fuzzing tool SAGE [11, 12] that uses a distributed
? Work financially supported by Tekes - Finnish Funding Agency for Technology and Innova-

tion, Conformiq Software, Elektrobit, Nokia, Space Systems Finland, and Academy of Finland
(projects 126860 and 128050).



constraint solver Disolver while LCT uses a non-distributed constraint solver but can
work on several branches of the symbolic execution tree in parallel.

We are interested in testing embedded software and, in particular, Java Card applets.
In this paper we focus on the following differential testing scenario. An applet is being
developed and a set of modifications has been made to it that should not change its class
behavior, i.e., method calls to classes should behave as in the original version. Such
modifications could be optimizations, changes in the internal data structures, refactor-
ing of the code, clean ups removing redundant code etc. Hence, we have two versions
of the same class which we call the reference implementation (the original version) and
the implementation under test IUT (the modified version). Now the problem is to test
whether the reference implementation and IUT have the same class behavior. In prac-
tice, the testing process starts by identifying modified classes and then it boils down to
treating each modified class as an IUT and testing it against the corresponding origi-
nal class taken as the reference implementation. Random testing techniques are often
quite successful in such unit testing settings. In this paper we study how concolic test-
ing and, in particular, the LCT tool can be used for this testing scenario. We develop
two approaches to using concolic testing for checking whether an IUT of a class has
the same class behavior as its reference implementation. Then we study experimentally
how well the test sets generated by LCT using concolic testing techniques are able to
detect differences in class behavior when compared to random testing.

The main contribution of this paper is the experimental work comparing the con-
colic testing approach to random automated testing. The context is Java Card applets
designed for the Java Card smart card platform. In the experiments we compare the bug
detection capabilities of both concolic and random testing by using a smart card appli-
cation called the Logical Channel Demo [8] as the reference implementation. In order
to provide a sufficient number of buggy implementations to serve as IUTs in the exper-
iments, a Java source code mutant generator tool is used to provide mutated versions
of the reference implementation. The experimental setup consists of a large number
of experiments where a buggy mutated implementation is tested against the reference
implementation. The results clearly show that the concolic testing approach is more
effective in finding bugs than random testing.

There has been significant earlier work in experimentally evaluating concolic test-
ing [1–6]. Hybrid concolic testing [13] interleaves random testing with concolic exe-
cution, and the experiments in [13] report on four times higher branch coverage with
hybrid concolic testing compared to random testing on red-black trees and on the text
editor vim. Experimental research on Whitebox fuzz testing efficiency [14, 11, 12] have
used quite a different experimental test setup than we have in this paper and, thus, the
results are hard to directly compare. However, also in the Whitebox fuzz testing context
techniques based on symbolic execution techniques seem to be able to find many bugs
missed by fully randomized testing.

The structure of the rest of this paper is as follows. Section 2 introduces concolic
testing while the design choices done in the design of the LCT concolic testing tool are
discussed in Sect. 3. Section 4 introduces differential testing, a method for comparing
the behavior of two implementations of a class, and describes how LCT can be used for



differential testing. Section 5 discusses our experimental setup for applying differential
testing to Java Card applets. Finally, Sect. 6 sums up the paper.

2 Concolic Testing

Concolic testing [1–6] (also known as dynamic symbolic execution) is a method for test
input generation where a given program is executed both concretely and symbolically
at the same time. In other words, the test inputs are generated from a real executable
program instead of a model of it. The main idea behind this approach is to at runtime
collect symbolic constraints on inputs to the system that specify the possible input val-
ues that force the program to follow a specific execution path. Symbolic execution of
programs is made possible by instrumenting the system under test with additional code
that collects the constraints without disrupting the concrete execution.

In concolic testing, each variable that has a value depending on inputs to the pro-
gram has also a symbolic value associated to it. When a sequential program is executed,
the same execution path is followed regardless of the input values until a branching
statement is encountered that selects the true or false branch based on some variable
that has a symbolic value. Given the symbolic value of this variable, it is possible to
reason about the outcome of the statement symbolically by constructing a symbolic
constraint. This constraint describes what the possible input values are that cause the
program to take the true or false branch at the statement in question. A path constraint
is a conjunction of symbolic constraints that describes the input values that cause the
concrete execution to follow a specific execution path.

In concolic testing the program under test is first executed with concrete random
input values. During this test run, symbolic execution is used to collect the path con-
straints expressed in theory T for each of the branching statements along the execution.
These collected constraints are used to compute new test inputs to the program by us-
ing off-the-shelf constraint solvers. Typical solvers used in concolic testing are SMT
(Satisfiability-Modulo-Theories) solvers such as Yices [15], Boolector [9] and Z3 [16]
and typical theories include linear integer arithmetic and bit-vectors. The new test in-
puts will steer the future test runs to explore previously untested execution paths. This
means that concolic testing can be seen as a method that systematically tests all the
distinct execution paths of a program. These execution paths can be expressed as a
symbolic execution tree which is a structure where each path from root to a leaf node
represents an execution path and each leaf node has a path constraint describing the
input values that force the program to follow that specific path.

The concrete execution in concolic testing brings the benefit that it makes avail-
able accurate information about the program state which might not be easily accessible
when using only static analysis. It is possible to under-approximate the set of possible
execution paths by using concrete values instead of symbolic values in cases where
symbolic execution is not possible (e.g., with calls to libraries to which no source code
is available). Furthermore, as each test is run concretely, concolic testing does not report
spurious defects.



Fig. 1. The architecture of LCT

3 LIME Concolic Tester

The LIME Concolic Tester (LCT) is an open source test input generator for Java pro-
grams that is based on concolic testing. It takes a sequential Java program that has been
compiled into bytecode as input and generates tests that attempt to cover all the exe-
cution paths of the program. LCT supports multiple search strategies which affect the
order in which the execution paths are explored. During the testing process uncaught
exceptions are reported as defects.

LCT is a part of the LIME Interface Test Bench developed in the LIME project
(http://www.tcs.hut.fi/Research/Logic/LIME2). In the LIME project
an interface specification language and the supporting LIME Interface Monitoring Tool
(LIMT) [17] have also been developed and LCT allows the monitoring tool to guide the
testing process in order to cover the specifications quickly. More details of this is given
in Sect. 3.4.

As different test runs do not depend on each other, the problem of generating test
inputs is easily parallelized. LCT takes advantage of this fact by having a separate
test server that receives the symbolic constraints from the instrumented programs and
selects which unexplored execution paths are tested next. This allows the tool to take
advantage of multi-core processors and networks of computers.

The rest of this section discusses the implementation of LCT in more detail.

3.1 Architectural Overview

The architecture of LCT is shown in Figure 1 and it can be seen as consisting of three
main parts: the instrumenter, the test selector and the test executors which are also used



to run the constraint solvers in a distributed fashion. The instrumenter is based on a tool
called Soot [18] which can be used to analyze and transform Java byte code. Before a
program is given to the instrumenter, the input locations in the source code are marked
so that the instrumenter knows how to transform the code. LCT provides a static class
that is used for this in the following fashion:

– int x = LCT.getInteger() gets an int type input value for x, and
– List l = LCT.getObject("List") indicates that l is an input object.

After the input variables have been marked in the source code, the program is given
to the instrumenter that transforms the code into an intermediate representation called
Jimple and adds the statements necessary for symbolic execution into it. When the
instrumentation is finished, the code is transformed into byte code that can be run over
a standard Java Virtual Machine. This modified version of the program is called test
executor. To guarantee that every test execution terminates, the length of the concrete
execution is limited by a user configurable depth limit.

The test selector is responsible for constructing a symbolic execution tree based on
the constraints collected by the test executors and selecting which path in the symbolic
execution tree is explored next. The communication between the test selector and test
executors has been implemented using TCP sockets. This way the test selector and
test executors can run on different computers, and it is easy to run new test executors
concurrently with others. The test selector can use various search strategies for selecting
the next execution path to be explored. It is also possible to use LCT in a random mode,
where no symbolic execution tree is constructed and the input values are generated
completely randomly.

LCT provides the option to use Yices [15] or Boolector [9] as its constraint solver.
In case of Yices, LCT uses linear integer arithmetic to encode the constraints and in
the case of Boolector, bit-vectors are used. LCT has support for all primitive data types
in Java as symbolic inputs with the exception of float and double data types as there
is no native support for floating point variables in the used constraint solvers. We are
currently targeting embedded software with limited data type support and better han-
dling of complex data is part of future research. At the moment LCT can generate input
objects that have their fields initialized as new input values in a similar fashion to [2].

3.2 Instrumentation

After the input locations have been marked in the source code, adding the code for
symbolic execution to a given program can be made in a fully automatic fashion. To
unit test a method, the user can, for example, write a test driver that calls the method
to be tested with symbolic input values. LCT also supports generating such test drivers
automatically not only for unit testing of methods but also for testing interfaces of
classes through sequences of method calls.

To execute a program symbolically every statement that can read or update a vari-
able with its value depending on the inputs must be instrumented. The approach taken
in LCT is to instrument all statements that could operate on symbolic inputs regard-
less of whether a statement operates only with concrete values during test runs or not.



This means that a majority of the lines in the code will be instrumented. LCT uses the
Soot framework [18] to first translate the program under test to an intermediate lan-
guage which is then modified and transformed back into bytecode. A similar approach
is taken in jCUTE [3].

To make symbolic execution possible, it is necessary to know for each variable the
associated symbolic expression during execution. For this reason we use a symbolic
memory S that maps primitive type variables and object references to symbolic expres-
sions. We also need to construct the path constraints for unexplored execution paths.
The approach taken in LCT to construct the memory map and path constraints follows
closely that described in [1, 2]. To update the symbolic memory map, every assignment
statement in the program is instrumented. At assignment of type m = e, where e is an
expression, the symbolic value S(e) is constructed and the mapping S(m) is updated
with this value. In case of new input values, m = INPUT, a new symbolic value is
assigned to S(m). Every branching statement, e.g., if(p), must also be instrumented.
Symbolic evaluation of p and its negation are the symbolic constraints that are used to
construct the necessary path constraints. A more detailed description of the instrumen-
tation process can be found in [19].

3.3 Search Strategies

The LCT tool contains a number of search strategies to control the exploration order
of the different branches of the symbolic execution tree. The techniques are traditional
depth-first and breadth-first search, priority based search using heuristic values obtained
from the runtime monitors written in the LIME interface specification language, as well
as randomized search. As this paper focuses on test generation methods that explore
the full symbolic execution tree, the order in which branches are explored makes little
difference; hence, we do not discuss these strategies here. Further details can be found
in [19].

3.4 Test Generation for Programs with Specifications

The described concolic testing method reports uncaught exceptions as errors (i.e., it
generates tests to see if the program can crash). This testing approach can be greatly
enhanced if it is combined with runtime monitoring to check if given specifications hold
during the test runs. In the LIME project a specification language has been developed
together with a runtime monitoring tool [10] that allows the user to use propositional
linear temporal logic (PLTL) and regular expressions to specify both external usage and
internal behavior of a software component [10, 17].

The LIME interface specification language allows the user to write specifications
that are not complete models of the system and to target the specifications to those parts
of the systems that are seen as important to be tested. Also, the specifications provide
additional information about the system that could be used to indicate when the pro-
gram is close to a state that violates the specifications. We have extended the concolic
testing method to take the LIME interface specifications into account so that the testing
can be guided towards those execution paths that cause specifications to be monitored



and especially towards those paths that can potentially cause the specifications to be
violated.

To guide the concolic testing, the LIME Interface Monitoring Tool (LIMT) [10, 17]
has been extended to compute a heuristic value to indicate how close the current execu-
tion is to violating the monitored specifications. In LCT the instrumentation described
earlier has been augmented with a call to LIMT to obtain the heuristic value at every
branching statement where a symbolic constraint is constructed. The test input selector
is then notified about the heuristic value and it can use the value to assign a priority to
the unvisited node resulting from executing the branching statement. Further details can
be found in [19].

3.5 Generating JUnit Tests

LCT also provides the possibility to generate JUnit tests based on the input values
generated during concolic testing. The support for JUnit tests is limited to unit testing
methods that take argument values that can be generated by LCT. To generate JUnit tests
for a selected method, LCT first creates automatically a test driver that calls the method
with input values computed by LCT. The generated input values are then stored and
used to generate JUnit tests that can be executed even without LCT. It is also possible
to generate a test driver for an interface. In this case LCT generates a test driver that
calls nondeterministically methods of that interface with symbolic input arguments. The
number of calls is limited by an user specified call sequence bound.

3.6 Limitations

The current version of LCT has been designed for sequential Java programs and multi-
threading support is currently under development. Sometimes LCT can not obtain full
path coverage for supported Java programs. This can happen in the following situations:
(i) Non-instrumented code: LCT is not able to do any symbolic reasoning if the control
flow of the program goes to a library that has not been instrumented. This is possi-
ble, for example, when libraries implemented in a different programming language are
called. To be able to instrument Java core classes, we have implemented custom ver-
sions of some of the most often required core classes to alleviate this problem. The
program under test is then automatically modified to use the custom versions of these
classes instead of the original counterpart. This approach can be seen as an instance of
the twin class hierarchy approach presented in [20]. (ii) Imprecise Symbolic reasoning:
Symbolic execution is limited by the ability of constraint solvers to compute new input
values. LCT does not currently collect constraints over floating point numbers. LCT
also does an identical non-aliasing assumption which the jCUTE tool does as well.
The code “a[i] = 0; a[j] = 1; if (a[i] == 0) ERROR;” is an example
of this. LCT assumes that the two writes do not alias and, thus, does not generate con-
straint i = j required to reach the ERROR label; (iii) Nondeterminism: LCT assumes
that the program under test and the libraries it uses are deterministic.



4 Differential Testing

Often, a software developer modifies source code in situations where the behavior of the
code should not change, e.g., when cleaning up or refactoring code or when implement-
ing a more optimized version of a given piece of code. Differential testing (terminology
strongly influenced by [21]) is a technique that searches for differences in the behavior
between the original code and the code after such modifications.

The basic idea behind differential testing is to compare the externally visible be-
havior of two implementations of the same class. Usually one of the implementations,
called the reference implementation, is trusted to be correct. The task is then to test,
whether the other implementation, called implementation under test (IUT), is correct as
well by searching for differences in the behaviors of the two implementations.

For comparing the behaviors of two implementations, a black-box notion of class
equivalence is used. Only the externally observable behavior of method calls is consid-
ered. Thus, two method calls are defined to have equivalent behavior if the following
conditions are fulfilled:

1. Either both calls throw an exception or neither of them throws an exception.
2. If neither call throws an exception, they return equivalent values.
3. If both methods throw an exception, they throw equivalent exceptions.

The exact definition of equivalence of return values and exceptions may depend on the
context in which differential testing is used. For example, return values in Java could be
compared using the equals method. Sometimes, however, this notion of equivalence
might be insufficient. Floating point values, for instance, could be considered equivalent
even if they are not exactly the same as long as their difference is small enough. The
definition of equivalent behavior used in this work only takes return values and thrown
exceptions into account. In a more general setting, also other effects of methods calls
that can be observed from the outside, like modified static variables, fields of the class
that are declared public or method arguments that are modified, could be compared as
well for a more refined notion of behavioral equivalence.

Two sequences of method calls to a class are considered to show equivalent class
behavior if the behavior of the nth call in one sequence is equivalent to the behavior
of the nth call in the other sequence. Two implementations of a class are considered
to be class behavior equivalent if every sequence of method calls on a fresh instance
of one of the implementations shows equivalent class behavior as the same sequence
of method calls on a fresh instance of the other implementation. Determining whether
two classes are class behavior equivalent is quite challenging as very long sequences
of method calls might be needed to show non-equivalent behavior of the classes. In
order to circumvent this difficulty, the notion of k-bounded class behavior equivalence
is introduced. Two implementations of a class are considered to be k-boundedly class
behavior equivalent if every sequence of at most k calls on a fresh instance of one of
the implementations shows equivalent class behavior as the same sequence of calls on
a fresh instance of the other implementation.

In the following, two concolic-testing-based and one random-testing-based tech-
nique for checking for bounded class behavior equivalence are introduced. All three



approaches are symmetric in the sense that they treat the IUT and the reference imple-
mentation in the same way.

Decoupled differential testing The basic idea behind using LCT for checking a pair
of an IUT and an reference implementation for k-bounded class behavior equivalence
is to let LCT generate sequences of method calls of length k and compare the behavior
of the IUT and the reference implementation based on those sequences of method calls.
The most obvious way to do this is to let LCT generate a test set for the IUT and another
one for the reference implementation independently. Each test in the test sets consists
of a sequence of method calls that can then be used for comparing the behavior of the
IUT and the reference implementation. As LCT in this approach generates test sets for
the IUT and the reference implementation individually, this approach is referred to as
decoupled differential testing.

LCT is in the first step of the decoupled differential testing approach used to gener-
ate two test sets with call sequence bound k – one for the IUT and one for the reference
implementation. Each test generated in this way consists of a sequence of methods calls
to one of the implementations. The tests, however, do not evaluate the behavior of the
method calls in any way. In the second step, the tests are therefore modified. Each test
in the test set for the IUT is modified in a way such that each method that is executed on
the IUT is executed on the reference implementation as well and an exception is thrown
if and only if the behaviors of such a pair of method calls are non-equivalent. Calls to
methods of the IUT are added to the test set of the reference implementation in the same
way. In the last step of the decoupled differential testing approach, these modified tests
are executed and an error is reported if any test signals non-equivalent behaviors.

In the decoupled differential testing approach, test sets for both the IUT and the
reference implementation are generated. It would also be possible to only generate and
use tests for either the IUT or the reference implementation. This approach, however,
would make it quite likely that some classes of errors are missed. The developer of the
IUT might, for instance, have forgotten that some input values need special treatment.
In such a case, the if condition testing for these special values would be missing in
the IUT and the LCT could achieve full path coverage without ever using any of the
special input values, which would result in the described bug not being found by the
generated test set. Therefore, a bug can easily be missed when only the test set for
the IUT is used while it is found if the test set for the reference implementation is
included, assuming the LCT reaches full path coverage when generating the test set for
the reference implementation. A bug introduced by a developer who adds optimizations
specific to a limited range of special input values could for similar reasons be missed if
only the test set for the reference implementation but not the one for the IUT is used.

The main disadvantage of decoupled differential testing is that there may be situa-
tions in which non-equivalent behavior remains undetected even if full path coverage is
reached on both the IUT and the reference implementation. A simple example of such
a situation is a method that takes one integer argument and returns that argument in the
reference implementation but returns the negation of the argument in the IUT. This dif-
ference in class behavior does not show if the method is called with zero as argument.
Still, LCT can reach full path coverage on both implementations without using any other



argument than zero. Thus, the non-equivalent behavior may remain undetected even if
LCT reaches full path coverage on both implementations. This motivates coupled dif-
ferential testing, which circumvents the described issue by checking for non-equivalent
behaviors in the code that is instrumented and run by LCT.

Coupled differential testing In the coupled differential testing approach, LCT is di-
rectly run on a class that compares the behavior of the IUT and the reference implemen-
tation. This comparison class has one instance each of the IUT and the reference imple-
mentation and has one method for every externally visible method of the IUT and the
reference implementation. Each method in the comparison class calls the correspond-
ing methods in the IUT, and the reference implementation, compares their behaviors
and throws an exception if and only if they are not equivalent. Therefore, a sequence
of method calls on the comparison class can be executed without an exception being
thrown if and only if the IUT and the reference implementation show equivalent class
behavior for this sequence of calls.

The comparison class is generated in the first step of the coupled differential testing
approach. LCT is then used in the second step to generate a test set for the comparison
class. Finally, the tests are executed and non-equivalent behavior is reported if any of
the tests in the test set throws an exception. Thus, the main difference between coupled
and decoupled differential testing is, that the behavior comparison code is added before
LCT is run in the coupled differential testing approach while it is added after LCT is
run in the decoupled differential testing approach.

An advantage of coupled differential testing is that non-equivalent behavior of the
IUT and the reference implementation is reflected in the control flow of the code in-
strumented and run by LCT. If the reference implementation and the IUT show non-
equivalent behavior, then the control flow eventually reaches the location in the com-
parison class at which the “non-equivalent behavior”-exception is thrown. If there is any
sequence of method calls of length k that leads to this location, then LCT generates a
test that reaches the location if full path coverage is reached and the call sequence bound
used in the test generation is at least k. This implies that, any sequence of calls leading
to non-equivalent behavior is guaranteed to be found by coupled differential testing as
long as LCT reaches full path coverage and the call sequence bound is sufficiently large.
As said before, such a guarantee can not be given for decoupled differential testing.

Random differential testing LCT can be used in random mode to explore random ex-
ecution paths. In the random differential testing approach LCT is used to generate a set
of random tests, i.e., JUnit tests that execute random sequences of methods with random
arguments, for the reference implementation. These random tests are then modified to
compare behaviors of calls in the same way as the tests in decoupled differential testing.
Alternatively, random tests could be generated for the IUT or even for the comparison
class used in coupled differential testing. As both of theses approaches, however, com-
pare the IUT and the reference implementation based on random call sequences, they
lead to comparable results.



5 Experiments

LCT was experimentally evaluated by running LCT-based differential testing on Java
Card example code called Logical Channels Demo [8] and a number of slightly mu-
tated versions of that code. A short introduction to the Java Card technology and a
description of the Logical Channels Demo is given in Sect. 5.1. LCT was used to check
different implementations of the Logical Channels Demo for bounded class equivalence
using the methods described in Sect. 4. The original version of the Logical Channels
Demo was used as the reference implementation and mutated versions of the Logical
Channels Demo that show different class behavior were used as IUTs. A mutation gen-
erator called µJava [22] was used to generate the mutated versions. µJava and its use
are described in Sect. 5.2. The numbers of IUTs for which the non-equivalent class
behavior was detected by the individual testing approaches were used to compare ef-
fectiveness of concolic-testing-based differential testing to that of random differential
testing. Section 5.3 describes the exact test set up while Sect. 5.4 discusses the results
of the experiments.

5.1 Java Card and the Logical Channels Demo

The Java Card Technology [7, 8] enables Java programs to execute on smart cards.
Java smart card programs, called applets, are an interesting class of Java programs.
As they tend to be smaller than “real” Java programs, they are well suited for being
used as test data in controlled experiments. For the experimental evaluation of LCT,
smart card example code called Logical Channels Demo was used. The idea behind
the Logical Channels Demo is to use a smart card to charge a user for connecting to
a data communication network. Although the Logical Channels Demo is designed for
demonstration purposes and lacks some features like proper user authentication, it is
a non-trivial application that is similar to other Java Card applications. The Logical
Channels Demo has previously been used for two LIME related case studies [23, 24].

Java Card applets Java Card applets are Java programs that can be run on smart
cards. When executed, Java Card applets communicate with an off-card application.
There are some differences between Java Card applets and normal Java applications.
Most notably, Java Card applets can only use a very limited subset of the Java features
due to the limitations of the hardware they run on. For example, the basic data types
long, float, double, char and String are not supported and the support of
int is optional. Also, multidimensional arrays and most standard Java classes are not
supported. In addition, Java Card applets use special methods for throwing exceptions
that are intended to be caught by the off-card application.

The Logical Channels Demo The Logical Channels Demo is one of several demos
that are part of the Java Card Development Kit [8]. The Logical Channels Demo allows
to use a smart card in a device that provides access to a network for a certain fee. The
network is divided into several areas and the user has a home area, in which the fee is



lower than in the rest of the network. The smart card on which the Logical Channels
Demo is installed keeps track of the user’s account’s balance.

The Logical Channels Demo consists of two applets: one manages the user’s ac-
count, and the other receives the state of the network connection from the off-card
application and debits the account accordingly. The main purpose of the Logical Chan-
nels Demo is to illustrate how these two applets can be active and communicate with
the off-card application simultaneously.

The Logical Channels Demo has been used in a previous case study to illustrate
the use of the LIME interface specification language [23]. In course of that case study,
the Java Card specific packet based argument passing and value returning mechanisms
were replaced with standard Java arguments and return values in the Logical Channels
Demo. The resulting modified version of the Logical Channels Demo was used for the
evaluation of LCT as well.

Usually, Java Card applets need a Java Card simulator in order to be executed on a
normal PC. As it would be challenging to use the LCT test generation in conjunction
with a Java Card simulator, the Logical Channels Demo was modified in a way that
allows the applets to run without a simulator. This was achieved by replacing Java Card
API methods with stub code. The stub code behaves in the same way the Java Card API
does in all respects that were of importance in the used testing setup.

The different testing approaches described in Sect. 4 compare the behavior of two
implementations of one class. The Logical Channels Demo, however, consists of two
applets, i.e., the behavior of two classes has to be compared simultaneously if one wants
to compared two implementations of the Logical Channels Demo. In order to make it
still possible to use the behavior comparison methods, a simple wrapper class that has
one instance of each applet and provides methods that call the methods of the applets
was added. Then, two implementations of the Logical Channels Demo could be com-
pared by comparing the behavior of their wrapper classes.

The modified version of the Logical Channels Demo contains 328 lines of code. The
comparison class used in coupled testing adds additional code that stores and compares
return values and exceptions. The Logical Channels Demo does not contain any loops
and therefore has only a finite number of execution paths.

5.2 The Mutations

In order to evaluate LCT experimentally, the differential testing methods described in
Sect. 4 were used to compare pairs of implementations of the Logical Channels Demo.
Mutated versions of the Logical Channels Demo, i.e., versions that contain small errors,
were used to simulate faulty IUTs, and the bug-free version of the Logical Channels
Demo was used as the reference implementation.

For the generation of the mutated classes, µJava [22] version 3 was employed. µJava
generates mutations of Java programs by introducing small changes, e.g., by replacing
an operator with another operator. While µJava ensures that the mutated programs can
be compiled without errors, it does not guarantee that they really affect the program
behavior. µJava may, for instance, generate a mutation that alters the value of a variable
that is never used again.



µJava can generate two types of mutations: method-level and class-level mutations.
A method-level mutation makes a small modification to the code inside one method,
e.g., changes the sign of an operand in an expression. A class-level mutation modifies
properties of and access to the class’s fields and methods, e.g., turns a non-static field
into a static field. Class-level mutations often only change the behavior of programs
that use at least two instances of the mutated class. A static field, for instance, behaves
just like a non-static field as long as only one instance of the class it belongs to is
created. Therefore, a test setup that creates multiple instances of each class would be
required to find class mutations. The used test setup, however, only creates one instance
of each tested class and therefore would be unable to detect class methods. Hence, only
method-level mutations were generated.

µJava generated 287 mutations of the Logical Channels Demo. For the experiments,
only mutations that alter the behavior of the applets in a way that can theoretically be
detected using the described class comparison methodology, i.e., ones that change the
behavior of the applets w.r.t. the notion of equivalent behavior introduced in Sect. 4,
were of interest. All mutations that do not change the behavior in such a way were clas-
sified and removed. Random differential testing was used to determine which mutations
obviously changed the class behavior. The mutations for which no non-equivalences of
behavior were discovered in this way were evaluated manually in order to determine
whether or not they change the class behavior. Out of the 287 mutations, 65 did not
affect the class behavior and were removed. The remaining 222 mutations were used
for the experimental evaluation of LCT.

5.3 Test Setup

For experimental evaluation of LCT, the three differential testing approaches described
in Sect. 4 were applied. The mutated classes were used as IUTs and the original Log-
ical Channels Demo as the reference implementation. Bounds from one to three were
used, i.e., the behaviors of pairs the original Logical Channels Demo and a mutant were
checked for 1-bounded, 2-bounded and 3-bounded class equivalence.

The definition of equivalent method behavior introduced in Sect. 4 does not give an
exact definition of when values returned or exceptions thrown by methods are equiv-
alent. All methods in the Logical Channels Demo either return nothing or values of
primitive types. Therefore, whether or not return values are equivalent was determined
using the Java “==” operator. Java Card applets throw a special type of exception which
contains a two-byte error code that indicates the exceptions cause. Such exceptions were
considered equivalent if they contain the same error code. All other (native Java) excep-
tions were considered equivalent, if they were of the same class.

During experimentation, LCT was configured to use the SMT-solver Boolector [9].
LCT’s depth limit was set high enough to allow LCT to always explore the full symbolic
execution tree. The number of generated tests for random differential testing was set to
10000. All other LCT options were set to their default values.



Table 1. The number of correctly detected mutations for the different approaches and depths.

Approach 1-bounded 2-bounded 3-bounded
Decoupled 121 (54.50%) 185 (83.33%) 221 (99.95%)
Coupled 123 (55.41%) 187 (84.23%) 221 (99.95%)
Random 95 (42.79%) 151 (68.02%) 184 (82.88%)

Table 2. A more detailed listing of the numbers of mutations caught. The numbers for combina-
tions not listed (e.g., only caught by random differential testing) are zero.

Caught by approach(es) 1-bounded 2-bounded 3-bounded
All 95 150 184
Coupled and decoupled 26 35 37
Coupled and random 0 1 0
Only coupled 2 1 0
None 99 35 1

5.4 Results and Discussion

The differential testing approaches introduced in Sect. 4 were run on every pair of the
original Logical Channels Demo and one of the mutants described in Sect. 5.2 with
bounds ranging from one to three. Then, the number of pairs for which non-equivalent
class behavior was reported was used to compare the effectiveness of the different test-
ing approaches. Also, the number of tests generated and the times needed for test gen-
eration and execution by the two concolic-testing-based approaches were compared.

Table 1 shows for each approach and each bound the number of mutations caught,
i.e., the number of mutants for which behavior that differs from the original was cor-
rectly reported. At bound one, random differential testing was able to catch 95 out of the
222 mutations. Decoupled differential testing caught 121 and coupled differential test-
ing caught 123 mutations. At bound two, these numbers increased to 151 for random,
185 for decoupled and 187 for coupled differential testing. At bound three, decoupled
and coupled differential testing both caught all but one mutation while random differen-
tial testing caught only 184 mutations. These results illustrate that random differential
testing is suited to catch many of the µJava mutations. Using the concolic-testing-based
approaches, however, pays off in a significantly higher mutation detection rate.

While Table 1 shows the individual detection rates for the approaches, it does not
provide more detailed information about the results, e.g., whether there were mutations
caught by random differential testing that were not caught by the concolic-testing-based
approaches. This more detailed information can be found in Table 2.

Independently of the bound, coupled differential testing caught every mutation that
was caught by random or decoupled differential testing. At bounds one and two, coupled
differential testing caught two mutations that were not caught by decoupled differential
testing. The reason is that some mutations alter the class behavior only for very few
input values. If a mutation, for instance, replaces the condition if(a < 42) where
a is a method argument with if(a <= 42), then the mutation is only caught if the



corresponding method is called with argument 42. Decoupled differential testing can,
however, reach full path coverage without using 42 as argument. Therefore, there is a
chance that decoupled differential testing misses the described mutation. For coupled
differential testing in contrast using 42 as argument is the only way to reach the loca-
tion in the code where the “different behavior” exception is thrown. Therefore, coupled
differential testing can not reach full path coverage without catching the mutation. The
mutations that were caught by coupled but not by decoupled differential testing during
the experiments were similar to the described mutation. It was, however, observed that
many similar mutations were caught by decoupled differential testing even though they
alter the behavior only for a very limited number of values. The reason is that the used
SMT-solver tended to assign values that occur as constants in the given constraints to
variables during the experiments, e.g., 42 in the given example.

At bound three, coupled and decoupled differential testing both caught all but one
mutation. Manual inspection of the one mutant that was never caught revealed that a
sequence of at least four method calls is needed to make the mutant show behavior that
differs from the behavior of the original Logical Channels Demo. Decoupled, coupled
and random differential testing were executed with bound four for the mutation and all
three methods were able to then catch the mutation. Generating the tests, however, took
almost 33 minutes for decoupled and almost one hour for coupled differential testing.
Therefore, no bound four tests were generated for the other mutations.

Table 3 shows the average numbers of tests generated per mutant and the average
time required for generating and executing the tests for decoupled and coupled differ-
ential testing. Like the tests generated by decoupled and coupled differential testing,
the random tests were generated using LCT. As random tests generation is not part of
the LCT’s core functionality, LCT generates random tests not as efficiently as dedicated
random test generation tools. Thus, no times for random test generation are listed.

Generally, the number of tests generated by decoupled and coupled differential test-
ing can be expected to grow exponentially in the bound used. At bound one, decoupled
differential testing generated 22.13 tests on average and coupled differential testing
generated 11.32 tests on average. At bound two, the average numbers of tests gener-
ated increased to 169.56 for decoupled and 147.36 for coupled differential testing and
at bound three to 1306.22 and 1398.18, respectively. In order to give random differen-
tial testing a fair chance, the number of tests generated by random differential testing
was chosen to be significantly higher than the average number of tests for the concolic-
testing based approaches, namely 10000.

In coupled differential testing, every method call in the comparison class executes
the same method once in each implementation. Thus, every method call in the compar-
ison class executes exactly the same method twice if the IUT and the reference imple-
mentation are exactly identically. Therefore, there is exactly the same number of paths
in the comparison class as in one of the implementations alone. In such a situation,
LCT generates every test twice in decoupled differential testing, once for the IUT and
once for the reference implementation. In coupled differential testing in contrast, LCT
generates every test only once for the comparison class. Therefore, the number of tests
generated in decoupled differential testing is twice the number of tests generated in
coupled differential testing if the IUT and the reference implementation are identical.



Table 3. The average numbers of tests generated per mutant and the average times spent per
mutant for generating tests, executing tests and in total.

1-bounded 2-bounded 3-bounded
Decoupled Coupled Decoupled Coupled Decoupled Coupled

Tests generated 22.1 11.3 169.6 147.4 1306.2 1398.2
Generation time 81.90 s 48.21 s 109.23 s 67.30 s 288.05 s 293.18 s
Execution time 3.12 s 1.56 s 4.68 s 1.92 s 13.08 s 4.63 s
Total time 85.02 s 49.77 s 113.91 s 69.22 s 301.13 s 297.81 s

This observation suggests that the average number of tests generated should be larger
in decoupled differential testing. Indeed, the number of tests generated by decoupled
differential testing was almost twice as high compared to coupled differential testing at
bound one. At bound two, however, decoupled differential testing generated only about
15% more tests and at bound three decoupled differential testing even generated less
tests than coupled differential testing.

The reason why the number of tests generated by coupled differential testing in-
creased faster than the number generated by decoupled differential testing is that the
mutants used as IUTs and reference implementation in the experiments are not exactly
the same. Every method that is implemented differently in the IUT and the reference
implementation contributes to an increase of the number of paths in the comparison
class. Consider, e.g., a method that is implemented in a way that there are three paths
through the method in the IUT and two paths in the reference implementation. Assume
that the implementations differ in a way such that there are combinations of input values
that allow to execute every combination of a path in the IUT and a path in the reference
implementation. Then, there are six possible paths through the corresponding method
in the comparison class. Thus, coupled differential testing will try six paths through the
corresponding method in the comparison class, while decoupled differential testing will
only try five paths, three for the IUT and two for the reference implementation. This ef-
fect increases the number of tests generated in coupled differential testing. The effect is
even stronger for paths on which the method is called more than once. In the example,
there are 62 = 36 paths that consist of calling the described method twice in the com-
parison class. In the IUT in contrast there are only 32 paths that consist of two calls of
the method and in the reference implementation there are only 22. Assuming that there
are no other methods in the tested class this means that coupled differential testing will
generate 36 tests at bound two while decoupled differential testing will only generate
32 + 22 = 13 tests. This illustrates that the effect is stronger at higher depths which
explains that the number of tests generated by coupled differential increased faster than
the number of tests generated by decoupled differential testing. Also, the effect can be
expected to be stronger if the differences between the IUT and the reference implemen-
tation are more extensive than those caused by the mutations used for the experiments.

Table 3 also shows the time spent generating and executing tests by decoupled and
coupled differential testing. The test were executed on a Linux computer with 4 GB
memory and an Intel Core 2 Duo E6550 processor running at 2.33 GHz. The times for



test generation and execution grow less quickly than the number of tests generated due
to the fact that some steps like the instrumentation during test generation and starting
the Java virtual machine and the JUnit test runner during test execution take roughly the
same amount of time independently of the bound.

6 Conclusions

This paper introduces the LIME concolic tester (LCT), a new open source concolic
testing tool for Java programs, and discusses the main design choices behind LCT. The
paper focuses, in particular, on differential testing of Java Card applets using LCT. A
setting for differential testing of applets is defined and two alternative approaches to
generating test sets for differential testing using concolic testing and LCT are devised.
The two approaches are compared experimentally to random testing in the Java Card ap-
plication domain. The experiments show that the proposed concolic testing approaches
compare favorably to random testing and the test sets generated by LCT can find more
bugs than considerably bigger sets of randomly generated tests.

Acknowledgements The authors would like to warmly thank the anonymous referees
for very detailed feedback to improve on this paper and also on interesting suggestions
for further research.

References

1. Godefroid, P., Klarlund, N., Sen, K.: DART: Directed automated random testing. In: Pro-
ceedings of the ACM SIGPLAN 2005 Conference on Programming Language Design and
Implementation (PLDI 2005), ACM (2005) 213–223

2. Sen, K.: Scalable automated methods for dynamic program analysis. Doctoral thesis, Uni-
versity of Illinois (2006)

3. Sen, K., Agha, G.: CUTE and jCUTE: Concolic unit testing and explicit path model-
checking tools. In: Proceedings of the 18th International Conference on Computer Aided
Verification (CAV 2006). Volume 4144 of Lecture Notes in Computer Science., Springer
(2006) 419–423 (Tool Paper).

4. Cadar, C., Ganesh, V., Pawlowski, P.M., Dill, D.L., Engler, D.R.: EXE: automatically gen-
erating inputs of death. In: Proceedings of the 13th ACM conference on Computer and
communications security (CCS 2006), ACM (2006) 322–335

5. Tillmann, N., de Halleux, J.: Pex – White box test generation for .NET. In: Proceedings
of the Second International Conference on Tests and Proofs (TAP 2008). Volume 4966 of
Lecture Notes in Computer Science., Springer (2008) 134–153

6. Cadar, C., Dunbar, D., Engler, D.R.: KLEE: Unassisted and automatic generation of high-
coverage tests for complex systems programs. In: Proceedings of the 8th USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI 2008), USENIX Association
(2008) 209–224

7. Chen, Z.: Java Card Technology for Smart Cards: Architecture and Programmer’s Guide.
Prentice Hall (2000)

8. Sun Microsystems: Java Card Development Kit 2.2.2 (2009) http://java.sun.com/
javacard/devkit.



9. Brummayer, R., Biere, A.: Boolector: An efficient SMT solver for bit-vectors and arrays. In:
Proceedings of the 15th International Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems (TACAS 2009). Volume 5505 of Lecture Notes in Computer
Science., Springer (2009) 174–177

10. Kähkönen, K., Lampinen, J., Heljanko, K., Niemelä, I.: The LIME Interface Specification
Language and Runtime Monitoring Tool. In: Proceedings of the 9th International Workshop
on Runtime Verification (RV 2009). Volume 5779 of Lecture Notes in Computer Science.,
Springer (2009) 93–100

11. Godefroid, P., Levin, M.Y., Molnar, D.A.: Automated whitebox fuzz testing. In: Proceed-
ings of the Network and Distributed System Security Symposium, NDSS 2008, The Internet
Society (2008) 151–166

12. Godefroid, P., Levin, M.Y., Molnar, D.A.: Active property checking. In: Proceedings of the
8th ACM & IEEE International conference on Embedded software, EMSOFT 2008, ACM
(2008) 207–216

13. Majumdar, R., Sen, K.: Hybrid concolic testing. In: Proceedings of the 29th International
Conference on Software Engineering (ICSE 2007), IEEE Computer Society (2007) 416–426

14. Molnar, D., Li, X.C., Wagner, D.A.: Dynamic test generation to find integer bugs in x86
binary Linux programs. In: Proceedings of the 18th USENIX Security Symposium (USENIX
Security 2009), USENIX Association (2009) 67–81

15. Dutertre, B., de Moura, L.: A Fast Linear-Arithmetic Solver for DPLL(T). In: Proceedings
of the 18th International Conference on Computer Aided Verification (CAV 2006). Volume
4144 of Lecture Notes in Computer Science., Springer (2006) 81–94

16. de Moura, L.M., Bjørner, N.: Z3: An efficient SMT solver. In: Proceedings of the 14th
International Conference on Tools and Algorithms for the Construction and Analysis of Sys-
tems (TACAS 2008). Volume 4963 of Lecture Notes in Computer Science., Springer (2008)
337–340

17. Lampinen, J., Liedes, S., Kähkönen, K., Kauttio, J., Heljanko, K.: Interface specification
methods for software components. Technical Report TKK-ICS-R25, Helsinki University of
Technology, Department of Information and Computer Science, Espoo, Finland (Dec 2009)

18. Vallée-Rai, R., Co, P., Gagnon, E., Hendren, L.J., Lam, P., Sundaresan, V.: Soot - a Java
bytecode optimization framework. In: Proceedings of the 1999 conference of the Centre for
Advanced Studies on Collaborative Research (CASCON 1999), IBM (1999) 13

19. Kähkönen, K.: Automated test generation for software components. Technical Report TKK-
ICS-R26, Helsinki University of Technology, Department of Information and Computer Sci-
ence, Espoo, Finland (Dec 2009)

20. Factor, M., Schuster, A., Shagin, K.: Instrumentation of standard libraries in object-oriented
languages: The twin class hierarchy approach. In: Proceedings of the 19th Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Appli-
cations (OOPSLA 2004), ACM (2004) 288–300

21. Person, S., Dwyer, M.B., Elbaum, S.G., Pasareanu, C.S.: Differential symbolic execution.
In: Proceedings of the 16th ACM SIGSOFT International Symposium on Foundations of
Software Engineering (SIGSOFT FSE 2008), ACM (2008) 226–237

22. Ma, Y.S., Offutt, J., Kwon, Y.R.: MuJava: An automated class mutation system. Software
Testing, Verification and Reliability 15(2) (2005) 97–133

23. Kindermann, R.: Testing a Java Card applet using the LIME Interface Test Bench: A case
study. Technical Report TKK-ICS-R18, Helsinki University of Technology, Department of
Information and Computer Science, Espoo, Finland (Sept 2009)

24. Holmström, P., Höglund, S., Sirén, L., Porres, I.: Evaluation of Specification-based Test-
ing Approaches. Technical report, Åbo Akademi University, Department of Information
Technologies (Sept 2009) https://poseidon.cs.abo.fi/trac/gaudi/lime/
raw-attachment/wiki/MainResults/t34-report.pdf.


