
Deadlock Checking for Complete Finite Pre�xesUsing Logic Programs withStable Model Semantics(Extended Abstract)Keijo HeljankoHelsinki University of Technology, Digital Systems LaboratoryP.O.Box 1100, FIN-02015 HUT, FinlandKeijo.Heljanko@hut.�Abstract. McMillan has presented a deadlock detection method based oncomplete �nite pre�xes (i.e. net unfoldings) of a Petri net. The problem ofchecking deadlock-freedom is NP-complete in the size of the pre�x. McMil-lan originally suggested a branch-and-bound algorithm for deadlock detectionin pre�xes. Recently, Melzer and Römer have presented another algorithmwhich is based on solving mixed integer programming problems. We showthat instead of using mixed integer programming, a constraint-based logicprogramming framework can be employed, and present a simple linear-sizetranslation from deadlock detection in pre�xes into the problem of �ndinga stable model of a logic program. We present experimental results froma straightforward prototype implementation combining the pre�x generatorof the PEP-tool, the translation, and an implementation of constraint-basedlogic programing framework, the smodels system. We �nd our approach com-petitive with the previous approaches.1 IntroductionPetri nets are a model of concurrency which can be used to analyze e.g. reactivesystems. One of the analysis problems associated with reactive systems is that ofdeadlock-freedom: Do all reachable markings enable some transition? For 1-safe Petrinets this problem is PSPACE-complete in the size of the net [2], however, restrictedsubclasses of 1-safe Petri nets exist for which this problem is NP-complete [7,8].McMillan has presented a deadlock detection method based on complete �nite pre-�xes (i.e. net unfoldings) of a Petri net [7,8]. The basic idea is to transform thePSPACE-complete deadlock detection problem for a 1-safe Petri net into a (poten-tially exponentially) larger NP-complete problem. This translation creates a com-plete �nite pre�x, which is a 1-safe Petri net of a restricted form. The blowup of thetranslation depends on the problem instance, and experimental results show that itcan in many cases be avoided [3,7�9].In this work we will mainly discuss ways of solving the NP-complete deadlockdetection problem for pre�xes. McMillan originally suggested a branch-and-boundalgorithm for deadlock detection in pre�xes. Recently, Melzer and Römer have pre-sented another algorithm which is based on solving mixed integer programmingproblems generated from pre�xes [9]. We suggest that by using a third alternative,

a constraint-based logic programming framework [10�12], this problem can be quiteelegantly and e�ciently solved.First we present Petri net notations used in the paper. In Section 3 we willintroduce the rule-based constraint programming framework. Section 4 contains themain result of this work, a simple linear-size translation from deadlock detection forpre�xes into the problem of �nding a stable model of a logic program. In Section 5we present experimental results from a straightforward prototype implementation.In Section 6 we conclude and discuss directions for future research.2 Petri Net De�nitionsThis section is included for completeness, it is based on the notation of [3,9].2.1 Petri NetsA triple hS; T; F i is a net if S\T = ; and F � hS�T i[hT�Si. The elements of S arecalled places, and the elements of T transitions. Places and transitions are also callednodes. We identify F with its characteristic function on the set hS�T i[hT�Si. Thepreset of a node x , denoted by �x, is the set fy 2 S [T jF (y; x) = 1g. The postset ofa node x , denoted by x�, is the set fy 2 S [T jF (x; y) = 1g. Their generalizationson sets of nodes X � S [T are de�ned as �X = Sx2X �x, and X� = Sx2X x�respectively.A marking of a net hS; T; F i is a mapping S 7! N. A marking M is identi�edwith the multiset which contains M(s) copies of s for every s 2 S. A 4-tuple � =hS; T; F;M0i is a net system if hS; T; F i is a net and M0 is a marking of hS; T; F i. Amarking M enables a transition t if 8s 2 S : F (s; t) � M(s). If t is enabled, it canoccur leading to a new marking (denoted M t! M 0), where M 0 is de�ned by 8s 2S :M 0(s) =M(s)� F (s; t) + F (t; s). A marking Mn is reachable in � if there exista sequence of transitions t1; t2; : : : ; tn and markings M1;M2; : : :Mn�1 such that:M0 t1! M1 t2! : : :Mn�1 tn! Mn. A reachable marking is 1-safe if 8s 2 S : M(s) � 1.A net system � is 1-safe if all it's reachable marking are 1-safe. In this work we willrestrict ourselves to the set of net systems which are 1-safe, have a �nite number ofplaces and transitions, and also in which each transition t 2 T has both a nonemptypre- and postsets.2.2 Occurrence NetsWe use �F to denote the re�exive transitive closure of F . Let hS; T; F i be a netand let x1; x2 2 S [T . The nodes x1 and x2 are in con�ict, denoted by x1#x2, ifthere exist t1; t2 2 T such that t1 6= t2, �t1 \ �t2 6= ;, t1 �F x1, and t2 �F x2. Anoccurrence net is a net N = hB;E; F i such that:� 8b 2 B : j�bj � 1,� F is acyclic, i.e. the irre�exive transitive closure of F is a partial order,� N is �nitely preceded, i.e. for any node x of the net, the set of nodes y such thaty �F x is �nite, and� 8x 2 S [T : :(x#x).

The elements of B and E are called conditions and events respectively. The setMin(N) denotes the set of minimal elements of the transitive closure of F . A con-�guration C of an occurrence net is a set of events satisfying:� e 2 C) 8e0 �F e : e0 2 C (C is causally closed),� 8e; e0 2 C : :(e#e0) (C is con�ict-free).2.3 Branching ProcessesBranching processes are �unfoldings� of net systems and were introduced by Engel-friet [1]. Let N1 = hS1; T1; F1i and N2 = hS2; T2; F2i be two nets. A homomorphismis a mapping S1 [T1 7! S2 [T2 such that: h(S1) � S2 ^ h(T1) � T2, and for allt 2 T1, the restriction of h to �t is a bijection between �t and �h(t), and similarlyfor t� and h(t)�. A branching process of a net system � is a tuple � = hN 0; pi,where N 0 is a occurrence net, and p is a homomorphism from N 0 to hS; T; F i suchthat: the restriction of p to Min(N 0) is a bijection between Min(N 0) and M0, and8e1; e2 2 E, if �e1 = �e2 ^ p(e1) = p(e2) then e1 = e2. The set of places associatedwith a con�guration C of � is denoted by Mark(C) = p((Min(N) [C�) n �C).2.4 Complete Finite Pre�xesA �nite branching process � is a complete �nite pre�x of a net system � if and onlyif for each reachable marking M of � there exists a con�guration C of � such that:� Mark(C) =M , and� for every transition t enabled inM there exists a con�guration C[feg such thate 62 C and p(e) = t.Algorithms to obtain a complete �nite pre�x � given a 1-safe net system � arepresented in e.g. [3,7,8]. The algorithms will mark some events of the pre�x � asspecial cut-o� events, which we denote by the set CutO�s(�). The intuition behindcuto� events is that for each cuto� event e there already exists another event e0 inthe pre�x. The markings after executing e can also be reached after executing e0,and thus the markings after e need not to be considered any further. Due to spacelimitations we direct the reader interested in the approach to [3,7�9].3 Rule-Based Constraint ProgrammingWe will use normal logic programs with stable model semantics [4] as the underlyingformalism into which the deadlock detection problem for complete �nite pre�xes istranslated. This section is to a large extent based on [12].The stable model semantics is one of the main declarative semantics for normallogic programs. However, here we use logic programming in a way that is di�erentfrom the typical PROLOG style paradigm, which is based on the idea of evaluat-ing a given query. Instead, we employ logic programs as a constraint programmingframework [10], where stable models are the solutions of the program rules seen asconstraints. We consider normal logic programs that consist of rules of the formh a1; : : : ; an; not (b1); : : : ; not (bm) (1)

where a1; : : : ; an; b1; : : : ; bm and h are propositional atoms. Such a rule can be seen asa constraint saying that if atoms a1; : : : ; an are in a model and atoms b1; : : : ; bm arenot in a model, then atom h is in a model. The stable model semantics also enforcesminimality and groundedness of models. This makes many combinatorial problemseasily and succinctly describable using logic programming with stable model seman-tics.We will demonstrate the basic behaviour of the semantics using programs P1-P4:P1: a not (b) P2: a a P3: a not (a) P4: a not (b); cb not (a) b not (a)Program P1 has two stable models: fag and fbg. The property of this program isthat we may freely make negative assumptions as long as we do not bump into anycontradictions. For example, we may assume not (b) in order to deduce the stablemodel fag. Program P2 has only the empty set as its only stable model. This exposesthe fact that we can't use positive assumptions to deduce what is to be included ina model. Program P3 is an example of a program which has no stable models. If weassume not (a), then we will deduce a, which will contradict with our assumptionnot (a). Program P4 has one stable model fbg. If we assume not (a) then we willdeduce b. If we assume not (b) then we can't deduce a, because c can't be deducedfrom our assumptions.The stable model semantics for a normal logic program P is de�ned as follows[4]. The reduct PA of P with respect to the set of atoms A is obtained (i) by deletingeach rule in P that has a not-atom not (x) in its body such that x 2 A and (ii) bydeleting all not-atoms in the remaining rules. A set of atoms A is a stable model ofP if and only if A is the deductive closure of PA when the rules in PA are seen asinference rules.One interesting property of the stable model semantics is that only the atoms oc-curring as not-atoms in some program rule contribute to the search space. Thereforea non-deterministic way of constructing stable models is to guess which assumptions(not-atoms of the program) to use, and then check using deductive closure (in lin-ear time) whether the resulting model agrees with the assumptions. The problem ofdetermining the existence of a stable model is infact NP-complete [6].3.1 The tool smodelsThere is a tool, the smodels system [11,12], which provides an implementation oflogic programs as a rule-based constraint programming framework. It has been de-veloped to �nd (some or all) stable models of a logic program. It can also tell whenthe program has no stable models. It contains strong pruning techniques to make theproblem tractable for a large class of programs. The smodels implementation needsonly space linear in the size of the input program [12]. The stable model semanticsis de�ned using rules of the form (1). As of version 2.0, smodels also handles anextended set of rules. All of these new rules can be seen as succinct encodings ofsets of basic rules. In this work we will only need the extended rule of the form:h 2fa1; : : : ; ang. The semantics of this rule is that if two or more atoms from theset a1; : : : ; an belong to the model, then also the atom h will be in the model. It is

easy to see that this rule can be encoded by using N2�N2 basic rules of the form:h ai; aj . Using an extended rule instead of the corresponding basic rule encodingwas necessary to achieve an e�cient translation of the problem at hand.4 Translating Deadlock Checking into Logic ProgramsIn this section we present the translation of deadlock detection into logic programs.The main result can be seen as a rephrasing of the Theorem 4 of [9], where mixedinteger programming has been replaced by the rule-based constraint programmingframework. First we de�ne some additional notation.De�nition 1. The set of non-cuto� events corresponding to the pre�x � = hN; hiwith N = hB;E; F i is NonCutO�s(�) = feje 2 E ^ e 62 CutO�s(�)g.De�nition 2. The set of normal events corresponding to the pre�x � = hN; hi withN = hB;E; F i is NormalEvents(�) = NonCutO�s(�) n feje 2 E ^ �e = ;g.Normal events include all non-cuto� events except the minimal elements, if suchelements exist.Next we present the main result of this work. We will discuss the theorem in fulldetail in the text following the theorem.Theorem 3. Let � = hN; hi with N = hB;E; F i be a complete �nite pre�x of agiven n-safe net system �. For technical reasons we use a slightly modi�ed pre-�x �0, which is identical to � except that we have replaced the net N with the netN 0 = hB0; E0; F 0i, where B0 = B, E0 = E [fe0g, F 0 = F [fhe0; bijb 2 Min(N)g.The event e0 is a new minimal event which generates the initial marking.� is deadlock-free if and only if the logic program containing the following ruleshas no stable model:1. A rule:e0 2. For all ei 2 NormalEvents(�0) a rule:ei e01; : : : ; e0n, not (bei),such that S1�j�nfe0jg = �(�ei)3. For all ei 2 NormalEvents(�0) a rule:bei not (ei)4. For all bi 2 B0 such that jb�i n CutO�s(�0)j � 1 a rule:con�ict 2fe01; : : : ; e0ng,such that S1�j�nfe0jg = b�i n CutO�s(�0)

5. A rule:bottom not (bottom), conict6. For all bi 2 fb 2 B0jb� 6= ;g a rule:bi e, not (e01), : : : , not (e0n),such that feg = �bi, and S1�j�nfe0jg = b�i nCutO�s(�0)7. For all ei 2 NormalEvents(�0) [CutO�s(�0) a rule:live b1; : : : ; bn,such that S1�j�nfbjg = �ei8. A rule:bottom not (bottom), liveThe intuition behind the logic program is the following: Rules 1-5 are a rede�-nition of a legal con�guration in terms of logic programs. The stable models of theprogram containing only rules 1-5 have a one-to-one correspondence with those con-�gurations of � which do not include any cut-o� events. Rules 6-8 are additionalconstraints to these con�gurations. They remove from this set of con�gurations allsuch con�gurations in which any event of the pre�x is enabled. The remaining con-�gurations (if any exist) are con�gurations in which no event is enabled i.e. deadlockcon�gurations.We'll now discuss the program in more detail. The program has the atoms:� The atom ei is in a model when the event ei is in the set of �red events.� The atom bei is in a model when the event ei is not in the set of �red events.� The atom conict is deduced when two or more events sharing preset conditionsare in the set of �red events, and thus the set of �red events is not a con�guration.� The atom bottom is used merely for technical reasons. It is used to exclude allstable models containing either atom conict or live .� The atom bi is in a model when the condition bi holds a token after the set of�red events.� The atom live is deduced when any net event is enabled.The program rules do the following:1. Rule 1 establishes the initial marking of the net by requiring that the eventgenerating the initial marking is always in the set of �red events. The con�gu-ration containing only the event e0 in the net N 0 thus corresponds to the emptycon�guration in the net N .2. Rule 2 says that an event ei is in the set of �red events, if all of the events whichgenerate it's preset are in the set of �red events, and the atom bei is not in themodel.3. Rule 3 says that atom bei is in a model if event ei is not in the set of �red events.This is a technicality which makes it legal for an event to be enabled and not tobe necessarily �red. This is needed to make also non-maximal con�gurations tohave stable models.

4. Rule 4 says that if two or more events which share a preset place are in the setof �red events, then the atom conict will be in the model.5. Rule 5 excludes all models containing the atom conict . Therefore rules 4 and5 together disallow sets of �red events containing immediate con�icts due toshared presets.6. Rule 6 makes a condition to be in a model when its preset event, and none ofits postset events are in the set of �red events.7. Rule 7 says that an event is enabled if all its preset conditions are in the model.Note that this also includes cut-o� events.8. Rule 8 excludes all models in which any of the events are enabled, i.e. the atomlive is in the model.It is easy to see that the size of translated program is linear in the size of thepre�x i.e. O(jBj+ jEj+ jF j). Because the rule-based constraint programming systemonly needs linear space in the size of the input program, deadlock checking exploitingthis translation can be made using only linear space in the size of the pre�x. Thetranslation is also local, which makes it is quite straightforward to implement thetranslation in linear time in the size of the pre�x.5 Prototype ImplementationWe have implemented the translation described in the previous section using theinterpreted scripting language Python. It translates the deadlock checking for com-plete �nite pre�x generated by the PEP-tool [5] into a logic program. The onlyoptimization the translator script does is that it removes duplicate rules, which canbe done in polynomial time. (Duplicate rules might arise from rules 4 and 7.) ThePython script gen inputs an ASCII �le which describes the complete �nite pre�x,and generates another ASCII �le which contains the logic program. This ASCII �le isthen parsed by the smodels parser pparse into internal form suitable for the smodelsstable model generator. This prototype implementation was created to research thefeasibility of the approach, rather than to be a fully functional tool. The gen script,the pparse program, and the smodels computational engine will eventually be allintegrated into one tool which directly reads binary format pre�x �les. Initial resultsshow that this will eliminate almost all of the costs associated with the generationand parsing steps.5.1 Experimental ResultsWe have made experiments with our approach using the examples by Corbett andMcMillan, which were used by Melzer and Römer in [9]. The Figures 1 and 2 presentthe running times in seconds for the various algorithms used in this work and alsothose presented in [9]. The running times have been measured using a Pentium166MHz, 64MB RAM, 128MB swap, Linux 2.0.29, g++ 2.7.2.1, pparse 1.4, smodelspre-2.0.11, and PEP 1.6g. The running times for the experiments by Melzer andRömer were conducted on a Sparcstation 20/712, 96MB RAM.The rows of the table correspond to di�erent problems. The columns represent:sum of user and system times measured by /usr/bin/time command, or timesreported in [9], depending on the column:

� Unf1 = time for unfolding (PEP)� Gen1 = time for constraint program generation (gen)� Parse1 = time for parsing the constraint program (pparse)� DC_MIP2 = time for Mixed integer programming algorithm in [9]� DC_McM2 = time for McMillan's algorithm in [9]� DC_McM1 = time for McMillan's algorithm using Pentium 166MHz� DC_smo1 = time for smodels to determine whether there is a deadlockA marking mem(n) notes that the program ran out of memory after n seconds[9]. The marking vm(n) notes that the program ran out of virtual memory after nseconds.Problem(size) Unf1 Gen1 Parse1 DC_MIP2 DC_McM2 DC_McM1 DC_smo1DPD(4) 0.13 6.2 0.2 2.0 0.3 0.2 0.3DPD(5) 0.58 16.3 0.5 17.3 1.9 1.7 1.2DPD(6) 3.20 39.1 1.2 82.8 20.2 12.1 4.9DPD(7) 17.43 91.0 2.8 652.6 234.0 129.1 16.0DPH(4) 0.13 6.9 0.2 1.8 0.3 0.2 0.3DPH(5) 1.26 27.3 0.7 42.9 10.5 6.4 2.3DPH(6) 33.90 150.1 3.9 1472.8 1907.6 1100.0 29.9DPH(7) 934.03 931.5 23.0 - - vm(1713.3) 606.0ELEVATOR(1) 0.09 3.3 0.1 0.1 0.0 0.1 0.1ELEVATOR(2) 0.54 16.0 0.4 2.3 0.9 0.5 2.8ELEVATOR(3) 10.22 78.0 1.9 14.5 18.7 10.1 63.4ELEVATOR(4) 188.17 368.6 9.2 387.8 492.7 269.0 1221.7FURNACE(1) 0.10 5.6 0.1 0.3 0.2 0.2 0.1FURNACE(2) 3.25 52.3 1.1 18.1 19.0 10.7 2.3FURNACE(3) 136.88 358.2 8.9 1112.5 mem(811.1) vm(387.6) 57.6RING(3) 0.03 1.2 0.1 0.1 0.0 0.0 0.1RING(5) 0.08 3.6 0.1 1.3 0.1 0.1 0.3RING(7) 0.24 8.4 0.3 17.1 0.3 0.2 1.6RING(9) 0.73 16.6 0.5 71.2 1.1 0.7 7.3RW(6) 0.09 7.9 0.1 0.7 0.5 0.3 0.1RW(9) 2.06 108.3 0.9 58.5 122.3 69.8 0.6RW(12) 138.89 2682.9 10.0 24599.9 mem(6004.9) vm(3111.8) 5.3Fig. 1. Measured running times in seconds:1 = Pentium 166MHz, 64MB RAM, Linux 2.0.29.2 = Sparcstation 20/712, 96MB RAM [9]It is di�cult comment on the absolute running times of algorithms running ondi�erent machines. Some remarks on the scalability of the results inside the probleminstances can however be made. Our approach is scaling better than either of theother methods on the problems DPD, DPH, FURNACE, RW, DME, and SYNC.On the other hand, it seems to be doing worse than McMillan's algorithm on RING.The scaling between ELEVATOR(3) and ELEVATOR(4) is better with our approachthan either of the two other algorithms, but larger instances would be needed to drawany conclusions about this.

Problem(size) Unf1 Gen1 Parse1 DC_MIP2 DC_McM2 DC_McM1 DC_smo1DME(2) 0.13 4.6 0.2 1.9 0.07 0.07 0.32DME(3) 0.36 11.5 0.3 64.6 0.50 0.35 2.34DME(4) 1.09 23.1 0.6 216.1 1.67 1.41 9.69DME(5) 3.19 40.4 1.1 1968.3 7.83 5.60 31.62DME(6) 8.23 63.7 1.7 13678.3 26.43 21.42 87.18DME(7) 18.21 96.5 2.6 - 97.80 67.84 204.98DME(8) 37.56 140.4 3.7 - 251.52 184.51 425.96DME(9) 70.44 197.3 5.1 - 701.74 527.02 823.78DME(10) 124.20 270.5 6.9 - 1801.48 1273.94 1483.96DME(11) 207.64 366.6 9.0 - 4682.36 2892.92 2541.65SYNC(2) 4.61 42.0 1.4 171.6 69.0 36.9 21.91SYNC(3) 219.43 322.8 9.8 11985.0 26621.7 14219.0 626.16Fig. 2. Measured running times in seconds:1 = Pentium 166MHz, 64MB RAM, Linux 2.0.29.2 = Sparcstation 20/712, 96MB RAM [9]The ELEVATOR is the only problem which contains a deadlock, and this mightmake it behave di�erently from the other problems. It is also the only example inwhich the smodels computation engine had to make one choice of �ring a transitionto �nd the deadlock. On all the other examples the strong pruning techniques ofsmodels implementation removed all of the search space, thus having a guaranteedpolynomial running time in the size of the problem instance. We need to have alarger set of examples in the future containing also di�cult cases, which must existdue to the complexity of the problem.6 ConclusionsWe have presented using a constraint-based logic programming framework for de-tecting deadlocks from complete �nite pre�xes. Our main result is a simple linear-size translation from deadlock detection on pre�xes into the problem of �nding astable model of a normal logic program. We present experimental results from astraightforward prototype implementation, and �nd our approach competitive withthe previous approaches.For future work we will extend this approach to the class of reachability problemson pre�xes. We conjecture that the translation can also be extended to the class ofPetri nets which have the following properties: 1-safe, acyclic, and each transitioncan occur at most once. We will also need a larger set of examples to evaluate theapproach against other approaches, and also to test the the robustness of the variousalgorithms to changes in the input representation. Also a more optimized translationfrom the pre�xes into rule-based constraint programs needs to be implemented. Evenby using only linear time in the size of the pre�x a lot of optimizations exploitingthe structure of the pre�x can be made. If needed, runtime overhead can also bereduced by creating a special purpose tool which integrates all the phases of thetranslation, and additionally might use a search algorithm which only handles thevery restricted set of rule-based constraint programs created by the translation.

7 AcknowledgementsThe author would like to thank Ilkka Niemelä for introducing him into the rule-basedconstraint programming framework, and for many constructive ideas for the trans-lation. The tool smodels was programmed by Patrik Simons, who also gave valuablesupport for its usage. Stephan Melzer and Stefan Römer provided the example netsthey used, and also Linux binaries for the McMillan's algorithm, which both wereinvaluable for conducting the experiments. The �nancial support of Helsinki Grad-uate School on Computer Science and Engineering (HeCSE), and the Academy ofFinland are gratefully acknowledged.References1. J. Engelfriet. Branching processes of Petri nets. In Acta Informatica 28, pages 575�591,1991.2. J. Esparza and M. Nielsen. Decidability issues for Petri Nets - a survey. Journal ofInformation Processing and Cybernetics 30(3), pages 143�160, 1994.3. J. Esparza, S. Römer, and W. Vogler. An improvement of McMillan's unfolding algo-rithm. In Proceedings of Second International Workshop on Tools and Algorithms forthe Construction and Analysis of Systems (TACAS'96), pages 87�106, Passau, Ger-many, Mar 1996. Springer-Verlag. LNCS 1055.4. M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. InProceedings of the 5th International Conference on Logic Programming, pages 1070�1080, Seattle, USA, August 1988. The MIT Press.5. B. Grahlmann. The PEP Tool. In Proceedings of CAV'97 (Computer Aided Veri�ca-tion), pages 440�443. Springer-Verlag, June 1997. LNCS 1254.6. W. Marek and M. Truszczy«ski. Autoepistemic logic. Journal of the ACM, 38:588�619,1991.7. K. L. McMillan. Using unfoldings to avoid the state space explosion problem in theveri�cation of asynchronous circuits. In Proceeding of 4th Workshop on Computer AidedVeri�cation (CAV'92), pages 164�174, 1992. LNCS 663.8. K. L. McMillan. A technique of a state space search based on unfolding. In FormalMethods is System Design 6(1), pages 45�65, 1995.9. S. Melzer and S. Römer. Deadlock checking using net unfoldings. In Proceeding of 9thInternational Conference on Computer Aided Veri�cation (CAV'97), pages 352�363,Haifa, Israel, Jun 1997. Springer-Verlag. LNCS 1254.10. I. Niemelä. Logic programs with stable model semantics as a constraint programmingparadigm. In Proceedings of the Workshop on Computational Aspects of NonmonotonicReasoning, pages 72�79, Trento, Italy, May 1998. Helsinki University of Technology,Digital Systems Laboratory, Research Report A52.11. I. Niemelä and P. Simons. Smodels � an implementation of the stable model andwell-founded semantics for normal logic programs. In Proceedings of the 4th Interna-tional Conference on Logic Programming and Non-Monotonic Reasoning, pages 420�429, Dagstuhl, Germany, July 1997. Springer-Verlag.12. P. Simons. Towards constraint satisfaction through logic programs and thestable model semantics. Research Report A47, Helsinki University of Tech-nology, Espoo, Finland, August 1997. Licenciate's thesis, Available at http://saturn.hut.�/pub/reports/A47.ps.gz.

