
Using Logic Programs withStable Model Semantics to SolveDeadlock and Reachability Problemsfor 1-Safe Petri NetsKeijo HeljankoHelsinki University of Technology,Laboratory for Theoretical Computer ScienceP.O.Box 5400, FIN-02015 HUT, FinlandKeijo.Heljanko@hut.�

c
 Springer-Verlag. To appear in the Proceedings of the Fifth InternationalConference on Tools and Algorithms for the Construction and Analysis ofSystems (TACAS'99). Mar 22�26, 1999, Amsterdam, the Netherlands. LectureNotes in Computer Science, Springer-Verlag.

Abstract. McMillan has presented a deadlock detection method forPetri nets based on �nite complete pre�xes (i.e. net unfoldings). Thebasic idea is to transform the PSPACE-complete deadlock detectionproblem for a 1-safe Petri net into a potentially exponentially largerNP-complete problem of deadlock detection for a �nite complete pre�x.McMillan suggested a branch-and-bound algorithm for deadlock detec-tion in pre�xes. Recently, Melzer and Römer have presented another ap-proach, which is based on solving mixed integer programming problems.In this work it is shown that instead of using mixed integer program-ming, a constraint-based logic programming framework can be employed,and a linear-size translation from deadlock detection in pre�xes into theproblem of �nding a stable model of a logic program is presented. Asa side result also such a translation for solving the reachability prob-lem is devised. Experimental results are given from an implementationcombining the pre�x generator of the PEP-tool, the translation, and animplementation of a constraint-based logic programming framework, thesmodels system. The experiments show the proposed approach to bequite competitive, when compared to the approaches of McMillan andMelzer/Römer.1 IntroductionPetri nets are a widely used model for analyzing concurrent and distributed sys-tems. Often such a system must exhibit reactive, non-terminating behavior, andone of the key analysis problems is that of deadlock-freedom: Do all reachableglobal states of the system (markings of the net) enable some action (net transi-tion)? In this work we study this problem for a subclass of Petri nets, the 1-safePetri nets, which are capable of modelling �nite state systems. For 1-safe Petrinets the deadlock detection problem is PSPACE-complete in the size of the net[4], however, restricted subclasses of 1-safe Petri nets exist for which this problemis NP-complete [10, 11]. McMillan has presented a deadlock detection method

for Petri nets based on �nite complete pre�xes (i.e. net unfoldings) [10, 11]. Thebasic idea is to transform the PSPACE-complete deadlock detection problemfor a 1-safe Petri net into a potentially exponentially larger NP-complete prob-lem. This translation creates a �nite complete pre�x, which is an acyclic 1-safePetri net of a restricted form. Experimental results show that the blowup of thetransformation can in many cases be avoided [5, 10, 11, 12].In this work we address the NP-complete deadlock detection problem for�nite complete pre�xes. McMillan originally suggested a branch-and-bound al-gorithm for solving this problem. Recently, Melzer and Römer have presentedanother algorithm which is based on solving mixed integer programming prob-lems generated from pre�xes [12]. Their approach seems to be faster than McMil-lan's on examples in which a large percentage of the events of the pre�x are socalled cut-o� events. However, if this assumption does not hold, the run timesare generally slower than those of the McMillan's algorithm [12].In this work we study an approach that is similar to that of Melzer andRömer in the way of being capable of handling cases with a large percentage ofcut-o� events but with more competitive performance. Instead of mixed integerprogramming our approach is based on a constraint-based logic programmingframework [13, 14, 15]. We translate the deadlock detection problem into theproblem of �nding a stable model of a logic program. As a side result we alsoobtain such a translation for checking the reachability problem, which is alsoNP-complete in the size of the pre�x [4]. For the deadlock detection problem wepresent experimental results, and �nd our approach competitive with the twoprevious approaches.The rest of the paper is divided as follows. First we present Petri net nota-tions used in the paper. In Sect. 3 we will introduce the rule-based constraint pro-gramming framework. Section 4 contains the main results of this work, linear-sizetranslations from deadlock and reachability property checking into the problemof �nding a stable model of a logic program. In Sect. 5 we present experimentalresults from our implementation. In Sect. 6 we conclude and discuss directionsfor future research.2 Petri Net De�nitionsFirst we de�ne basic Petri net notations. Next we introduce occurrence nets,which are Petri nets of a restricted form. Then branching processes are given asa way of describing partial order semantics for Petri nets. Last but not least wede�ne �nite complete pre�xes as a way of giving a �nite representation of thispartial order behavior. We follow mainly the notation of [5, 12].2.1 Petri NetsA triple hS; T; F i is a net if S \ T = ; and F � (S � T) [(T � S). Theelements of S are called places, and the elements of T transitions. Places andtransitions are also called nodes. We identify F with its characteristic function

on the set (S � T) [(T � S). The preset of a node x, denoted by �x, is the setfy 2 S [T jF (y; x) = 1g. The postset of a node x, denoted by x�, is the setfy 2 S [T jF (x; y) = 1g. Their generalizations on sets of nodes X � S [T arede�ned as �X = Sx2X �x, and X� = Sx2X x� respectively.A marking of a net hS; T; F i is a mapping S 7! IN. A markingM is identi�edwith the multi-set which containsM(s) copies of s for every s 2 S. A 4-tuple � =hS; T; F;M0i is a net system if hS; T; F i is a net andM0 is a marking of hS; T; F i.A markingM enables a transition t if 8s 2 S : F (s; t) �M(s). If t is enabled, itcan occur leading to a new marking (denoted M t!M 0), where M 0 is de�ned by8s 2 S : M 0(s) = M(s)� F (s; t) + F (t; s). A marking M is a deadlock markingi� no transition t is enabled by M . A marking Mn is reachable in � i� thereexist a sequence of transitions t1; t2; : : : ; tn and markings M1;M2; : : : ;Mn�1such that: M0 t1! M1 t2! : : :Mn�1 tn! Mn. A reachable marking is 1-safe if8s 2 S : M(s) � 1. A net system � is 1-safe if all its reachable markings are1-safe. In this work we will restrict ourselves to the set of net systems which are1-safe, have a �nite number of places and transitions, and also in which eachtransition t 2 T has both nonempty pre- and postsets.2.2 Occurrence NetsWe use �F to denote the re�exive transitive closure of F . Let hS; T; F i be a netand let x1; x2 2 S [T . The nodes x1 and x2 are in con�ict, denoted by x1#x2,if there exist t1; t2 2 T such that t1 6= t2, �t1 \ �t2 6= ;, t1 �F x1, and t2 �F x2.An occurrence net is a net N = hB;E; F i such that:� 8b 2 B : j�bj � 1,� F is acyclic, i.e. the irre�exive transitive closure of F is a partial order,� N is �nitely preceded, i.e. for any node x of the net, the set of nodes y suchthat y �F x is �nite, and� 8x 2 S [T : :(x#x).The elements of B and E are called conditions and events, respectively. The setMin(N) denotes the set of minimal elements of the transitive closure of F . Acon�guration C of an occurrence net is a set of events satisfying:� If e 2 C then 8e0 2 E : e0 �F e implies e0 2 C (C is causally closed),� 8e; e0 2 C : :(e#e0) (C is con�ict-free).2.3 Branching ProcessesBranching processes are �unfoldings� of net systems and were introduced byEngelfriet [3]. Let N1 = hS1; T1; F1i and N2 = hS2; T2; F2i be two nets. A homo-morphism is a mapping S1 [T1 7! S2 [T2 such that: h(S1) � S2 ^ h(T1) � T2,and for all t 2 T1, the restriction of h to �t is a bijection between �t and �h(t),and similarly for t� and h(t)�. A branching process of a net system � is a tu-ple � = hN 0; hi, where N 0 is a occurrence net, and h is a homomorphism from

N 0 to hS; T; F i such that: the restriction of h to Min(N 0) is a bijection be-tween Min(N 0) and M0, and 8e1; e2 2 E, if �e1 = �e2 ^ h(e1) = h(e2) thene1 = e2. The set of places associated with a con�guration C of � is denoted byMark(C) = h((Min(N)[C�) n �C). A con�guration C is a deadlock con�gura-tion i� the set (Min(N) [C�) n �C does not enable any event e 2 E.2.4 Finite Complete Pre�xesA �nite branching process � is a �nite complete pre�x of a net system � i� foreach reachable marking M of � there exists a con�guration C of � such that:� Mark(C) =M , and� for every transition t enabled in M there exists a con�guration C [feg suchthat e 62 C and h(e) = t.Algorithms to obtain a �nite complete pre�x � given a 1-safe net system � arepresented in e.g. [5, 10, 11]. The algorithms will mark some events of the pre�x� as special cut-o� events, which we denote by the set CutO�s(�) � E. Theintuition behind cuto� events is that for each cut-o� event e there already existsanother event e0 in the pre�x. The markings reachable after executing e canalso be reached after executing e0, and thus the markings after e need not to beconsidered any further. Due to space limitations we direct the reader interestedin the approach to [5, 10, 11, 12].3 Rule-Based Constraint ProgrammingWe will use normal logic programs with stable model semantics [6] as the un-derlying formalism into which the deadlock and reachability problems for 1-safePetri nets are translated. This section is to a large extent based on [15].The stable model semantics is one of the main declarative semantics for nor-mal logic programs. However, here we use logic programming in a way that isdi�erent from the typical PROLOG style paradigm, which is based on the ideaof evaluating a given query. Instead, we employ logic programs as a constraintprogramming framework [13], where stable models are the solutions of the pro-gram rules seen as constraints. We consider normal logic programs that consistof rules of the form h a1; : : : ; an;not (b1); : : : ;not (bm) (1)where a1; : : : ; an; b1; : : : ; bm and h are propositional atoms. Such a rule can beseen as a constraint saying that if atoms a1; : : : ; an are in a model and atomsb1; : : : ; bm are not in a model, then the atom h is in a model. The stable model se-mantics also enforces minimality and groundedness of models. This makes manycombinatorial problems easily and succinctly describable using logic program-ming with stable model semantics.We will demonstrate the basic behavior of the semantics using programsP1-P4:

P1: a not (b) P2: a a P3: a not (a) P4: a not (b); cb not (a) b not (a)Program P1 has two stable models: fag and fbg. The property of this programis that we may freely make negative assumptions as long as we do not bumpinto any contradictions. For example, we may assume not (b) in order to deducethe stable model fag. Program P2 has the empty set as its unique stable model.This exposes the fact that we can't use positive assumptions to deduce whatis to be included in a model. Program P3 is an example of a program whichhas no stable models. If we assume not (a), then we will deduce a, which willcontradict with our assumption not (a). Program P4 has one stable model fbg.If we assume not (a) then we will deduce b. If we assume not (b) then we can'tdeduce a, because c can't be deduced from our assumptions.The stable model semantics for a normal logic program P is de�ned as fol-lows [6]. The reduct PA of P with respect to the set of atoms A is obtained(i) by deleting each rule in P that has a not-atom not (x) in its body such thatx 2 A and (ii) by deleting all not-atoms in the remaining rules. A set of atomsA is a stable model of P if and only if A is the deductive closure of PA whenthe rules in PA are seen as inference rules.A non-deterministic way of constructing stable models is to guess whichassumptions (not-atoms of the program) to use, and then check using the de-ductive closure (in linear time) whether the resulting model agrees with theassumptions. The problem of determining the existence of a stable model is infact NP-complete [9].3.1 The tool smodelsThere is a tool, the smodels system [14, 15], which provides an implementationof logic programs as a rule-based constraint programming framework. It �nds(some or all) stable models of a logic program. It can also tell when the programhas no stable models. It contains strong pruning techniques to make the problemtractable for a large class of programs. The smodels implementation needs spacelinear in the size of the input program [15].The stable model semantics is de�ned using rules of the form (1). Thesmodels 2 handles extended rule types, which can be seen as succinct en-codings of sets of basic rules. One of the rule types is a rule of the form:h 2fa1; : : : ; ang. The semantics of this rule is that if two or more atomsfrom the set a1; : : : ; an belong to the model, then also the atom h will be in themodel. It is easy to see that this rule can be encoded by using N2�N2 basic rulesof the form: h ai; aj. Using an extended rule instead of the correspondingbasic rule encoding was necessary to achieve a linear-size translation of the twoproblems at hand.We also use the so called integrity rules in the programs. They are rules withno head, i.e. of the form: a1; : : : ; an;not (b1); : : : ;not (bm). The semantics is

the following: A new atom f is introduced to the program, and the integrity ruleis replaced by: f a1; : : : ; an;not (b1); : : : ;not (bm);not (f). It is easy to seethat any set of atoms, such that a1; : : : ; an are in a model and atoms b1; : : : ; bmare not in a model, is not a stable model. It is also easy to see that the ruledoesn't add any new stable models. The last extended rule we use is of the form:fhg a1; : : : ; an. The semantics is the following: A new atom h0 is introducedto the program, and the rule is replaced by two rules: h a1; : : : ; an;not (h0),and h0 not (h). The atom h0 is removed from any stable models it appears in,and the rest of the model gives the semantics for the extended rule.4 Translating Deadlock and Reachability PropertyChecking into Logic ProgramsIn this section we present the translations of deadlock and reachability propertiesinto logic programs with stable model semantics. For the deadlock property themain result can be seen as a rephrasing of the Theorem 4 of [12], where mixed in-teger programming has been replaced by the rule-based constraint programmingframework. For the reachability property we give another translation.In this work we assume that the set of events of a �nite complete pre�x isnon-empty. If it is empty, the corresponding net system would have no eventsenabled in the initial state, and then the deadlock and reachability propertiescan be trivially solved by looking at the initial state only.Now we are ready to de�ne our translation from the �nite complete pre-�xes into logic programs with stable model semantics. The basic part of ourtranslation is given next. It translates the notion of a con�guration of a �nitecomplete pre�x into the problem of �nding a stable model of a logic program.The de�nitions will be followed by an example translation given in Fig. 1.First we de�ne some additional notation. We assume a unique numbering ofthe events (and conditions) of the �nite complete pre�x. We use the notation ei(bi) to refer to the event (condition) number i. In the logic programs ei, (bi) isan atom of the logic program corresponding to the event ei (condition bi).De�nition 1. Let � = hN; hi with N = hB;E; F i be a �nite complete pre�xof a given 1-safe net system �. Let PB(�) be a logic program containing thefollowing rules:1. For all ei 2 E n CutO�s(�) a rule:ei ep1 ; : : : ; epn , not (bei),such that fep1 ; : : : ; epng = �(�ei).2. For all ei 2 E n CutO�s(�) a rule:bei not (ei).3. For all bi 2 B such that jbi� n CutO�s(�)j � 2 a rule: 2fep1 ; : : : ; epng,such that fep1 ; : : : ; epng = bi� n CutO�s(�).

In the logic program de�nitions of this paper we use the convention that apart of a rule will be omitted, if the corresponding set evaluates to the emptyset. For example rule 1 for an event ei, such that �(�ei) = ;, would become: ei not (bei). The translation above could be trivially extended to also includethe cut-o� events, but they are not needed by the applications in this work.We de�ne a mapping from a set of events of the pre�x to a set of atoms of alogic program and vice versa.De�nition 2. The set of atoms of a logic program P corresponding to a set ofevents C � E n Cuto�s(�) of a �nite complete pre�x � is Model (C) = fei j ei 2Cg [fbej j ej 2 E n fC [Cuto�s(�)gg.De�nition 3. The set of events corresponding to a stable model � of a logicprogram P is Events(�) = fei 2 E j ei 2 �g.Now we are ready to state the correspondence between the �nite completepre�x and the core part of our translation. Proofs of the theorems are omitted.Theorem 1. Let � be a �nite complete pre�x of a 1-safe net system �, let PB(�)be the logic program translation by Def. 1, and let C be a con�guration of �, suchthat C \Cuto�s(�) = ;. Then the set of atoms � = Model (C) is a stable modelof PB(�). Additionally, the mapping Events(�) is a bijective mapping from thestable models of PB(�) to the con�gurations of � which contain no cut-o� events.Next we move to the deadlock translation. We add a set of rules to theprogram which place additional constraints on the stable models of the programPB(�). We add integrity rules to the program, which remove all stable models ofthe basic program which are not deadlocks. To do this we model the the enablingof each event (cut-o� or not) of the pre�x in the logic program.De�nition 4. Let � be a �nite complete pre�x of a given 1-safe net system �.Let PD(�) be a logic program containing all the rules of the program PB(�) ofDef. 1, and also the following rules:1. For all bi 2 fbj 2 B j bj� 6= ;g a rule:bi el, not (ep1), : : : , not (epn),such that felg = �bi, and fep1 , : : : , epng = bi� n CutO�s(�).2. For all ei 2 E a rule: bp1 ; : : : ; bpn ,such that fbp1 ; : : : ; bpng = �ei.Theorem 2. Let � be a �nite complete pre�x of a 1-safe net system �, and letPD(�) be the logic program translation by Def. 4. There exists a stable model ofPD(�) i� � has a reachable deadlock marking M . Additionally, for any stablemodel � of PD(�), the set of events C = Events(�) is a deadlock con�gurationof �, such that Mark (C) is a reachable deadlock marking of �.

s1 s2

b1(s1) b2(s2)

b11(s1)

b3(s3)

e4(t1) e5(t4)

b5(s4)b4(s4)

e6(t4)

b7(s2) b10(s2)

e8(t5)e7(t3)

b8(s5)b9(s4)

e3(t5)

b6(s5)

e1(t2) e2(t3)

N2:

s3

t3 t4

s4

t5

s5

t1 t2

N1: PD(N2) :e1 not (be1)be1 not (e1)e2 not (be2)be2 not (e2)e3 not (be3)be3 not (e3)e5 e1; not (be5)be5 not (e5)e8 e5; not (be8)be8 not (e8) 2fe1; e2; e3gb1 not (e1)b2 not (e1); not (e2); not (e3)b3 e1b4 e1; not (e5)b5 e2b7 e5; not (e8) b1; b2 b2 b3 b4 b5 b7Fig. 1. Deadlock translation example.In Fig. 1 an example of the deadlock translation is given. The pre�x N2is a �nite complete pre�x of the 1-safe nets system N1. The cut-o� events ofN2 are marked with crosses. The translated program PD(N2) has only onestable model � = fbe1; be2; e3; be5; be8; b1g, and the set Events(�) = fe3g is adeadlock con�guration of N2.Next we will preset a way of translating reachability problems. First we needa way of making statements about an individual marking M .De�nition 5. An assertion on a marking of a 1-safe net system � = hS; T; F;M0iis a tuple hS+; S�i, where S+; S� � S, and S+\S� = ;. The assertion hS+; S�iagrees with a marking M of � i�:S+ � fs 2 S jM(s) = 1g ^ S� � fs 2 S jM(s) = 0g:With assertions we can easily formulate both the reachability and submark-ing reachability problems. The idea is again to add some integrity rules to theprogram which remove all stable models of PB(�) which do not agree with the

assertion. The basic structure is the same as for deadlocks, however we also needa set of atoms which represent the marking of the original net.De�nition 6. Let � be a �nite complete pre�x of a given 1-safe net system �= hS; T; F;M0i, and let � = hS+; S�i be an assertion on the places of �. LetPR(�; �) be a logic program containing all the rules of the program PB(�) of Def.1, and also the following rules:1. For all bi 2 fbj 2 B jh(bj) 2 S+ [S� ^ �bj 2 E n Cuto�s(�)g a rule:bi el, not (ep1), : : : , not (epn),such that felg = �bi, and fep1 , : : : , epng = bi� n CutO�s(�).2. For all bi 2 fbj 2 B jh(bj) 2 S+ [S� ^ �bj 2 E n Cuto�s(�)g a rule:si bi,such that si = h(bi).3. For all si 2 S+ a rule: not (si).4. For all si 2 S� a rule: si.Note that in the de�nition above only conditions of the pre�x � and places of� which can a�ect the assertion � are translated. Also cut-o� postset conditionsare not translated, because cut-o�s will not be �red by the translation.Theorem 3. Let � be a �nite complete pre�x of a 1-safe net system �, and letPR(�; �) be a logic program translation by Def. 6. The logic program PR(�; �) hasa stable model i� there exists a reachable marking of � which agrees with �. Ad-ditionally, for any stable model � of PR(�; �), the con�guration C = Events(�)is a con�guration of �, such that Mark (C) is a reachable marking of � whichagrees with �.It is easy to see that the sizes of all the translations are linear in the size of thepre�x �, i.e. O(jBj+ jEj+ jF j). Because the rule-based constraint programmingsystem we use needs linear space in the size of the input program, deadlock andreachability property checking exploiting these translations can be made usinglinear space in the size of the pre�x. The translations are also local, which makesthem straightforward to implement using linear time in the size of the pre�x.5 Deadlock Property Checking ImplementationWe have implemented the deadlock property checking translation using C++,and we plan on implementing the reachability translation in the near future.The translation reads a binary �le containing the description of a �nite com-plete pre�x generated by the PEP-tool [7]. It generates a logic program using

the deadlock translation, which is then through an internal interface given tothe smodels stable model generator. The translation performs the following op-timizations:1. Not generating the program i� the number of cut-o� events is zero.2. Removal of blocking of �stubborn� transitions: If we �nd an event ei such that(�ei)� n Cuto�s(�) = feig, the corresponding rule of type 1 of the programPB(�) is replaced by a rule of the form: ei ep1 ; : : : ; epn , and the rule 2 ofthe form: bei not (ei) is not created. Also the corresponding liveness ruleof type 2 of the program PD(�) of the form: bp1 ; : : : ; bpn does not need tobe created as far as the event ei is concerned.3. Removal of redundant condition rules: The rule of type 1 of the programPD(�) corresponding to condition bi is removed if the atom bi is does notappear elsewhere in the program.4. Removal of redundant atoms: If a rule of the form: a1 a2 would be gen-erated, and this is the only rule in which a1 appears as a head, then allinstances of a1 are replaced by a2, and the rule is discarded.5. Duplicate rule removal: Only one copy of each rule is generated.For the optimization 1 it is easy to see that the net system � will deadlock,because the �nite complete pre�x is �nite and does not contain any cut-o�s.Thus the net system � can �re only a �nite number of transitions. It also isstraightforward to prove that the optimizations 3-5 do not alter the number ofstable models the program has. The optimization 2 is motivated by stubbornsets [16]. The intuition is that whenever ei is enabled, it must be disabled inorder to reach a deadlock. However the only way of disabling ei is to �re it.Therefore we can discard all con�gurations in which ei is enabled as not beingdeadlock con�gurations.We argue that optimization 2 is correct, i.e. the stable models of the programPD(�) are not a�ected by it (modulo the possible removal of the atom bei fromthe set of atoms of the optimized program). Consider the original program, andan optimized one in which an event ei has been optimized using optimization 2.If we look only at the two programs without the deadlock detection parts addedby Def. 4, their only di�erence is that in the original program it is possible toleave the event ei enabled but not �red, while this is not possible in the optimizedprogram. Thus clearly the set of stable models of the optimized program is asubset of the stable models of the original one. If we have any con�guration inwhich the event ei is enabled but is not �red, then the set of atoms correspondingto this con�guration is not a stable model of the original program. This is thecase because the integrity rule of type 2 of Def. 4 corresponding to the event eieliminates such a potential stable model. Therefore the optimized program willhave the same number of stable models as the original one.We do quite an extensive set of optimizations. The optimizations 1 and 2 aredeadlock detection speci�c. The optimizations 3-5 can be seen as general logicprogram optimizations based on static analysis, and could in principle be donein the stable model generator after the translation. The optimizations 1-4 are

implemented using linear time and space in the size of the pre�x. The duplicaterule removal is implemented with hashing.We use succinct rule encodings with extended rules when possible. The tworules ei ep1 ; : : : ; epn , not (bei), and bei not (ei) can be more succinctlyencoded by an extended rule of the form: feig ep1 ; : : : ; epn . Also 2fa1; a2gis replaced by: a1; a2. We also sort the rules after the translation. In ourexperiments the sorting seems to have only a minimal e�ect on the total runningtime, but produces nicer looking logic program (debugging) output.After the translation has been created, the smodels computational engine isused to check whether a stable model of the program exists. If one exists, thedeadlock checker outputs an example deadlock con�guration using the foundstable model. Otherwise the program tells that the net is deadlock free.5.1 Experimental ResultsWe have made experiments with our approach using examples by Corbett [2],McMillan [10, 11], and Melzer and Römer [12]. They were previously used byMelzer and Römer in [12] and by Best and Römer in [1], where additional infor-mation can be found. We compare our approach with two other �nite completepre�x based deadlock checking methods. The �rst method is the branch-and-bound deadlock detection algorithm by McMillan [10, 11, 12], and the other isthe mixed integer programming approach by Melzer and Römer [12].The Figures 2-4 present the running times in seconds for the various al-gorithms used in this work, and for the mixed integer programming approachthose presented in [12]. The running times have been measured using a Pen-tium 166MHz, 64MB RAM, 128MB swap, Linux 2.0.29, g++ 2.7.2.1, smodelspre-2.0.30, McMillan's algorithm version 2.1.0 by Stefan Römer, and PEP 1.6g.The experiments with the mixed integer programming approach by Melzer andRömer used a commercial MIP-solver CPLEX, and were conducted on a Sparc-station 20/712, 96MB RAM.The rows of the tables correspond to di�erent problems. The columns repre-sent: sum of user and system times measured by /usr/bin/time command, ortimes reported in [12], depending on the column:� Unf = time for unfolding (creation of the �nite complete pre�x) (PEP).� DCMIP = time for Mixed integer programming approach in [12].� DCMcM = time for McMillan's algorithm, average of 4 runs.� DCsmo = time for smodels based deadlock checker, average of 4 runs.The marking vm(n) notes that the program ran out of virtual memory after nseconds. The other �elds of the �gures are as follows: jBj: number of conditions,jEj: number of events, #c: number of cut-o� events, DL: Y - the net systemhas a deadlock, CP: choice points i.e. the number of nondeterministic guessessmodels did during the run. The DCsmo column also includes the logic programtranslation time, which was always under 10 seconds for the examples.

Problem(size) jBj jEj #c DL CP Unf1 DC2MIP DC1McM DC1smoDPD(5) 1582 790 211 N 0 0.6 17.3 1.6 1.0DPD(6) 3786 1892 499 N 0 3.2 82.8 12.3 6.1DPD(7) 8630 4314 1129 N 0 17.4 652.6 128.9 31.4DPH(5) 2712 1351 547 N 0 1.3 42.9 6.5 1.8DPH(6) 14474 7231 3377 N 0 33.7 1472.8 1063.7 32.9DPH(7) 81358 40672 21427 N 0 929.3 - vm(1690.2) 760.6ELEVATOR(2) 1562 827 331 Y 2 0.6 2.3 0.5 0.7ELEVATOR(3) 7398 3895 1629 Y 3 10.3 14.5 10.1 15.0ELEVATOR(4) 32354 16935 7337 Y 4 186.1 387.8 268.8 231.7FURNACE(1) 535 326 189 N 0 0.1 0.3 0.2 0.0FURNACE(2) 5139 3111 1990 N 0 3.2 18.1 11.1 0.6FURNACE(3) 34505 20770 13837 N 0 134.7 1112.5 vm(392.5) 7.1RING(5) 339 167 37 N 0 0.1 1.3 0.1 0.1RING(7) 813 403 79 N 0 0.2 17.1 0.2 0.4RING(9) 1599 795 137 N 0 0.7 71.2 0.7 2.2RW(6) 806 397 327 N 0 0.1 0.7 0.3 0.0RW(9) 9272 4627 4106 N 0 2.0 58.5 68.2 0.4RW(12) 98378 49177 45069 N 0 137.5 24599.9 vm(3050.5) 4.2Fig. 2. Measured running times in seconds:1 = Pentium 166MHz, 64MB RAM, Linux 2.0.29.2 = Sparcstation 20/712, 96MB RAM [12].The logic programming approach using the smodels system was able to pro-duce an answer for all the examples presented here, while the McMillan's algo-rithm implementation ran out of virtual memory on some of the larger exam-ples. Our approach was sometimes much faster, see e.g. FURNACE(3), RW(12),SYNC(3), BDS(1), GASQ(4), and Q(1). The McMillan's algorithm was fasterthan our approach on the following problem classes: RING, HART, SENT andSPD. These problems are quite easy for both methods, running times for the�rst three were a few seconds, and for the fourth still well under 30 seconds. Onthe DME and KEY examples our approach is scaling better as the problem sizesincrease. McMillan's algorithm is most competitive when the number of cut-o�events is relatively small.We do not have access to the MIP-solver used in [12], and also our experi-ments in [8] seem to indicate that the computer we made our experiments on isfaster than theirs. This makes it di�cult to comment on the absolute runningtimes between di�erent machines. However our approach is scaling better onmost examples, see e.g. RW, DME, and SYNC examples.An observation that should be made is that the number of choice points forsmodels in these examples is very low, with a maximum of 9 choice points in theexample SPD(1). This means that on this example set the search space pruningtechniques were very e�ective in minimizing the number of nondeterministicchoices that were needed to solve the examples.

Problem(size) jBj jEj #c DL CP Unf1 DC2MIP DC1McM DC1smoDME(2) 487 122 4 N 0 0.1 1.9 0.1 0.1DME(3) 1210 321 9 N 0 0.3 64.6 0.3 0.8DME(4) 2381 652 16 N 0 1.1 216.1 1.4 3.9DME(5) 4096 1145 25 N 0 3.2 1968.3 5.5 13.7DME(6) 6451 1830 36 N 0 8.5 13678.3 20.1 38.0DME(7) 9542 2737 49 N 0 18.1 - 66.1 86.7DME(8) 13465 3896 64 N 0 37.0 - 196.0 182.3DME(9) 18316 5337 81 N 0 70.0 - 542.2 366.6DME(10) 24191 7090 100 N 0 124.0 - 1268.4 646.1DME(11) 31186 9185 121 N 0 207.0 - 3070.9 1134.8SYNC(2) 4007 2162 490 N 0 4.6 171.6 37.0 1.8SYNC(3) 29132 15974 5381 N 0 218.6 11985.0 14073.3 66.5Fig. 3. Measured running times in seconds:1 = Pentium 166MHz, 64MB RAM, Linux 2.0.29.2 = Sparcstation 20/712, 96MB RAM [12].The example nets and C++ source code for our translation including smodelsare available from: http://saturn.hut.fi/�kepa/experiments/tacas99/6 ConclusionsOur main contribution is a method to transform the deadlock and reachabilityproblems for 1-safe Petri nets into the problem of �nding a stable model of a logicprogram. We do this translation in two steps: (i) Existing methods and tools areused to generate a �nite complete pre�x of the 1-safe Petri net [5, 7, 10, 11].(ii) The deadlock and reachability problems for the �nite complete pre�x aretranslated into the problem of �nding a stable model of a logic program. Thisstep uses the two new translations presented in this work, both of which arelinear in the size of the pre�x.We present experimental results to support the feasibility of this approach forthe deadlock detection problem. We use an existing constraint-based logic pro-gramming framework, the smodels system, for solving the problem of �nding astable model of a logic program. Our experiments show that the approach seemsto be quite robust and competitive on the examples available to us. More exper-iments are needed to evaluate the feasibility of the approach on the reachabilityproblem.There are interesting topics for future research. It seems possible to extendthe translations to allow for a larger class of Petri nets to be translated, while stillkeeping the problem NP-complete. McMillan's algorithm can be seen to be moregoal directed algorithm than our approach, and an alternative translation usingthe basic ideas of McMillan's algorithm could be created. The smodels systemis quite a general purpose constraint propagation based search engine. Creatingspecialized algorithms for the two problems at hand could further improve the

Problem(size) jBj jEj #c DL CP Unf1 DC1McM DC1smoBDS(1) 12310 6330 3701 N 0 18.3 171.9 4.1FTP(1) 178077 89042 35247 N 0 6470.5 vm(5413.1) 2080.0GASN(3) 2409 1205 401 N 0 1.2 13.2 2.4GASN(4) 15928 7965 2876 N 0 49.3 2630.4 105.5GASN(5) 100527 50265 18751 N 0 1972.7 vm(3393.7) 3958.4GASQ(3) 2593 1297 490 N 0 1.3 10.1 2.4GASQ(4) 19864 9933 4060 N 0 72.9 4170.3 127.5OVER(4) 1561 797 240 N 0 0.6 0.9 0.1OVER(5) 7388 3761 1251 N 0 11.9 38.1 0.9HART(50) 354 202 1 Y 5 0.1 0.0 0.2HART(75) 529 302 1 Y 6 0.3 0.1 0.4HART(100) 704 402 1 Y 6 0.4 0.1 0.8KEY(2) 1304 650 201 Y 5 0.5 0.3 0.7KEY(3) 13885 6940 2921 Y 5 41.0 38.8 68.4KEY(4) 135556 67775 32081 Y 8 3457.8 vm(3930.9) 4418.7MMGT(3) 11575 5841 2529 Y 0 22.6 592.4 20.0MMGT(4) 92940 46902 20957 Y 0 1466.2 vm(3068.0) 1375.2Q(1) 16090 8402 1173 Y 5 89.5 71.2 4.7SENT(75) 533 266 40 Y 6 0.2 0.1 0.3SENT(100) 608 291 40 Y 6 0.3 0.1 0.4SPD(1) 5317 3138 1311 Y 9 6.1 8.4 21.8Fig. 4. Measured running times in seconds:1 = Pentium 166MHz, 64MB RAM, Linux 2.0.29.competitiveness of our approach. The subject of applying our approach to someform of model checking is a very interesting area for future research.7 AcknowledgementsThe author would like to thank Ilkka Niemelä for introducing him into the rule-based constraint programming framework, and for many constructive ideas forthis paper. The tool smodels was programmed by Patrik Simons, who gavevaluable support for its usage. Stephan Melzer and Stefan Römer provided theexample nets, and also Linux binaries for McMillan's algorithm, which both wereinvaluable. Thanks to Burkhard Graves and Bernd Grahlmann for supplying Csource code to read PEP pre�x �les. The �nancial support of Helsinki GraduateSchool on Computer Science and Engineering (HeCSE), and the Academy ofFinland are gratefully acknowledged.References[1] E. Best. Partial order veri�cation with PEP. In G. Holzmann, D. Peled, andV. Pratt, editors, Proceedings of POMIV'96, Workshop on Partial Order Methodsin Veri�cation. American Mathematical Society, July 1996.

[2] J. C. Corbett. Evaluating deadlock detection methods for concurrent software.Technical report, Department of Information and Computer Science, Universityof Hawaii at Manoa, 1995.[3] J. Engelfriet. Branching processes of Petri nets. In Acta Informatica 28, pages575�591, 1991.[4] J. Esparza and M. Nielsen. Decidability issues for Petri Nets - a survey. Journalof Information Processing and Cybernetics 30(3), pages 143�160, 1994.[5] J. Esparza, S. Römer, and W. Vogler. An improvement of McMillan's unfoldingalgorithm. In Proceedings of Second International Workshop on Tools and Algo-rithms for the Construction and Analysis of Systems (TACAS'96), pages 87�106,Passau, Germany, Mar 1996. Springer-Verlag. LNCS 1055.[6] M. Gelfond and V. Lifschitz. The stable model semantics for logic programming.In Proceedings of the 5th International Conference on Logic Programming, pages1070�1080, Seattle, USA, August 1988. The MIT Press.[7] B. Grahlmann. The PEP Tool. In Proceedings of CAV'97 (Computer AidedVeri�cation), pages 440�443. Springer-Verlag, June 1997. LNCS 1254.[8] K. Heljanko. Deadlock checking for complete �nite pre�xes using logic pro-grams with stable model semantics (extended abstract). In Proceedings ofthe Workshop Concurrency, Speci�cation & Programming 1998. Humboldt-University, Berlin, September 1998. Accepted for publication. Available at http://saturn.hut.�/�kepa/publications/KH_csp98.ps.gz.[9] W. Marek and M. Truszczy«ski. Autoepistemic logic. Journal of the ACM, 38:588�619, 1991.[10] K. L. McMillan. Using unfoldings to avoid the state space explosion problemin the veri�cation of asynchronous circuits. In Proceeding of 4th Workshop onComputer Aided Veri�cation (CAV'92), pages 164�174, 1992. LNCS 663.[11] K. L. McMillan. A technique of a state space search based on unfolding. In FormalMethods is System Design 6(1), pages 45�65, 1995.[12] S. Melzer and S. Römer. Deadlock checking using net unfoldings. In Proceedingof 9th International Conference on Computer Aided Veri�cation (CAV'97), pages352�363, Haifa, Israel, Jun 1997. Springer-Verlag. LNCS 1254.[13] I. Niemelä. Logic programs with stable model semantics as a constraint program-ming paradigm. In Proceedings of the Workshop on Computational Aspects ofNonmonotonic Reasoning, pages 72�79, Trento, Italy, May 1998. Helsinki Univer-sity of Technology, Digital Systems Laboratory, Research Report A52.[14] I. Niemelä and P. Simons. Smodels � an implementation of the stable modeland well-founded semantics for normal logic programs. In Proceedings of the 4thInternational Conference on Logic Programming and Non-Monotonic Reasoning,pages 420�429, Dagstuhl, Germany, July 1997. Springer-Verlag.[15] P. Simons. Towards constraint satisfaction through logic programs and thestable model semantics. Research Report A47, Helsinki University of Tech-nology, Espoo, Finland, August 1997. Licenciate's thesis, Available at http://saturn.hut.�/pub/reports/A47.ps.gz.[16] A. Valmari. A stubborn attack on state explosion. Formal Methods in SystemDesign, 1 (1992):297�322.

