
Fundamenta Informati
ae 37 (1999) 247�268 247IOS PressUsing Logi
 Programs with Stable ModelSemanti
s to Solve Deadlo
k and Rea
habilityProblems for 1-Safe Petri Nets�Keijo HeljankoyLaboratory for Theoreti
al Computer S
ien
eHelsinki University of Te
hnologyP.O. Box 5400, 02015 HUT, FinlandKeijo.Heljanko�hut.�
Abstra
t. M
Millan has presented a deadlo
k dete
tion method for Petri nets based on �-nite
omplete pre�xes (i.e. net unfoldings). The approa
h transforms the PSPACE-
ompletedeadlo
k dete
tion problem for a 1-safe Petri net into a potentially exponentially larger NP-
omplete problem of deadlo
k dete
tion for a �nite
omplete pre�x. M
Millan deviseda bran
h-and-bound algorithm for deadlo
k dete
tion in pre�xes. Re
ently, Melzer andRömer have presented another approa
h, whi
h is based on solving mixed integer program-ming problems. In this work it is shown that instead of using mixed integer programming, a
onstraint-based logi
 programming framework
an be employed, and a linear-size transla-tion from deadlo
k dete
tion in pre�xes into the problem of �nding a stable model of a logi
program is presented. As a side result also su
h a translation for solving the rea
habilityproblem is devised. Corre
tness proofs of both the translations are presented. Experimentalresults are given from an implementation
ombining the pre�x generator of the PEP-tool,the translation, and an implementation of a
onstraint-based logi
 programming framework,the smodels system. The experiments show the proposed approa
h to be quite
ompetitive,when
ompared to the approa
hes of M
Millan and Melzer/Römer.Keywords: Veri�
ation, Petri nets, logi
 programs, deadlo
k
he
king, rea
hability�This work is an extended version of [10℄.yAddress for
orresponden
e: Laboratory for Theoreti
al Computer S
ien
e, Helsinki University of Te
hnology,P.O. Box 5400, 02015 HUT, Finland

248 Keijo Heljanko / Logi
 Programs for Deadlo
k and Rea
hability1. Introdu
tionPetri nets are a widely used model for analyzing
on
urrent and distributed systems. Often su
ha system must exhibit rea
tive, non-terminating behavior, and one of the key analysis problemsis that of deadlo
k-freedom: Do all rea
hable global states of the system (markings of the net)enable some a
tion (net transition)? In this work we study this problem for a sub
lass of Petrinets, the 1-safe Petri nets, whi
h are
apable of modelling �nite state systems. For 1-safe Petrinets the deadlo
k dete
tion problem is PSPACE-
omplete in the size of the net [4℄, however,restri
ted sub
lasses of 1-safe Petri nets exist for whi
h this problem is NP-
omplete [12, 13℄.M
Millan has presented a deadlo
k dete
tion method for Petri nets based on �nite
ompletepre�xes (i.e. net unfoldings) [12, 13℄. The basi
 idea is to transform the PSPACE-
ompletedeadlo
k dete
tion problem for a 1-safe Petri net into a potentially exponentially larger NP-
omplete problem. This translation
reates a �nite
omplete pre�x, whi
h is an a
y
li
 1-safePetri net of a restri
ted form. Experimental results show that the blowup of the transformation
an in many
ases be avoided [5, 12, 13, 14℄.In this work we address the NP-
omplete deadlo
k dete
tion problem for �nite
ompletepre�xes. M
Millan originally suggested a bran
h-and-bound algorithm for solving this problem.Re
ently, Melzer and Römer have presented another algorithm whi
h is based on solving mixedinteger programming problems generated from pre�xes [14℄. Their approa
h seems to be fasterthan M
Millan's on examples in whi
h a large per
entage of the events of the pre�x are so
alled
ut-o� events. However, if this assumption does not hold, the run times are generally slowerthan those of the M
Millan's algorithm [14℄.In this work we study an approa
h that is similar to that of Melzer and Römer in theway of being
apable of handling
ases with a large per
entage of
ut-o� events but with more
ompetitive performan
e. Instead of mixed integer programming our approa
h is based on a
onstraint-based logi
 programming framework [15, 16, 17℄. We translate the deadlo
k dete
tionproblem into the problem of �nding a stable model of a logi
 program. As a side result we alsoobtain su
h a translation for
he
king the rea
hability problem, whi
h is also NP-
omplete in thesize of the pre�x [4℄. The main
ontribution of this work also in
ludes the detailed
orre
tnessproofs of the translations. For the deadlo
k dete
tion problem we present experimental results,and �nd our approa
h
ompetitive with the two previous approa
hes.The rest of the paper is divided as follows. First we present Petri net notations used in thepaper. In Se
t. 3 we will introdu
e the rule-based
onstraint programming framework. Se
tion4
ontains the main results of this work, linear-size translations from deadlo
k and rea
habilityproperty
he
king into the problem of �nding a stable model of a logi
 program, and their
orre
tness proofs. In Se
t. 5 we present experimental results from our implementation. In Se
t.6 we
on
lude and dis
uss dire
tions for future resear
h.

Keijo Heljanko / Logi
 Programs for Deadlo
k and Rea
hability 2492. Petri Net De�nitionsFirst we de�ne basi
 Petri net notations. Next we introdu
e o

urren
e nets, whi
h are 1-safePetri nets of a restri
ted form. Then bran
hing pro
esses are given as a way of des
ribing partialorder semanti
s for Petri nets. Last but not least we de�ne �nite
omplete pre�xes as a way ofgiving a �nite representation of this partial order behavior. We follow mainly the notation of[5, 14℄.2.1. Petri NetsA triple hS; T; F i is a net if S \ T = ; and F � (S � T) [(T � S). The elements of S are
alled pla
es, and the elements of T transitions. Pla
es and transitions are also
alled nodes. Weidentify F with its
hara
teristi
 fun
tion on the set (S � T) [(T � S). The preset of a node x,denoted by �x, is the set fy 2 S [T jF (y; x) = 1g. The postset of a node x, denoted by x�, isthe set fy 2 S [T jF (x; y) = 1g. Their generalizations on sets of nodes X � S [T are de�nedas �X = Sx2X �x, and X� = Sx2X x� respe
tively.A marking of a net hS; T; F i is a mapping S 7! IN. A marking M is identi�ed with themulti-set whi
h
ontains M(s)
opies of s for every s 2 S. A 4-tuple � = hS; T; F;M0i is a netsystem if hS; T; F i is a net and M0 is a marking of hS; T; F i. A marking M enables a transitiont if 8s 2 S : F (s; t) � M(s). If t is enabled, it
an o

ur leading to a new marking (denotedM t! M 0), where M 0 is de�ned by 8s 2 S : M 0(s) = M(s) � F (s; t) + F (t; s). A marking Mis a deadlo
k marking i� no transition t is enabled by M . A marking Mn is rea
hable in � i�there exist a sequen
e of transitions t1; t2; : : : ; tn and markings M1;M2; : : : ;Mn�1 su
h that:M0 t1!M1 t2! : : :Mn�1 tn!Mn. A rea
hable marking is 1-safe if 8s 2 S :M(s) � 1. A net system� is 1-safe if all its rea
hable markings are 1-safe. In this work we will restri
t ourselves to theset of net systems whi
h are 1-safe, have a �nite number of pla
es and transitions, and also inwhi
h ea
h transition t 2 T has both nonempty pre- and postsets.2.2. O

urren
e NetsWe use �F to denote the re�exive transitive
losure of F . Let hS; T; F i be a net and let x1; x2 2S [T . The nodes x1 and x2 are in
on�i
t, denoted by x1#x2, if there exist t1; t2 2 T su
h thatt1 6= t2, �t1 \ �t2 6= ;, t1 �F x1, and t2 �F x2. An o

urren
e net is a net N = hB;E; F i su
hthat:� 8b 2 B : j�bj � 1,� F is a
y
li
, i.e. the irre�exive transitive
losure of F is a partial order,� N is �nitely pre
eded, i.e. for any node x of the net, the set of nodes y su
h that y �F xis �nite, and� 8x 2 S [T : :(x#x).The elements of B and E are
alled
onditions and events, respe
tively. The setMin(N) denotesthe set of minimal elements of the transitive
losure of F . A
on�guration C of an o

urren
enet is a set of events satisfying:

250 Keijo Heljanko / Logi
 Programs for Deadlo
k and Rea
hability� If e 2 C then 8e0 2 E : e0 �F e implies e0 2 C (C is
ausally
losed),� 8e; e0 2 C : :(e#e0) (C is
on�i
t-free).The
o-set of a
on�guration is
alled a
ut: Cut(C) = (Min(N) [C�) n �C. A
on�guration Cis a deadlo
k
on�guration i� the set Cut(C) does not enable any event e 2 E.2.3. Bran
hing Pro
essesBran
hing pro
esses are �unfoldings� of net systems and were introdu
ed by Engelfriet [3℄. LetN1 = hS1; T1; F1i and N2 = hS2; T2; F2i be two nets. A homomorphism is a mapping S1 [T1 7!S2 [T2 su
h that: h(S1) � S2 ^ h(T1) � T2, and for all t 2 T1, the restri
tion of h to �t isa bije
tion between �t and �h(t), and similarly for t� and h(t)�. A bran
hing pro
ess of a netsystem � is a tuple � = hN 0; hi, where N 0 is a o

urren
e net, and h is a homomorphism fromN 0 to hS; T; F i su
h that: the restri
tion of h to Min(N 0) is a bije
tion between Min(N 0) andM0, and 8e1; e2 2 E, if �e1 = �e2 ^h(e1) = h(e2) then e1 = e2. The set of pla
es asso
iated witha
on�guration C of � is denoted by Mark(C) = h(Cut(C)).2.4. Finite Complete Pre�xesA �nite bran
hing pro
ess � is a �nite
omplete pre�x of a net system � i� for ea
h rea
hablemarking M of � there exists a
on�guration C of � su
h that:� Mark(C) =M , and� for every transition t enabled in M there exists a
on�guration C [feg su
h that e 62 Cand h(e) = t.Algorithms to obtain a �nite
omplete pre�x � given a 1-safe net system � are presented ine.g. [5, 12, 13℄. The algorithms will mark some events of the pre�x � as spe
ial
ut-o� events,whi
h we denote by the set CutO�s(�) � E. The intuition behind
uto� events is that for ea
h
ut-o� event e there already exists another event e0 in the pre�x. The markings rea
hable afterexe
uting e
an also be rea
hed after exe
uting e0, and thus the markings after e need not to be
onsidered any further. We dire
t the reader interested in the approa
h to [5, 12, 13, 14℄.3. Rule-Based Constraint ProgrammingWe will use normal logi
 programs with stable model semanti
s [7℄ as the underlying formalisminto whi
h the deadlo
k and rea
hability problems for 1-safe Petri nets are translated. Thisse
tion is to a large extent based on [17℄.The stable model semanti
s is one of the main de
larative semanti
s for normal logi
 pro-grams. However, here we use logi
 programming in a way that is di�erent from the typi
alPROLOG style paradigm, whi
h is based on the idea of evaluating a given query. Instead, weemploy logi
 programs as a
onstraint programming framework [15℄, where stable models are

Keijo Heljanko / Logi
 Programs for Deadlo
k and Rea
hability 251the solutions of the program rules seen as
onstraints. We
onsider normal logi
 programs that
onsist of rules of the form h a1; : : : ; an;not (b1); : : : ;not (bm) (1)where a1; : : : ; an; b1; : : : ; bm and h are propositional atoms. Su
h a rule
an be seen as a
onstraintsaying that if atoms a1; : : : ; an are in a model and atoms b1; : : : ; bm are not in a model, then theatom h is in a model. The stable model semanti
s also enfor
es minimality and groundedness ofmodels. This makes many
ombinatorial problems easily and su

in
tly des
ribable using logi
programming with stable model semanti
s.We will demonstrate the basi
 behavior of the semanti
s using programs P1-P4:P1: a not (b) P2: a a P3: a not (a) P4: a
;not (b)b not (a) b not (a)Program P1 has two stable models: fag and fbg. The property of this program is that wemay freely make negative assumptions as long as we do not bump into any
ontradi
tions. Forexample, we may assume not (b) in order to dedu
e the stable model fag. Program P2 has theempty set as its unique stable model. This exposes the fa
t that we
an't use positive assumptionsto dedu
e what is to be in
luded in a model. Program P3 is an example of a program whi
h hasno stable models. If we assume not (a), then we will dedu
e a, whi
h will
ontradi
t with ourassumption not (a). Program P4 has one stable model fbg. If we assume not (a) then we willdedu
e b. If we assume not (b) then we
an't dedu
e a, be
ause

an't be dedu
ed from ourassumptions.The stable model semanti
s for a normal logi
 program P is de�ned as follows [7℄. The redu
tPA of P with respe
t to the set of atoms A is obtained (i) by deleting ea
h rule in P that has anot-atom not (x) in its body su
h that x 2 A and (ii) by deleting all not-atoms in the remainingrules. A set of atoms A is a stable model of P if and only if A is the dedu
tive
losure of PAwhen the rules in PA are seen as inferen
e rules.A non-deterministi
 way of
onstru
ting stable models is to guess whi
h assumptions (not-atoms of the program) to use, and then
he
k using the dedu
tive
losure (in linear time) whetherthe resulting model agrees with the assumptions. The problem of determining the existen
e of astable model is in fa
t NP-
omplete [11℄.Next we give rest of the stable model semanti
s de�nitions, whi
h are needed in the proofs.De�nition 3.1. Let A be a set of atoms, we de�ne not (A) = fnot (a) j a 2 Ag.For a set of atoms and not-atoms B we denote the atoms in B by B+ and the set of not-atomsby B�. Atoms and not-atoms are also
alled literals. We denote with Atoms(P) the set of allpropositional atoms whi
h appear in the logi
 program P as literals. We use the notation � todenote the set Atoms(P) n�.De�nition 3.2. The dedu
tive
losure of a set of rules P and a set of literals B is denoted byD
l (P;B), where D
l (P;B) is the smallest set of atoms that
ontains B+ and is
losed under

252 Keijo Heljanko / Logi
 Programs for Deadlo
k and Rea
habilityR (P;B) whenR (P;B) = fh a1; : : : ; an;not (b1); : : : ;not (bm) 2 P and not (bi) 2 B�; for i = 1; : : : ;mgis seen as a set of inferen
e rules.The dedu
tive
losure gives us a �xpoint
hara
terization of the stable models.Proposition 3.1. The set � is a stable model of a set of rules P i� � = D
l (P;not (�)).Proof:Note that the redu
t P� = R (P;not (�)). ut3.1. The tool smodelsThere is a tool, the smodels system [16, 17℄, whi
h provides an implementation of logi
 programsas a rule-based
onstraint programming framework. It �nds stable models of a logi
 program,and
an also tell when the program has no stable models. The implementation is based onba
ktra
king sear
h te
hninique similar to the Davis Putnam method (see e.g. [6℄), and it usesa generalization of the well-founded semanti
s [20℄ to approximate the stable models and toprune the sear
h spa
e. The smodels implementation needs spa
e linear in the size of the inputprogram [17℄. The smodels seems to be the most e�
ient implementation of the stable modelsemanti
s
urrently available and it has been applied su

essfully in a number of areas in
ludingplanning and propositional satis�ability
he
king, see, e.g. [17℄.The stable model semanti
s is de�ned using rules of the form (1). The smodels 2 handlesextended rule types [18℄, whi
h
an be seen as su

in
t en
odings of sets of basi
 rules. One ofthe rule types is a rule of the form: h 2fa1; : : : ; ang. The semanti
s of this rule is that iftwo or more atoms from the set a1; : : : ; an belong to the model, then also the atom h will bein the model. It is easy to see that this rule
an be en
oded by using N2�N2 basi
 rules of theform: h ai; aj. Using an extended rule instead of the
orresponding basi
 rule en
oding wasne
essary to a
hieve a linear-size translation of the two problems at hand.We also use the so
alled integrity rules in the programs. They are rules with no head,i.e. of the form: a1; : : : ; an;not (b1); : : : ;not (bm). The semanti
s is given by the follow-ing: A new atom f is introdu
ed to the program, and the integrity rule is repla
ed by: f a1; : : : ; an;not (b1); : : : ;not (bm);not (f). It is easy to see that any set of atoms, su
h thata1; : : : ; an are in a model and atoms b1; : : : ; bm are not in a model, is not a stable model. It isalso easy to see that adding one integrity rule doesn't
reate any new stable models, and neitherdoes adding any set of integrity rules. The last extended rule we use is of the form: fhg a1; : : : ; an. The semanti
s is the following: A new atom h0 is introdu
ed to the program, andthe rule is repla
ed by two rules: h a1; : : : ; an;not (h0), and h0 not (h). The atom h0 isremoved from any stable models it appears in, and the rest of the model gives the semanti
s forthe extended rule.

Keijo Heljanko / Logi
 Programs for Deadlo
k and Rea
hability 2534. Translating Deadlo
k and Rea
hability Property Che
king intoLogi
 ProgramsIn this se
tion we present the translations of deadlo
k and rea
hability properties into logi
programs with stable model semanti
s. For the deadlo
k property the main result
an be seenas a rephrasing of the Theorem 4 of [14℄, where mixed integer programming has been repla
edby the rule-based
onstraint programming framework. For the rea
hability property we giveanother translation. In this work we assume that the set of events of a �nite
omplete pre�x isnon-empty. If it is empty, the
orresponding net system would have no events enabled in theinitial state, and then the deadlo
k and rea
hability properties
an be trivially solved by lookingat the initial state only.Now we are ready to de�ne our translation from the �nite
omplete pre�xes into logi
 pro-grams with stable model semanti
s. The basi
 part of our translation is given next. It translatesthe notion of a
on�guration of a �nite
omplete pre�x into the problem of �nding a stable modelof a logi
 program. The de�nitions will be followed by an example translation given in Fig. 1.First we de�ne some additional notation. We assume a unique numbering of the events(and
onditions) of the �nite
omplete pre�x. We use the notation ei (bi) to refer to the event(
ondition) number i. In the logi
 programs ei, (bi) is an atom of the logi
 program
orrespondingto the event ei (
ondition bi). In the logi
 program de�nitions we use the
onvention that a partof a rule will be omitted, if the
orresponding set evaluates to the empty set. For example ruleof type 1 of Def. 4.1 below for an event ei, su
h that �(�ei) = ;, would be
ome: ei not (bei).De�nition 4.1. Let � = hN;hi with N = hB;E; F i be a �nite
omplete pre�x of a given 1-safenet system �. Let PB(�) be a logi
 program
ontaining the following rules:1. For all ei 2 E n CutO�s(�) a rule:ei ep1 ; : : : ; epn , not (bei),su
h that fep1 ; : : : ; epng = �(�ei).2. For all ei 2 E n CutO�s(�) a rule:bei not (ei).3. For all bi 2 B su
h that jbi� n CutO�s(�)j � 2 a rule: 2fep1 ; : : : ; epng,su
h that fep1 ; : : : ; epng = bi� n CutO�s(�).The intuition behind the rules of the program PB(�) are the following. Rules of the type 1 givethe pre
onditions under whi
h an atom
orresponding to ea
h event
an exist in a
on�guration.Rules of the type 2 enable an event not to be in
luded in a
on�guration even if its pre
onditionsare present. Rules of the type 3 disallow all sets of events whi
h
ontain events in a
on�i
t. Notethat be
ause in pre�xes ea
h
ondition has only one event in its preset, the program above doesnot need atoms
orresponding to the
onditions of the pre�x. The translation above
ould be

254 Keijo Heljanko / Logi
 Programs for Deadlo
k and Rea
habilitytrivially extended to also in
lude the
ut-o� events, but they are not needed by the appli
ationsin this work.We de�ne a mapping from a set of events of the pre�x to a set of atoms of a logi
 programand vi
e versa.De�nition 4.2. The set of atoms of a logi
 program P
orresponding to a set of events C �E n Cuto�s(�) of a �nite
omplete pre�x � is Model(C) = fei j ei 2 Cg [fbej j ej 2 E n fC [Cuto�s(�)gg.De�nition 4.3. The set of events
orresponding to a stable model � of a logi
 program P isEvents(�) = fei 2 E j ei 2 �g.Now we are ready to state the
orresponden
e between the �nite
omplete pre�x and the basi
part of our translation.Theorem 4.1. Let � be a �nite
omplete pre�x of a 1-safe net system �, let PB(�) be the logi
program translation by Def. 4.1, and let C be a
on�guration of �, su
h that C \Cuto�s(�) = ;.Then the set of atoms � = Model(C) is a stable model of PB(�). Additionally, the mappingEvents(�) is a bije
tive mapping from the stable models of PB(�) to the
on�gurations of �whi
h
ontain no
ut-o� events.Proof:See Appendix A. utNext we move to the deadlo
k translation. We add a set of rules to the program whi
h pla
eadditional
onstraints on the stable models of the program PB(�). We add integrity rules to theprogram, whi
h remove all stable models of the basi
 program whi
h are not deadlo
ks. To dothis we model the the enabling of ea
h event (
ut-o� or not) of the pre�x in the logi
 program.De�nition 4.4. Let � be a �nite
omplete pre�x of a given 1-safe net system �. Let PD(�) bea logi
 program
ontaining all the rules of the program PB(�) of Def. 4.1, and also the followingrules:1. For all bi 2 fbj 2 B j bj� 6= ;g a rule:bi el, not (ep1), : : : , not (epn),su
h that felg = �bi, and fep1 , : : : , epng = bi� n CutO�s(�).2. For all ei 2 E a rule: bp1 ; : : : ; bpn ,su
h that fbp1 ; : : : ; bpng = �ei.Theorem 4.2. Let � be a �nite
omplete pre�x of a 1-safe net system �, and let PD(�) bethe logi
 program translation by Def. 4.4. There exists a stable model of PD(�) i� � has area
hable deadlo
k marking. Additionally, for any stable model � of PD(�), the set of eventsC = Events(�) is a deadlo
k
on�guration of �, su
h that Mark(C) is a rea
hable deadlo
kmarking of �.

Keijo Heljanko / Logi
 Programs for Deadlo
k and Rea
hability 255
s1 s2

b1(s1) b2(s2)

b11(s1)

b3(s3)

e4(t1) e5(t4)

b5(s4)b4(s4)

e6(t4)

b7(s2) b10(s2)

e8(t5)e7(t3)

b8(s5)b9(s4)

e3(t5)

b6(s5)

e1(t2) e2(t3)

N2:

s3

t3 t4

s4

t5

s5

t1 t2

N1:
PD(N2) :e1 not (be1)be1 not (e1)e2 not (be2)be2 not (e2)e3 not (be3)be3 not (e3)e5 e1; not (be5)be5 not (e5)e8 e5; not (be8)be8 not (e8) 2fe1; e2; e3gb1 not (e1)b2 not (e1); not (e2); not (e3)b3 e1b4 e1; not (e5)b5 e2b7 e5; not (e8) b1; b2 b2 b3 b4 b5 b7Figure 1. Deadlo
k translation example.Proof:See Appendix A. utIn Fig. 1 an example of the deadlo
k translation is given. The pre�x N2 is a �nite
ompletepre�x of the 1-safe nets system N1. The
ut-o� events of N2 are marked with
rosses. Thetranslated program PD(N2) has only one stable model � = fbe1; be2; e3; be5; be8; b1g, and theset Events(�) = fe3g is a deadlo
k
on�guration of N2.Next we will present a way of translating rea
hability problems. First we need a way ofmaking statements about an individual marking.De�nition 4.5. An assertion on a marking of a 1-safe net system � = hS; T; F;M0i is a tuplehS+; S�i, where S+; S� � S, and S+ \ S� = ;. The assertion hS+; S�i agrees with a markingM of � i�: S+ � fs 2 S jM(s) = 1g ^ S� � fs 2 S jM(s) = 0g:With assertions we
an easily formulate both the rea
hability and submarking rea
habilityproblems. The idea is again to add some integrity rules to the program whi
h remove all stable

256 Keijo Heljanko / Logi
 Programs for Deadlo
k and Rea
habilitymodels of PB(�) whi
h do not agree with the assertion. The basi
 stru
ture is the same as fordeadlo
ks, only a set of atoms whi
h represent the marking of the original net are added.De�nition 4.6. Let � be a �nite
omplete pre�x of a given 1-safe net system � = hS; T; F;M0i,and let � = hS+; S�i be an assertion on the pla
es of �. Let PR(�; �) be a logi
 program
ontaining all the rules of the program PB(�) of Def. 4.1, and also the following rules:1. For all bi 2 fbj 2 B jh(bj) 2 S+ [S� ^ �bj 2 E n Cuto�s(�)g a rule:bi el, not (ep1), : : : , not (epn),su
h that felg = �bi, and fep1 , : : : , epng = bi� n CutO�s(�).2. For all bi 2 fbj 2 B jh(bj) 2 S+ [S� ^ �bj 2 E n Cuto�s(�)g a rule:si bi,su
h that si = h(bi).3. For all si 2 S+ a rule: not (si).4. For all si 2 S� a rule: si.Note that only
onditions of the pre�x � and pla
es of � whi
h
an a�e
t the assertion � aretranslated. Also
ut-o� postset
onditions are not translated, be
ause
ut-o�s will not be �red.Theorem 4.3. Let � be a �nite
omplete pre�x of a 1-safe net system �, and let PR(�; �) be alogi
 program translation by Def. 4.6. The logi
 program PR(�; �) has a stable model i� thereexists a rea
hable marking of � whi
h agrees with �. Additionally, for any stable model � ofPR(�; �), the
on�guration C = Events(�) is a
on�guration of �, su
h that Mark(C) is area
hable marking of � whi
h agrees with �.Proof:See Appendix A. utIt is easy to see that the sizes of all the translations presented are linear in the size of thepre�x �, i.e. O(jBj + jEj + jF j). Be
ause the rule-based
onstraint programming system weuse needs linear spa
e in the size of the input program, deadlo
k and rea
hability property
he
king exploiting these translations
an be made using linear spa
e in the size of the pre�x.The translations are also lo
al, whi
h makes them straightforward to implement using lineartime in the size of the pre�x.5. Deadlo
k Property Che
king ImplementationWe have implemented the deadlo
k property
he
king translation, and we plan on implementingthe rea
hability translation in the near future. The translation reads a �le
ontaining the de-s
ription of a �nite
omplete pre�x generated by the PEP-tool [8℄. It generates a logi
 program

Keijo Heljanko / Logi
 Programs for Deadlo
k and Rea
hability 257using the deadlo
k translation, whi
h is then through an internal interfa
e given to the smodelsstable model generator. The translation performs the following optimizations:1. Not generating the program i� the number of
ut-o� events is zero.2. Removal of blo
king of �stubborn� transitions: If we �nd an event ei su
h that (�ei)� nCuto�s(�) = feig, the
orresponding rule of type 1 of the program PB(�) is repla
ed bya rule of the form: ei ep1 ; : : : ; epn , and the rule 2 of the form: bei not (ei) is not
reated. Also the
orresponding liveness rule of type 2 of the program PD(�) of the form: bp1 ; : : : ; bpn does not need to be
reated as far as the event ei is
on
erned.3. Removal of redundant
ondition rules: The rule of type 1 of the program PD(�)
orre-sponding to
ondition bi is removed if the atom bi is does not appear elsewhere in theprogram.4. Removal of redundant atoms: If a rule of the form: a1 a2 would be generated, and thisis the only rule in whi
h a1 appears as a head, then all instan
es of a1 are repla
ed by a2,and the rule is dis
arded.5. Dupli
ate rule removal: Only one
opy of ea
h rule is generated.For the optimization 1 it is easy to see that the net system � will deadlo
k, be
ause the �nite
omplete pre�x is �nite and does not
ontain any
ut-o�s. Thus the net system �
an �re onlya �nite number of transitions. It also is straightforward to prove that the optimizations 3-5 donot alter the number of stable models the program has. The optimization 2 is motivated bystubborn sets [19℄. The intuition is that whenever ei is enabled, it must be disabled in order torea
h a deadlo
k. However the only way of disabling ei is to �re it. Therefore we
an dis
ard all
on�gurations in whi
h ei is enabled as not being deadlo
k
on�gurations.We argue that optimization 2 is
orre
t, i.e. the stable models of the program PD(�) arenot a�e
ted by it (modulo the possible removal of the atom bei from the set of atoms of theoptimized program). Consider the original program, and an optimized one in whi
h an eventei has been optimized using optimization 2. If we look only at the two programs without thedeadlo
k dete
tion parts added by Def. 4.4, their only di�eren
e is that in the original programit is possible to leave the event ei enabled but not �red, while this is not possible in the optimizedprogram. Thus
learly the set of stable models of the optimized program is a subset of the stablemodels of the original one. If we have any
on�guration in whi
h the event ei is enabled but isnot �red, then the set of atoms
orresponding to this
on�guration is not a stable model of theoriginal program. This is the
ase be
ause the integrity rule of type 2 of Def. 4.4
orrespondingto the event ei eliminates su
h a potential stable model. Therefore the optimized program willhave the same number of stable models as the original one.We do quite an extensive set of optimizations. The optimizations 1 and 2 are deadlo
kdete
tion spe
i�
. The optimizations 3-5
an be seen as general logi
 program optimizationsbased on stati
 analysis, and
ould in prin
iple be done in the stable model generator after thetranslation. The optimizations 1-4 are implemented using linear time and spa
e in the size ofthe pre�x. The dupli
ate rule removal is implemented with hashing.

258 Keijo Heljanko / Logi
 Programs for Deadlo
k and Rea
habilityWe use su

in
t rule en
odings with extended rules when possible. The two rules ei ep1 ; : : : ; epn , not (bei), and bei not (ei)
an be more su

in
tly en
oded by an extended ruleof the form: feig ep1 ; : : : ; epn . Also 2fa1; a2g is repla
ed by: a1; a2. We also sort therules after the translation. In our experiments the sorting seems to have only a minimal e�e
ton the total running time, but produ
es ni
er looking logi
 program (debugging) output.After the translation has been
reated, the smodels
omputational engine is used to
he
kwhether a stable model of the program exists. If one exists, the deadlo
k
he
ker outputs anexample deadlo
k
on�guration using the found stable model. Otherwise the program tells thatthe net is deadlo
k free.5.1. Experimental ResultsWe have made experiments with our approa
h using examples by Corbett [2℄, M
Millan [12, 13℄,and Melzer and Römer [14℄. They were previously used by Melzer and Römer in [14℄ and byBest and Römer in [1℄, where additional information about them
an be found. We
ompareour approa
h with two other �nite
omplete pre�x based deadlo
k
he
king methods. The �rstmethod is the bran
h-and-bound deadlo
k dete
tion algorithm by M
Millan [12, 13, 14℄, and theother is the mixed integer programming approa
h by Melzer and Römer [14℄.The Figures 2-4 present the running times in se
onds for the various algorithms used in thiswork, and for the mixed integer programming approa
h those presented in [14℄. The runningtimes have been measured using a Pentium 166MHz, 64MB RAM, 128MB swap, Linux 2.0.29,g++ 2.7.2.1, smodels pre-2.0.30, M
Millan's algorithm version 2.1.0 by Stefan Römer, and PEP1.6g. The experiments with the mixed integer programming approa
h by Melzer and Römer useda
ommer
ial MIP-solver CPLEX, and were
ondu
ted on a Spar
station 20/712, 96MB RAM.The rows of the tables
orrespond to di�erent problems. The
olumns represent: sum of userand system times measured by /usr/bin/time
ommand, or times reported in [14℄, dependingon the
olumn:� Unf = time for unfolding (
reation of the �nite
omplete pre�x) (PEP).� DCMIP = time for Mixed integer programming approa
h in [14℄.� DCM
M = time for M
Millan's algorithm, average of 4 runs.� DCsmo = time for smodels based deadlo
k
he
ker, average of 4 runs.The marking vm(n) notes that the program ran out of virtual memory after n se
onds. The other�elds of the �gures are as follows: jBj: number of
onditions, jEj: number of events, #
: numberof
ut-o� events, DL: Y - the net system has a deadlo
k, CP:
hoi
e points i.e. the number ofnondeterministi
 guesses smodels did during the run. The DCsmo
olumn also in
ludes the logi
program translation time, whi
h was always under 10 se
onds for the examples.The logi
 programming approa
h using the smodels system was able to produ
e an answerfor all the examples presented here, while the M
Millan's algorithm implementation ran out ofvirtual memory on some of the larger examples. Our approa
h was sometimes mu
h faster, see

Keijo Heljanko / Logi
 Programs for Deadlo
k and Rea
hability 259Problem(size) jBj jEj #
 DL CP Unf1 DC2MIP DC1M
M DC1smoDPD(5) 1582 790 211 N 0 0.6 17.3 1.6 1.0DPD(6) 3786 1892 499 N 0 3.2 82.8 12.3 6.1DPD(7) 8630 4314 1129 N 0 17.4 652.6 128.9 31.4DPH(5) 2712 1351 547 N 0 1.3 42.9 6.5 1.8DPH(6) 14474 7231 3377 N 0 33.7 1472.8 1063.7 32.9DPH(7) 81358 40672 21427 N 0 929.3 - vm(1690.2) 760.6ELEVATOR(2) 1562 827 331 Y 2 0.6 2.3 0.5 0.7ELEVATOR(3) 7398 3895 1629 Y 3 10.3 14.5 10.1 15.0ELEVATOR(4) 32354 16935 7337 Y 4 186.1 387.8 268.8 231.7FURNACE(1) 535 326 189 N 0 0.1 0.3 0.2 0.0FURNACE(2) 5139 3111 1990 N 0 3.2 18.1 11.1 0.6FURNACE(3) 34505 20770 13837 N 0 134.7 1112.5 vm(392.5) 7.1RING(7) 813 403 79 N 0 0.2 17.1 0.2 0.4RING(9) 1599 795 137 N 0 0.7 71.2 0.7 2.2RW(9) 9272 4627 4106 N 0 2.0 58.5 68.2 0.4RW(12) 98378 49177 45069 N 0 137.5 24599.9 vm(3050.5) 4.2Figure 2 Measured running times in se
onds:1 = Pentium 166MHz, 64MB RAM, Linux 2.0.29.2 = Spar
station 20/712, 96MB RAM [14℄.e.g. FURNACE(3), RW(12), SYNC(3), BDS(1), GASQ(4), and Q(1). The M
Millan's algorithmwas faster than our approa
h on the following problem
lasses: RING, HART, SENT and SPD.These problems are quite easy for both methods, running times for the �rst three were a fewse
onds, and for the fourth still well under 30 se
onds. On the DME and KEY examples ourapproa
h is s
aling better as the problem sizes in
rease. M
Millan's algorithm is most
ompetitivewhen the number of
ut-o� events is relatively small.We do not have a

ess to the MIP-solver used in [14℄, and also our experiments in [9℄ seemto indi
ate that the
omputer we made our experiments on is faster than theirs. This makesit di�
ult to
omment on the absolute running times between di�erent ma
hines. However ourapproa
h is s
aling better on most examples, see e.g. RW, DME, and SYNC examples.An observation that should be made is that the number of
hoi
e points for smodels in theseexamples is very low, with a maximum of 9
hoi
e points in the example SPD(1). This meansthat on this example set the sear
h spa
e pruning te
hniques were very e�e
tive in minimizingthe number of nondeterministi

hoi
es that were needed to solve the examples.The example nets and C++ sour
e
ode for our translation in
luding smodels are availablefrom the author.

260 Keijo Heljanko / Logi
 Programs for Deadlo
k and Rea
habilityProblem(size) jBj jEj #
 DL CP Unf1 DC2MIP DC1M
M DC1smoDME(4) 2381 652 16 N 0 1.1 216.1 1.4 3.9DME(5) 4096 1145 25 N 0 3.2 1968.3 5.5 13.7DME(6) 6451 1830 36 N 0 8.5 13678.3 20.1 38.0DME(7) 9542 2737 49 N 0 18.1 - 66.1 86.7DME(8) 13465 3896 64 N 0 37.0 - 196.0 182.3DME(9) 18316 5337 81 N 0 70.0 - 542.2 366.6DME(10) 24191 7090 100 N 0 124.0 - 1268.4 646.1DME(11) 31186 9185 121 N 0 207.0 - 3070.9 1134.8SYNC(2) 4007 2162 490 N 0 4.6 171.6 37.0 1.8SYNC(3) 29132 15974 5381 N 0 218.6 11985.0 14073.3 66.5Figure 3 Measured running times in se
onds:1 = Pentium 166MHz, 64MB RAM, Linux 2.0.29.2 = Spar
station 20/712, 96MB RAM [14℄.6. Con
lusionsOur main
ontribution is a method to transform the deadlo
k and rea
hability problems for1-safe Petri nets into the problem of �nding a stable model of a logi
 program and its
orre
tnessproof. We do the translation in two steps: (i) Existing methods and tools are used to generatea �nite
omplete pre�x of the 1-safe Petri net [5, 8, 12, 13℄. (ii) The deadlo
k and rea
habilityproblems for the �nite
omplete pre�x are translated into the problem of �nding a stable modelof a logi
 program. This step uses the two new translations presented in this work, both of whi
hare linear in the size of the pre�x.Corre
tness proofs of are done in two steps. First a program is
onstru
ted whose stablemodels are proved to have a one-to-one
orresponden
e with the
on�gurations of the �nite
omplete pre�x whi
h
ontain no
ut-o� events. Then additional rules added by the translationsare shown to either remove all potential stable models
orresponding to live
on�gurations, or allpotential stable models whi
h do not agree with the used assertion, depending on the translation.We present experimental results to support the feasibility of this approa
h for the dead-lo
k dete
tion problem. We use an existing
onstraint-based logi
 programming framework, thesmodels system, for solving the problem of �nding a stable model of a logi
 program. Ourexperiments show that the approa
h seems to be quite robust and
ompetitive on the examplesavailable to us. More experiments are needed to evaluate the feasibility of the approa
h on therea
hability problem.There are interesting topi
s for future resear
h. It seems possible to extend the translations toallow for a larger
lass of Petri nets to be translated, while still keeping the problem NP-
omplete.M
Millan's algorithm
an be seen to be more goal dire
ted algorithm than our approa
h, andan alternative translation using the basi
 ideas of M
Millan's algorithm
ould be
reated. Thesmodels system is quite a general purpose
onstraint propagation based sear
h engine. Creatingspe
ialized algorithms for the two problems at hand
ould further improve the
ompetitiveness

Keijo Heljanko / Logi
 Programs for Deadlo
k and Rea
hability 261Problem(size) jBj jEj #
 DL CP Unf1 DC1M
M DC1smoBDS(1) 12310 6330 3701 N 0 18.3 171.9 4.1FTP(1) 178077 89042 35247 N 0 6470.5 vm(5413.1) 2080.0GASN(3) 2409 1205 401 N 0 1.2 13.2 2.4GASN(4) 15928 7965 2876 N 0 49.3 2630.4 105.5GASN(5) 100527 50265 18751 N 0 1972.7 vm(3393.7) 3958.4GASQ(3) 2593 1297 490 N 0 1.3 10.1 2.4GASQ(4) 19864 9933 4060 N 0 72.9 4170.3 127.5OVER(4) 1561 797 240 N 0 0.6 0.9 0.1OVER(5) 7388 3761 1251 N 0 11.9 38.1 0.9HART(50) 354 202 1 Y 5 0.1 0.0 0.2HART(75) 529 302 1 Y 6 0.3 0.1 0.4HART(100) 704 402 1 Y 6 0.4 0.1 0.8KEY(2) 1304 650 201 Y 5 0.5 0.3 0.7KEY(3) 13885 6940 2921 Y 5 41.0 38.8 68.4KEY(4) 135556 67775 32081 Y 8 3457.8 vm(3930.9) 4418.7MMGT(3) 11575 5841 2529 Y 0 22.6 592.4 20.0MMGT(4) 92940 46902 20957 Y 0 1466.2 vm(3068.0) 1375.2Q(1) 16090 8402 1173 Y 5 89.5 71.2 4.7SENT(75) 533 266 40 Y 6 0.2 0.1 0.3SENT(100) 608 291 40 Y 6 0.3 0.1 0.4SPD(1) 5317 3138 1311 Y 9 6.1 8.4 21.8Figure 4 Measured running times in se
onds:1 = Pentium 166MHz, 64MB RAM, Linux 2.0.29.of our approa
h. The subje
t of applying our approa
h to some form of model
he
king is a veryinteresting area for future resear
h.7. A
knowledgementsThe author would like to thank Ilkka Niemelä for introdu
ing him into the rule-based
onstraintprogramming framework, and for many
onstru
tive ideas for this paper. The tool smodels wasprogrammed by Patrik Simons, who gave valuable support for its usage. Stephan Melzer andStefan Römer provided the example nets, and also Linux binaries for M
Millan's algorithm, whi
hboth were invaluable. Thanks to Burkhard Graves and Bernd Grahlmann for supplying C sour
e
ode to read PEP pre�x �les. The �nan
ial support of Helsinki Graduate S
hool on ComputerS
ien
e and Engineering (HeCSE), and the A
ademy of Finland are gratefully a
knowledged.Referen
es[1℄ E. Best. Partial order veri�
ation with PEP. In G. Holzmann, D. Peled, and V. Pratt,editors, Pro
eedings of POMIV'96, Workshop on Partial Order Methods in Veri�
ation.Ameri
an Mathemati
al So
iety, July 1996.

262 Keijo Heljanko / Logi
 Programs for Deadlo
k and Rea
hability[2℄ J. C. Corbett. Evaluating deadlo
k dete
tion methods for
on
urrent software. Te
hni
alreport, Department of Information and Computer S
ien
e, University of Hawaii at Manoa,1995.[3℄ J. Engelfriet. Bran
hing pro
esses of Petri nets. In A
ta Informati
a 28, pages 575�591,1991.[4℄ J. Esparza and M. Nielsen. De
idability issues for Petri Nets - a survey. Journal of Infor-mation Pro
essing and Cyberneti
s 30(3), pages 143�160, 1994.[5℄ J. Esparza, S. Römer, andW. Vogler. An improvement of M
Millan's unfolding algorithm. InPro
eedings of Se
ond International Workshop on Tools and Algorithms for the Constru
tionand Analysis of Systems (TACAS'96), pages 87�106, Passau, Germany, Mar 1996. Springer-Verlag. LNCS 1055.[6℄ M. Fitting. First-Order Logi
 and Automated Theorem Proving. Springer-Verlag, New York,1990.[7℄ M. Gelfond and V. Lifs
hitz. The stable model semanti
s for logi
 programming. In Pro
eed-ings of the 5th International Conferen
e on Logi
 Programming, pages 1070�1080, Seattle,USA, August 1988. The MIT Press.[8℄ B. Grahlmann. The PEP Tool. In Pro
eeding of 9th International Conferen
e on ComputerAided Veri�
ation (CAV'97), pages 440�443. Springer-Verlag, June 1997. LNCS 1254.[9℄ K. Heljanko. Deadlo
k
he
king for
omplete �nite pre�xes using logi
 programs with sta-ble model semanti
s (extended abstra
t). In Pro
eedings of the Workshop Con
urren
y,Spe
i�
ation & Programming 1998, Informatik-Beri
ht Nr. 110, pages 106�115. Humboldt-University, Berlin, September 1998.[10℄ K. Heljanko. Using logi
 programs with stable model semanti
s to solve deadlo
k andrea
hability problems for 1-safe Petri nets. In Pro
eedings of Fifth International Conferen
eon Tools and Algorithms for the Constru
tion and Analysis of Systems (TACAS'99), pages240�254. Springer-Verlag, Berlin, Mar
h 1999. LNCS 1579.[11℄ W. Marek and M. Trusz
zy«ski. Autoepistemi
 logi
. Journal of the ACM, 38:588�619,1991.[12℄ K. L. M
Millan. Using unfoldings to avoid the state spa
e explosion problem in the veri�
a-tion of asyn
hronous
ir
uits. In Pro
eeding of 4th Workshop on Computer Aided Veri�
ation(CAV'92), pages 164�174, 1992. LNCS 663.[13℄ K. L. M
Millan. A te
hnique of a state spa
e sear
h based on unfolding. In Formal Methodsis System Design 6(1), pages 45�65, 1995.[14℄ S. Melzer and S. Römer. Deadlo
k
he
king using net unfoldings. In Pro
eeding of 9thInternational Conferen
e on Computer Aided Veri�
ation (CAV'97), pages 352�363, Haifa,Israel, Jun 1997. Springer-Verlag. LNCS 1254.[15℄ I. Niemelä. Logi
 programs with stable model semanti
s as a
onstraint programmingparadigm. In Pro
eedings of the Workshop on Computational Aspe
ts of Nonmonotoni
Reasoning, pages 72�79, Trento, Italy, May 1998. Helsinki University of Te
hnology, DigitalSystems Laboratory, Resear
h Report A52.

Keijo Heljanko / Logi
 Programs for Deadlo
k and Rea
hability 263[16℄ I. Niemelä and P. Simons. Smodels � an implementation of the stable model and well-foundedsemanti
s for normal logi
 programs. In Pro
eedings of the 4th International Conferen
e onLogi
 Programming and Non-Monotoni
 Reasoning, pages 420�429, Dagstuhl, Germany,July 1997. Springer-Verlag.[17℄ P. Simons. Towards
onstraint satisfa
tion through logi
 programs and the stable modelsemanti
s. Resear
h Report A47, Helsinki University of Te
hnology, Espoo, Finland, August1997. Li
en
iate's thesis.[18℄ P. Simons. Extending the stable model semanti
s with more expressive rules, 1998. Unpub-lished manus
ript.[19℄ A. Valmari. A stubborn atta
k on state explosion. Formal Methods in System Design, 1(1992):297�322.[20℄ A. Van Gelder, K.A. Ross, and J.S. S
hlipf. The well-founded semanti
s for general logi
programs. Journal of the ACM, 38(3):620�650, July 1991.Appendix AProof of Theorem 4.1We prove the
orresponden
e between the stable models of program PB(�) and the
on�gurationsof � whi
h
ontain no
ut-o� events. We pro
eed by �rst proving auxiliary Lemma 1. In Lemmas2 and 3 one dire
tion of the
orresponden
e between stable models of the program PB(�) andthe
on�gurations of � with no
ut-o� events is proved. The Lemma 4 shows the other dire
tionof the
orresponden
e, and together with Corollary 1 shows that the mapping Events(�) is abije
tive mapping between the two sets in question.Lemma 1. Let � be a stable model of program PB(�) obtained from the translation by Def. 4.1,and ei; bei 2 Atoms(PB(�)). Now the following holds: ei 2 �) bei 2 �, and ei 2 �)bei 2 �.Proof:Assume that ei 2 �. The only rule in whi
h bei appears as a head is a rule of type 2 of the formbei not (ei). By the de�nition of stable models, be
ause ei 2 �, the redu
t R (PB(�);not(�))does not
ontain this rule, and thus bei 62 D
l(PB(�);not (�)), whi
h implies bei 2 �, be
ause� is a stable model.Assume that ei 2 �. Therefore R (PB(�);not(�))
ontains the rule bei , and thus bei 2D
l(PB(�);not (�)), whi
h implies bei 2 �, be
ause � is a stable model. utCorollary 1. Let � be any stable model of PB(�). The set of events C = Events(�) fullyspe
i�es �, i.e. the following holds: Model(Events(�)) = �.Now we do the main proof of Theorem 4.1. As the �rst step we use a subset of the rules ofthe program PB(�) and prove that for this subset of rules the set of atoms � = Model(C) is astable model.

264 Keijo Heljanko / Logi
 Programs for Deadlo
k and Rea
habilityLemma 2. Let C be a
on�guration of � su
h that C \ Cuto�s(�) = ;, and let PA(�) be thelogi
 program
ontaining only the rules of the types 1 and 2 of the program PB(�). The set ofatoms � = Model(C) is a stable model of PA(�).Proof:We need to prove that D
l(PA(�);not (�)) = �. We pro
eed by
ase analysis on the pairsof atoms fei; beig in Atoms(PA(�)) showing for both atoms that: For ea
h atom a 2 � thata 2 D
l(PA(�);not (�)), and for ea
h atom a 2 � that a 62 D
l(PA(�);not (�)).1. Investigate the pair of atoms fei; beig su
h that ei 2 �, and thus by Def. 4.2: bei 2 �.The redu
t R (PA(�);not (�))
ontains a rule of the form bei , and also the only way ofdedu
ing ei, the rule of type 1 of the form: ei ep1 ; : : : ; epn , is not in the redu
t, whi
himplies bei 2 D
l(PA(�);not (�)) and ei 62 D
l(PA(�);not (�)).2. Investigate the pair of atoms fei; beig su
h that ei 2 �, and thus by Def. 4.2: bei 2 �.The redu
t R (PA(�);not (�)) does not
ontain the rule of type 2 of the form: bei ,whi
h implies bei 62 D
l(PA(�);not(�)). The redu
t
ontains a rule of type 1 of the form:ei ep1 ; : : : ; epn , su
h that fep1 ; : : : ; epng = �(�ei). We need an indu
tion to
ompletethe proof for this
ase.What is left to be proved is that ej 2 D
l(PA(�);not (�)) for all ej 2 �, and thus for all ej 2 C.If C = ; we are done. Otherwise, we prove the previous
laim by indu
tion on the index numberk of a sequen
e of events: e01; : : : ; e0jCj, su
h that fe01; : : : ; e0jCjg = C, and for all k 2 f1; : : : ; jCjgit holds that �(�e0k) � S1�l<kfe0lg. Be
ause C is a
on�guration, su
h a sequen
e (a
ausal totalorder of events of a
on�guration) must exist. We pi
k one su
h a sequen
e.� Base
ase k = 1: For e01 it holds that �(�e01) = ;. Thus the redu
t has a rule of the forme01 , whi
h implies e01 2 D
l(PA(�);not (�)).� Indu
tive
ase k > 1: For all 1 � j < k the
laim e0j 2 D
l(PA(�);not (�)) holds by theindu
tive hypothesis. Be
ause �(�e0k) � S1�l<kfe0lg, the redu
t has a rule of the form e0k ep1 ; : : : ; epn , su
h that fep1 ; : : : ; epng � D
l(PA(�);not (�)) by the indu
tive hypothesis,whi
h implies e0k 2 D
l(PA(�);not (�)).The union of all the pairs equals Atoms(PA(�)), whi
h implies � is a stable model of PA(�). utNow we
ontinue our proof by
onsidering the full program PB(�) in Lemma 3.Lemma 3. Let C be a
on�guration of � su
h that C \ Cuto�s(�) = ;. The set of atoms� = Model(C) is a stable model of the program PB(�).Proof:By Lemma 2: � = Model (C) is a stable model of PA(�). In the program PB(�) only integrityrules of type 3 of Def. 4.1 have been added. Thus the set of stable models of PB(�) is alwaysa subset of the stable models of PA(�). Be
ause C is a
on�guration, there does not exists twonon-
ut-o� events ei and ej, and a
ondition bk su
h that: ei 6= ej , and bk 2 �ei \ �ej . Thereforethere is no integrity rule whi
h
ould be used, whi
h implies � is a stable model of PB(�). ut

Keijo Heljanko / Logi
 Programs for Deadlo
k and Rea
hability 265Lemma 4. If � is a stable model of the program PB(�), then the set of events C = Events(�)is a
on�guration of � su
h that C \ Cuto�s(�) = ;.Proof:Be
ause Corollary 1 says that any stable model is fully spe
i�ed by a set of events, to get a
ontradi
tion we need to �nd a set of events E0, whi
h is not a
on�guration, E0\Cuto�s(�) = ;,and � = Model (E0) is a stable model of PB(�). There are two
ases:1. Assume that E0 is not
ausally
losed. Thus there must exist an event ei 2 E0, su
h that�(�ei) n E0 6= ;. Now by Def. 4.2 and Lemma 1: bei 62 Model(E0), and thus the redu
tR (PB(�);not (�))
ontains a rule of the form ei ep1 ; : : : ; epn , whi
h is the only rule inwhi
h ei appears as a head. However by �(�ei) n E0 6= ; and Def. 4.2: bej 2 Model(E0)for some j 2 fp1; : : : ; png. Thus by Lemma 1: ej 62 �, and thus ei 62 D
l(PB(�);not (�)),whi
h implies � is not a stable model.2. Assume that E0
ontains a
on�i
t. Thus there exists two non-
ut-o� events ei and ej, anda
ondition bk su
h that: ei 6= ej , and bk 2 �ei\�ej . The integrity rule of type 3 of Def. 4.1
orresponding to the
ondition bk has the form 2fep1 ; : : : ; epng, su
h that fei; ejg � �,whi
h eliminates the possibility that � is a stable model. utThe Lemmas 3 and 4 prove the
orresponden
e between the
on�gurations of the pre�x �whi
h
ontain no
ut-o� events, and the stable models of the program PB(�). Combined withCorollary 1 the bije
tivity between these two sets is shown. This
ompletes the proof. utProof of Theorem 4.2First we give Lemma 5, whi
h enables us to add rules of a restri
ted form into a logi
 program.Lemma 5. Let P1, P2 be a logi
 programs su
h that: For ea
h rule in P2 the head of the rule isnot in Atoms(P1), and all its body literals are in Atoms(P1). Then:� If � is a stable model of P1, then �0 = � [S(�) is the unique stable model of P1 [P2,su
h that for all a 2 Atoms(P1): a 2 �0 i� a 2 �, whereS(�) = fh j h a1; : : : ; an;not (b1); : : : ;not (bm) 2 P2; su
h thatai 2 � for i = 1; : : : ; n and bj 62 � for j = 1; : : : ; mg:� P1 [P2 has the same number of stable models as P1.Proof:Let � be any stable model of P1, and r = h a1; : : : ; an;not (b1); : : : ;not (bm) be any rule ofthe program P2. If we
reate a program P 01 = P1 [frg, then
learly P 01 has the stable model�0 = � [fhg i� ai 2 � for i = 1; : : : ; n and bj 62 � for j = 1; : : : ; m, and �0 = � otherwise.Also the possible addition of the atom h into the program P 01 does not e�e
t the redu
t i.e.R (P 01;not(�0)) = R (P 01;not(�)), be
ause h doesn't appear as a body literal in any rule inP1 [P2. Therefore the number of stable models remains the same after the addition of r. The
laim
an be now proved by indu
tion on the number of rules added from P2. ut

266 Keijo Heljanko / Logi
 Programs for Deadlo
k and Rea
habilityCorollary 2. Let P1 and P2 be two programs satisfying the requirements of Lemma 5. If � is astable model of P1 [P2, then �0 = fa 2 � jAtoms(P1)g is a stable model of P1.Next we start using Lemma 5 to in
rementally prove out translation
orre
t.Lemma 6. Let program PC(�) be a program made by adding rules of the type 1 of Def. 4.4 tothe program PB(�). The program PC(�) has the same number of stable models as PB(�), andthe stable models agree on the set of atoms Atoms(PB(�)).Proof:The proof is immediate by Lemma 5. utLemma 7. For any stable model � of PC(�) and any bi 2 Atoms(PC(�)) it holds that bi 2 �i� bi 2 Cut(Events(�)).Proof:Fix any stable model � of PC(�), and any atom bi of the program. Now the rule
orrespondingto this atom is: bi el, not (ep1), : : : , not (epn), su
h that felg = �bi, and fep1 , : : : , epng = bi�nCutO�s(�). The
orresponding rule will be in the redu
t (and by Lemma 5: bi 2 �) i� el 2 �and ep1 , : : : , epn 2 �, and thus by Theorem 4:1 el 2 Events(�) and ep1 ; : : : ; epn 62 Events(�),whi
h is exa
tly the
ase when bi 2 Cut(Events(�)). utLemma 8. Let PD(�) be the logi
 program translation of the pre�x � by Def. 4.4, and let �be a stable model of PD(�). Then the set of events Events(�) is a deadlo
k
on�guration of �.Additionally PD(�) has the same number of stable models as there are deadlo
k
on�gurations of�, whi
h
ontain no
ut-o� events.Proof:The program PD(�) is the program PC(�) with only integrity rules of the type 2 of Def. 4.4added. Thus the set of stable models of PD(�) is a subset of the stable models of the programPC(�), whi
h by Lemma 6
orrespond to the
on�gurations of � whi
h
ontain no
ut-o� events.Fix any stable model � of PC(�). There are now two
ases to
onsider:� Events(�) is not a deadlo
k
on�guration of �: Thus there must exist an event ei (
ut-o�or not) whi
h is enabled by Cut(Events(�)). Consider now the rule of type 2
orrespondingto the event ei of the form: bp1 ; : : : ; bpn , su
h that fbp1 ; : : : ; bpng = �ei. Now by Lemma7 ea
h of the atoms bpj 2 � i� bpj 2 Cut(Events(�)). Thus the integrity rule for the eventei will be used, whi
h implies � is not a stable model of PD(�).� Events(�) is a deadlo
k
on�guration of �: Thus there is no event ei (
ut-o� or not)whi
h is enabled by Cut(Events(�)). Now by Lemma 7 ea
h of the atoms bi 2 � i�bi 2 Cut(Events(�)). Therefore none of the rules of the type 2 of Def. 4.4
an be used,whi
h implies � is a stable model of PD(�).We have now found a one-to-one
orresponden
e between the the stable models of PD(�) andthe deadlo
k
on�gurations of � whi
h
ontain no
ut-o� events. ut

Keijo Heljanko / Logi
 Programs for Deadlo
k and Rea
hability 267Now we have all the ingredients needed to prove Theorem 4.2. The fa
t that � is a �nite
omplete pre�x of a 1-safe net system � guarantees the following. For ea
h rea
hable markingMof � there exists a
on�guration C of � with no
ut-o� events, su
h that Mark(C) =M , and forevery transition t enabled inM there exists a
on�guration C[feg su
h that e 62 C and h(e) = t.Clearly this also holds for all rea
hable deadlo
k markings. The �nite
omplete pre�x � will thushave a
on�guration C with no
ut-o� events, whi
h
an not be extended by any event e 2 E,i� � has a rea
hable deadlo
k marking. Now Lemma 8 has shown a one-to-one
orresponden
ebetween deadlo
k
on�gurations without
ut-o� events, and stable models of PD(�). ThereforePD(�) will have a stable model i� � has a rea
hable deadlo
k marking. It also holds by Lemma8 that for any stable model � of PD(�), C = Events(�) is a deadlo
k
on�guration of �, su
hthat Mark(C) a rea
hable deadlo
k marking of �. utProof of Theorem 4.3We prove the Theorem 4.3 by stepwise adding rules to the base program PB(�).Lemma 9. Let program PP (�; �) be a program made by adding rules of the type 1 of Def. 4.6to the program PB(�). The program PP (�; �) has the same number of stable models as PB(�),and the stable models agree on the set of atoms Atoms(PB(�)).Proof:The proof is immediate by Lemma 5. utLemma 10. For any stable model � of PP (�; �) and for any bi 2 Atoms(PP (�; �)) it holdsthat bi 2 � i� bi 2 Cut(Events(�)).Proof:Identi
al to the proof of Lemma 7 when PC(�) is repla
ed by PP (�; �). utLemma 11. Let program PQ(�; �) be a program made by adding rules of the type 2 of Def. 4.6 tothe program PP (�; �). The program PQ(�; �) has the same number of stable models as PP (�; �),and the stable models agree on the set of atoms Atoms(PP (�; �)).Proof:The proof is immediate by Lemma 5. utLemma 12. For any stable model � of PQ(�; �) and for any si 2 Atoms(PQ(�; �)) it holdsthat si 2 � i� si 2 Mark(Events(�)).Proof:Fix any stable model � of PQ(�; �), and any atom si of the program. Now the rules
orrespond-ing to this atom are all of the form: si bi, su
h that si = h(bi). Now
learly by Lemma 5:si 2 � i� bi 2 � for some
ondition bi for whi
h si = h(bi), whi
h
ombined with Lemma 10implies the
laim. ut

268 Keijo Heljanko / Logi
 Programs for Deadlo
k and Rea
habilityWe
an now prove Theorem 4.3. The fa
t that � is a �nite
omplete pre�x of a 1-safenet system � guarantees the following. For ea
h rea
hable marking M of � there exists a
on�guration C of � with no
ut-o� events, su
h that Mark(C) =M . The stable models of theprogram PR(�; �) are always a subset of the stable models of the program PQ(�; �), be
auseonly integrity rules of type 3 and 4 of Def. 4.6 have been added. By Lemma 11 there exists astable model of PQ(�; �)
orresponding to ea
h
on�guration of the pre�x � whi
h
ontains no
ut-o� events. Also Lemma 12 shows that the atoms si re�e
t the
orresponding marking of �.There are now two
ases left to prove:� If � has a rea
hable marking M whi
h agrees with �, then by Lemma 11 there exists astable model � of PQ(�; �), su
h that Mark(Events(�)) =M . Be
ause M agrees with �,it holds by Lemma 12 that for all fsi j si 2 S+g: si 2 �, and also for all fsj j sj 2 S�g:sj 2 �. Therefore there is no integrity rule in PR(�; �) whi
h
an be used, whi
h implies� is also a stable model of PR(�; �).� If � has a rea
hable marking M whi
h does not agree with �, then by Lemma 11 thereexists a stable model � of PQ(�; �), su
h that Mark(Events(�)) = M . Be
ause M doesnot agree with �, it holds by Lemma 12 that either there exists a pla
e si in S+ su
h thatsi 2 �, or there exists a pla
e sj in S� su
h that sj 2 �. In the �rst
ase an integrityrule of type 3, and in the se
ond
ase an integrity rule of type 4 implies that � is not astable model of PR(�; �).This
on
ludes the proof of Theorem 4.3. ut

