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 Programs for Deadlo
k and Rea
hability1. Introdu
tionPetri nets are a widely used model for analyzing 
on
urrent and distributed systems. Often su
ha system must exhibit rea
tive, non-terminating behavior, and one of the key analysis problemsis that of deadlo
k-freedom: Do all rea
hable global states of the system (markings of the net)enable some a
tion (net transition)? In this work we study this problem for a sub
lass of Petrinets, the 1-safe Petri nets, whi
h are 
apable of modelling �nite state systems. For 1-safe Petrinets the deadlo
k dete
tion problem is PSPACE-
omplete in the size of the net [4℄, however,restri
ted sub
lasses of 1-safe Petri nets exist for whi
h this problem is NP-
omplete [12, 13℄.M
Millan has presented a deadlo
k dete
tion method for Petri nets based on �nite 
ompletepre�xes (i.e. net unfoldings) [12, 13℄. The basi
 idea is to transform the PSPACE-
ompletedeadlo
k dete
tion problem for a 1-safe Petri net into a potentially exponentially larger NP-
omplete problem. This translation 
reates a �nite 
omplete pre�x, whi
h is an a
y
li
 1-safePetri net of a restri
ted form. Experimental results show that the blowup of the transformation
an in many 
ases be avoided [5, 12, 13, 14℄.In this work we address the NP-
omplete deadlo
k dete
tion problem for �nite 
ompletepre�xes. M
Millan originally suggested a bran
h-and-bound algorithm for solving this problem.Re
ently, Melzer and Römer have presented another algorithm whi
h is based on solving mixedinteger programming problems generated from pre�xes [14℄. Their approa
h seems to be fasterthan M
Millan's on examples in whi
h a large per
entage of the events of the pre�x are so 
alled
ut-o� events. However, if this assumption does not hold, the run times are generally slowerthan those of the M
Millan's algorithm [14℄.In this work we study an approa
h that is similar to that of Melzer and Römer in theway of being 
apable of handling 
ases with a large per
entage of 
ut-o� events but with more
ompetitive performan
e. Instead of mixed integer programming our approa
h is based on a
onstraint-based logi
 programming framework [15, 16, 17℄. We translate the deadlo
k dete
tionproblem into the problem of �nding a stable model of a logi
 program. As a side result we alsoobtain su
h a translation for 
he
king the rea
hability problem, whi
h is also NP-
omplete in thesize of the pre�x [4℄. The main 
ontribution of this work also in
ludes the detailed 
orre
tnessproofs of the translations. For the deadlo
k dete
tion problem we present experimental results,and �nd our approa
h 
ompetitive with the two previous approa
hes.The rest of the paper is divided as follows. First we present Petri net notations used in thepaper. In Se
t. 3 we will introdu
e the rule-based 
onstraint programming framework. Se
tion4 
ontains the main results of this work, linear-size translations from deadlo
k and rea
habilityproperty 
he
king into the problem of �nding a stable model of a logi
 program, and their
orre
tness proofs. In Se
t. 5 we present experimental results from our implementation. In Se
t.6 we 
on
lude and dis
uss dire
tions for future resear
h.
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hability 2492. Petri Net De�nitionsFirst we de�ne basi
 Petri net notations. Next we introdu
e o

urren
e nets, whi
h are 1-safePetri nets of a restri
ted form. Then bran
hing pro
esses are given as a way of des
ribing partialorder semanti
s for Petri nets. Last but not least we de�ne �nite 
omplete pre�xes as a way ofgiving a �nite representation of this partial order behavior. We follow mainly the notation of[5, 14℄.2.1. Petri NetsA triple hS; T; F i is a net if S \ T = ; and F � (S � T ) [ (T � S). The elements of S are
alled pla
es, and the elements of T transitions. Pla
es and transitions are also 
alled nodes. Weidentify F with its 
hara
teristi
 fun
tion on the set (S � T ) [ (T � S). The preset of a node x,denoted by �x, is the set fy 2 S [ T jF (y; x) = 1g. The postset of a node x, denoted by x�, isthe set fy 2 S [ T jF (x; y) = 1g. Their generalizations on sets of nodes X � S [ T are de�nedas �X = Sx2X �x, and X� = Sx2X x� respe
tively.A marking of a net hS; T; F i is a mapping S 7! IN. A marking M is identi�ed with themulti-set whi
h 
ontains M(s) 
opies of s for every s 2 S. A 4-tuple � = hS; T; F;M0i is a netsystem if hS; T; F i is a net and M0 is a marking of hS; T; F i. A marking M enables a transitiont if 8s 2 S : F (s; t) � M(s). If t is enabled, it 
an o

ur leading to a new marking (denotedM t! M 0), where M 0 is de�ned by 8s 2 S : M 0(s) = M(s) � F (s; t) + F (t; s). A marking Mis a deadlo
k marking i� no transition t is enabled by M . A marking Mn is rea
hable in � i�there exist a sequen
e of transitions t1; t2; : : : ; tn and markings M1;M2; : : : ;Mn�1 su
h that:M0 t1!M1 t2! : : :Mn�1 tn!Mn. A rea
hable marking is 1-safe if 8s 2 S :M(s) � 1. A net system� is 1-safe if all its rea
hable markings are 1-safe. In this work we will restri
t ourselves to theset of net systems whi
h are 1-safe, have a �nite number of pla
es and transitions, and also inwhi
h ea
h transition t 2 T has both nonempty pre- and postsets.2.2. O

urren
e NetsWe use �F to denote the re�exive transitive 
losure of F . Let hS; T; F i be a net and let x1; x2 2S [ T . The nodes x1 and x2 are in 
on�i
t, denoted by x1#x2, if there exist t1; t2 2 T su
h thatt1 6= t2, �t1 \ �t2 6= ;, t1 �F x1, and t2 �F x2. An o

urren
e net is a net N = hB;E; F i su
hthat:� 8b 2 B : j�bj � 1,� F is a
y
li
, i.e. the irre�exive transitive 
losure of F is a partial order,� N is �nitely pre
eded, i.e. for any node x of the net, the set of nodes y su
h that y �F xis �nite, and� 8x 2 S [ T : :(x#x).The elements of B and E are 
alled 
onditions and events, respe
tively. The setMin(N) denotesthe set of minimal elements of the transitive 
losure of F . A 
on�guration C of an o

urren
enet is a set of events satisfying:
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k and Rea
hability� If e 2 C then 8e0 2 E : e0 �F e implies e0 2 C (C is 
ausally 
losed),� 8e; e0 2 C : :(e#e0) (C is 
on�i
t-free).The 
o-set of a 
on�guration is 
alled a 
ut: Cut(C) = (Min(N) [ C�) n �C. A 
on�guration Cis a deadlo
k 
on�guration i� the set Cut(C) does not enable any event e 2 E.2.3. Bran
hing Pro
essesBran
hing pro
esses are �unfoldings� of net systems and were introdu
ed by Engelfriet [3℄. LetN1 = hS1; T1; F1i and N2 = hS2; T2; F2i be two nets. A homomorphism is a mapping S1 [ T1 7!S2 [ T2 su
h that: h(S1) � S2 ^ h(T1) � T2, and for all t 2 T1, the restri
tion of h to �t isa bije
tion between �t and �h(t), and similarly for t� and h(t)�. A bran
hing pro
ess of a netsystem � is a tuple � = hN 0; hi, where N 0 is a o

urren
e net, and h is a homomorphism fromN 0 to hS; T; F i su
h that: the restri
tion of h to Min(N 0) is a bije
tion between Min(N 0) andM0, and 8e1; e2 2 E, if �e1 = �e2 ^h(e1) = h(e2) then e1 = e2. The set of pla
es asso
iated witha 
on�guration C of � is denoted by Mark(C) = h(Cut(C)).2.4. Finite Complete Pre�xesA �nite bran
hing pro
ess � is a �nite 
omplete pre�x of a net system � i� for ea
h rea
hablemarking M of � there exists a 
on�guration C of � su
h that:� Mark(C) =M , and� for every transition t enabled in M there exists a 
on�guration C [ feg su
h that e 62 Cand h(e) = t.Algorithms to obtain a �nite 
omplete pre�x � given a 1-safe net system � are presented ine.g. [5, 12, 13℄. The algorithms will mark some events of the pre�x � as spe
ial 
ut-o� events,whi
h we denote by the set CutO�s(�) � E. The intuition behind 
uto� events is that for ea
h
ut-o� event e there already exists another event e0 in the pre�x. The markings rea
hable afterexe
uting e 
an also be rea
hed after exe
uting e0, and thus the markings after e need not to be
onsidered any further. We dire
t the reader interested in the approa
h to [5, 12, 13, 14℄.3. Rule-Based Constraint ProgrammingWe will use normal logi
 programs with stable model semanti
s [7℄ as the underlying formalisminto whi
h the deadlo
k and rea
hability problems for 1-safe Petri nets are translated. Thisse
tion is to a large extent based on [17℄.The stable model semanti
s is one of the main de
larative semanti
s for normal logi
 pro-grams. However, here we use logi
 programming in a way that is di�erent from the typi
alPROLOG style paradigm, whi
h is based on the idea of evaluating a given query. Instead, weemploy logi
 programs as a 
onstraint programming framework [15℄, where stable models are
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hability 251the solutions of the program rules seen as 
onstraints. We 
onsider normal logi
 programs that
onsist of rules of the form h a1; : : : ; an;not (b1); : : : ;not (bm) (1)where a1; : : : ; an; b1; : : : ; bm and h are propositional atoms. Su
h a rule 
an be seen as a 
onstraintsaying that if atoms a1; : : : ; an are in a model and atoms b1; : : : ; bm are not in a model, then theatom h is in a model. The stable model semanti
s also enfor
es minimality and groundedness ofmodels. This makes many 
ombinatorial problems easily and su

in
tly des
ribable using logi
programming with stable model semanti
s.We will demonstrate the basi
 behavior of the semanti
s using programs P1-P4:P1: a not (b) P2: a a P3: a not (a) P4: a 
;not (b)b not (a) b not (a)Program P1 has two stable models: fag and fbg. The property of this program is that wemay freely make negative assumptions as long as we do not bump into any 
ontradi
tions. Forexample, we may assume not (b) in order to dedu
e the stable model fag. Program P2 has theempty set as its unique stable model. This exposes the fa
t that we 
an't use positive assumptionsto dedu
e what is to be in
luded in a model. Program P3 is an example of a program whi
h hasno stable models. If we assume not (a), then we will dedu
e a, whi
h will 
ontradi
t with ourassumption not (a). Program P4 has one stable model fbg. If we assume not (a) then we willdedu
e b. If we assume not (b) then we 
an't dedu
e a, be
ause 
 
an't be dedu
ed from ourassumptions.The stable model semanti
s for a normal logi
 program P is de�ned as follows [7℄. The redu
tPA of P with respe
t to the set of atoms A is obtained (i) by deleting ea
h rule in P that has anot-atom not (x) in its body su
h that x 2 A and (ii) by deleting all not-atoms in the remainingrules. A set of atoms A is a stable model of P if and only if A is the dedu
tive 
losure of PAwhen the rules in PA are seen as inferen
e rules.A non-deterministi
 way of 
onstru
ting stable models is to guess whi
h assumptions (not-atoms of the program) to use, and then 
he
k using the dedu
tive 
losure (in linear time) whetherthe resulting model agrees with the assumptions. The problem of determining the existen
e of astable model is in fa
t NP-
omplete [11℄.Next we give rest of the stable model semanti
s de�nitions, whi
h are needed in the proofs.De�nition 3.1. Let A be a set of atoms, we de�ne not (A) = fnot (a) j a 2 Ag.For a set of atoms and not-atoms B we denote the atoms in B by B+ and the set of not-atomsby B�. Atoms and not-atoms are also 
alled literals. We denote with Atoms(P ) the set of allpropositional atoms whi
h appear in the logi
 program P as literals. We use the notation � todenote the set Atoms(P ) n�.De�nition 3.2. The dedu
tive 
losure of a set of rules P and a set of literals B is denoted byD
l (P;B), where D
l (P;B) is the smallest set of atoms that 
ontains B+ and is 
losed under
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habilityR (P;B) whenR (P;B) = fh a1; : : : ; an;not (b1); : : : ;not (bm) 2 P and not (bi) 2 B�; for i = 1; : : : ;mgis seen as a set of inferen
e rules.The dedu
tive 
losure gives us a �xpoint 
hara
terization of the stable models.Proposition 3.1. The set � is a stable model of a set of rules P i� � = D
l (P;not (�)).Proof:Note that the redu
t P� = R (P;not (�)). ut3.1. The tool smodelsThere is a tool, the smodels system [16, 17℄, whi
h provides an implementation of logi
 programsas a rule-based 
onstraint programming framework. It �nds stable models of a logi
 program,and 
an also tell when the program has no stable models. The implementation is based onba
ktra
king sear
h te
hninique similar to the Davis Putnam method (see e.g. [6℄), and it usesa generalization of the well-founded semanti
s [20℄ to approximate the stable models and toprune the sear
h spa
e. The smodels implementation needs spa
e linear in the size of the inputprogram [17℄. The smodels seems to be the most e�
ient implementation of the stable modelsemanti
s 
urrently available and it has been applied su

essfully in a number of areas in
ludingplanning and propositional satis�ability 
he
king, see, e.g. [17℄.The stable model semanti
s is de�ned using rules of the form (1). The smodels 2 handlesextended rule types [18℄, whi
h 
an be seen as su

in
t en
odings of sets of basi
 rules. One ofthe rule types is a rule of the form: h  2fa1; : : : ; ang. The semanti
s of this rule is that iftwo or more atoms from the set a1; : : : ; an belong to the model, then also the atom h will bein the model. It is easy to see that this rule 
an be en
oded by using N2�N2 basi
 rules of theform: h  ai; aj. Using an extended rule instead of the 
orresponding basi
 rule en
oding wasne
essary to a
hieve a linear-size translation of the two problems at hand.We also use the so 
alled integrity rules in the programs. They are rules with no head,i.e. of the form:  a1; : : : ; an;not (b1); : : : ;not (bm). The semanti
s is given by the follow-ing: A new atom f is introdu
ed to the program, and the integrity rule is repla
ed by: f  a1; : : : ; an;not (b1); : : : ;not (bm);not (f). It is easy to see that any set of atoms, su
h thata1; : : : ; an are in a model and atoms b1; : : : ; bm are not in a model, is not a stable model. It isalso easy to see that adding one integrity rule doesn't 
reate any new stable models, and neitherdoes adding any set of integrity rules. The last extended rule we use is of the form: fhg  a1; : : : ; an. The semanti
s is the following: A new atom h0 is introdu
ed to the program, andthe rule is repla
ed by two rules: h  a1; : : : ; an;not (h0), and h0  not (h). The atom h0 isremoved from any stable models it appears in, and the rest of the model gives the semanti
s forthe extended rule.
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k and Rea
hability Property Che
king intoLogi
 ProgramsIn this se
tion we present the translations of deadlo
k and rea
hability properties into logi
programs with stable model semanti
s. For the deadlo
k property the main result 
an be seenas a rephrasing of the Theorem 4 of [14℄, where mixed integer programming has been repla
edby the rule-based 
onstraint programming framework. For the rea
hability property we giveanother translation. In this work we assume that the set of events of a �nite 
omplete pre�x isnon-empty. If it is empty, the 
orresponding net system would have no events enabled in theinitial state, and then the deadlo
k and rea
hability properties 
an be trivially solved by lookingat the initial state only.Now we are ready to de�ne our translation from the �nite 
omplete pre�xes into logi
 pro-grams with stable model semanti
s. The basi
 part of our translation is given next. It translatesthe notion of a 
on�guration of a �nite 
omplete pre�x into the problem of �nding a stable modelof a logi
 program. The de�nitions will be followed by an example translation given in Fig. 1.First we de�ne some additional notation. We assume a unique numbering of the events(and 
onditions) of the �nite 
omplete pre�x. We use the notation ei (bi) to refer to the event(
ondition) number i. In the logi
 programs ei, (bi) is an atom of the logi
 program 
orrespondingto the event ei (
ondition bi). In the logi
 program de�nitions we use the 
onvention that a partof a rule will be omitted, if the 
orresponding set evaluates to the empty set. For example ruleof type 1 of Def. 4.1 below for an event ei, su
h that �(�ei) = ;, would be
ome: ei  not (bei).De�nition 4.1. Let � = hN;hi with N = hB;E; F i be a �nite 
omplete pre�x of a given 1-safenet system �. Let PB(�) be a logi
 program 
ontaining the following rules:1. For all ei 2 E n CutO�s(�) a rule:ei  ep1 ; : : : ; epn , not (bei),su
h that fep1 ; : : : ; epng = �(�ei).2. For all ei 2 E n CutO�s(�) a rule:bei  not (ei).3. For all bi 2 B su
h that jbi� n CutO�s(�)j � 2 a rule: 2fep1 ; : : : ; epng,su
h that fep1 ; : : : ; epng = bi� n CutO�s(�).The intuition behind the rules of the program PB(�) are the following. Rules of the type 1 givethe pre
onditions under whi
h an atom 
orresponding to ea
h event 
an exist in a 
on�guration.Rules of the type 2 enable an event not to be in
luded in a 
on�guration even if its pre
onditionsare present. Rules of the type 3 disallow all sets of events whi
h 
ontain events in a 
on�i
t. Notethat be
ause in pre�xes ea
h 
ondition has only one event in its preset, the program above doesnot need atoms 
orresponding to the 
onditions of the pre�x. The translation above 
ould be
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lude the 
ut-o� events, but they are not needed by the appli
ationsin this work.We de�ne a mapping from a set of events of the pre�x to a set of atoms of a logi
 programand vi
e versa.De�nition 4.2. The set of atoms of a logi
 program P 
orresponding to a set of events C �E n Cuto�s(�) of a �nite 
omplete pre�x � is Model(C) = fei j ei 2 Cg [ fbej j ej 2 E n fC [Cuto�s(�)gg.De�nition 4.3. The set of events 
orresponding to a stable model � of a logi
 program P isEvents(�) = fei 2 E j ei 2 �g.Now we are ready to state the 
orresponden
e between the �nite 
omplete pre�x and the basi
part of our translation.Theorem 4.1. Let � be a �nite 
omplete pre�x of a 1-safe net system �, let PB(�) be the logi
program translation by Def. 4.1, and let C be a 
on�guration of �, su
h that C \Cuto�s(�) = ;.Then the set of atoms � = Model(C) is a stable model of PB(�). Additionally, the mappingEvents(�) is a bije
tive mapping from the stable models of PB(�) to the 
on�gurations of �whi
h 
ontain no 
ut-o� events.Proof:See Appendix A. utNext we move to the deadlo
k translation. We add a set of rules to the program whi
h pla
eadditional 
onstraints on the stable models of the program PB(�). We add integrity rules to theprogram, whi
h remove all stable models of the basi
 program whi
h are not deadlo
ks. To dothis we model the the enabling of ea
h event (
ut-o� or not) of the pre�x in the logi
 program.De�nition 4.4. Let � be a �nite 
omplete pre�x of a given 1-safe net system �. Let PD(�) bea logi
 program 
ontaining all the rules of the program PB(�) of Def. 4.1, and also the followingrules:1. For all bi 2 fbj 2 B j bj� 6= ;g a rule:bi  el, not (ep1), : : : , not (epn),su
h that felg = �bi, and fep1 , : : : , epng = bi� n CutO�s(�).2. For all ei 2 E a rule: bp1 ; : : : ; bpn ,su
h that fbp1 ; : : : ; bpng = �ei.Theorem 4.2. Let � be a �nite 
omplete pre�x of a 1-safe net system �, and let PD(�) bethe logi
 program translation by Def. 4.4. There exists a stable model of PD(�) i� � has area
hable deadlo
k marking. Additionally, for any stable model � of PD(�), the set of eventsC = Events(�) is a deadlo
k 
on�guration of �, su
h that Mark(C) is a rea
hable deadlo
kmarking of �.
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s1 s2

b1(s1) b2(s2)

b11(s1)

b3(s3)

e4(t1) e5(t4)

b5(s4)b4(s4)

e6(t4)

b7(s2) b10(s2)

e8(t5)e7(t3)

b8(s5)b9(s4)

e3(t5)

b6(s5)

e1(t2) e2(t3)

N2:

s3

t3 t4

s4

t5

s5

t1 t2

N1:
PD(N2) :e1  not (be1)be1  not (e1)e2  not (be2)be2  not (e2)e3  not (be3)be3  not (e3)e5  e1; not (be5)be5  not (e5)e8  e5; not (be8)be8  not (e8) 2fe1; e2; e3gb1  not (e1)b2  not (e1); not (e2); not (e3)b3  e1b4  e1; not (e5)b5  e2b7  e5; not (e8) b1; b2 b2 b3 b4 b5 b7Figure 1. Deadlo
k translation example.Proof:See Appendix A. utIn Fig. 1 an example of the deadlo
k translation is given. The pre�x N2 is a �nite 
ompletepre�x of the 1-safe nets system N1. The 
ut-o� events of N2 are marked with 
rosses. Thetranslated program PD(N2) has only one stable model � = fbe1; be2; e3; be5; be8; b1g, and theset Events(�) = fe3g is a deadlo
k 
on�guration of N2.Next we will present a way of translating rea
hability problems. First we need a way ofmaking statements about an individual marking.De�nition 4.5. An assertion on a marking of a 1-safe net system � = hS; T; F;M0i is a tuplehS+; S�i, where S+; S� � S, and S+ \ S� = ;. The assertion hS+; S�i agrees with a markingM of � i�: S+ � fs 2 S jM(s) = 1g ^ S� � fs 2 S jM(s) = 0g:With assertions we 
an easily formulate both the rea
hability and submarking rea
habilityproblems. The idea is again to add some integrity rules to the program whi
h remove all stable
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habilitymodels of PB(�) whi
h do not agree with the assertion. The basi
 stru
ture is the same as fordeadlo
ks, only a set of atoms whi
h represent the marking of the original net are added.De�nition 4.6. Let � be a �nite 
omplete pre�x of a given 1-safe net system � = hS; T; F;M0i,and let � = hS+; S�i be an assertion on the pla
es of �. Let PR(�; �) be a logi
 program
ontaining all the rules of the program PB(�) of Def. 4.1, and also the following rules:1. For all bi 2 fbj 2 B jh(bj) 2 S+ [ S� ^ �bj 2 E n Cuto�s(�)g a rule:bi  el, not (ep1), : : : , not (epn),su
h that felg = �bi, and fep1 , : : : , epng = bi� n CutO�s(�).2. For all bi 2 fbj 2 B jh(bj) 2 S+ [ S� ^ �bj 2 E n Cuto�s(�)g a rule:si  bi,su
h that si = h(bi).3. For all si 2 S+ a rule: not (si).4. For all si 2 S� a rule: si.Note that only 
onditions of the pre�x � and pla
es of � whi
h 
an a�e
t the assertion � aretranslated. Also 
ut-o� postset 
onditions are not translated, be
ause 
ut-o�s will not be �red.Theorem 4.3. Let � be a �nite 
omplete pre�x of a 1-safe net system �, and let PR(�; �) be alogi
 program translation by Def. 4.6. The logi
 program PR(�; �) has a stable model i� thereexists a rea
hable marking of � whi
h agrees with �. Additionally, for any stable model � ofPR(�; �), the 
on�guration C = Events(�) is a 
on�guration of �, su
h that Mark(C) is area
hable marking of � whi
h agrees with �.Proof:See Appendix A. utIt is easy to see that the sizes of all the translations presented are linear in the size of thepre�x �, i.e. O(jBj + jEj + jF j). Be
ause the rule-based 
onstraint programming system weuse needs linear spa
e in the size of the input program, deadlo
k and rea
hability property
he
king exploiting these translations 
an be made using linear spa
e in the size of the pre�x.The translations are also lo
al, whi
h makes them straightforward to implement using lineartime in the size of the pre�x.5. Deadlo
k Property Che
king ImplementationWe have implemented the deadlo
k property 
he
king translation, and we plan on implementingthe rea
hability translation in the near future. The translation reads a �le 
ontaining the de-s
ription of a �nite 
omplete pre�x generated by the PEP-tool [8℄. It generates a logi
 program
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k translation, whi
h is then through an internal interfa
e given to the smodelsstable model generator. The translation performs the following optimizations:1. Not generating the program i� the number of 
ut-o� events is zero.2. Removal of blo
king of �stubborn� transitions: If we �nd an event ei su
h that (�ei)� nCuto�s(�) = feig, the 
orresponding rule of type 1 of the program PB(�) is repla
ed bya rule of the form: ei  ep1 ; : : : ; epn , and the rule 2 of the form: bei  not (ei) is not
reated. Also the 
orresponding liveness rule of type 2 of the program PD(�) of the form: bp1 ; : : : ; bpn does not need to be 
reated as far as the event ei is 
on
erned.3. Removal of redundant 
ondition rules: The rule of type 1 of the program PD(�) 
orre-sponding to 
ondition bi is removed if the atom bi is does not appear elsewhere in theprogram.4. Removal of redundant atoms: If a rule of the form: a1  a2 would be generated, and thisis the only rule in whi
h a1 appears as a head, then all instan
es of a1 are repla
ed by a2,and the rule is dis
arded.5. Dupli
ate rule removal: Only one 
opy of ea
h rule is generated.For the optimization 1 it is easy to see that the net system � will deadlo
k, be
ause the �nite
omplete pre�x is �nite and does not 
ontain any 
ut-o�s. Thus the net system � 
an �re onlya �nite number of transitions. It also is straightforward to prove that the optimizations 3-5 donot alter the number of stable models the program has. The optimization 2 is motivated bystubborn sets [19℄. The intuition is that whenever ei is enabled, it must be disabled in order torea
h a deadlo
k. However the only way of disabling ei is to �re it. Therefore we 
an dis
ard all
on�gurations in whi
h ei is enabled as not being deadlo
k 
on�gurations.We argue that optimization 2 is 
orre
t, i.e. the stable models of the program PD(�) arenot a�e
ted by it (modulo the possible removal of the atom bei from the set of atoms of theoptimized program). Consider the original program, and an optimized one in whi
h an eventei has been optimized using optimization 2. If we look only at the two programs without thedeadlo
k dete
tion parts added by Def. 4.4, their only di�eren
e is that in the original programit is possible to leave the event ei enabled but not �red, while this is not possible in the optimizedprogram. Thus 
learly the set of stable models of the optimized program is a subset of the stablemodels of the original one. If we have any 
on�guration in whi
h the event ei is enabled but isnot �red, then the set of atoms 
orresponding to this 
on�guration is not a stable model of theoriginal program. This is the 
ase be
ause the integrity rule of type 2 of Def. 4.4 
orrespondingto the event ei eliminates su
h a potential stable model. Therefore the optimized program willhave the same number of stable models as the original one.We do quite an extensive set of optimizations. The optimizations 1 and 2 are deadlo
kdete
tion spe
i�
. The optimizations 3-5 
an be seen as general logi
 program optimizationsbased on stati
 analysis, and 
ould in prin
iple be done in the stable model generator after thetranslation. The optimizations 1-4 are implemented using linear time and spa
e in the size ofthe pre�x. The dupli
ate rule removal is implemented with hashing.
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habilityWe use su

in
t rule en
odings with extended rules when possible. The two rules ei  ep1 ; : : : ; epn , not (bei), and bei  not (ei) 
an be more su

in
tly en
oded by an extended ruleof the form: feig  ep1 ; : : : ; epn . Also  2fa1; a2g is repla
ed by:  a1; a2. We also sort therules after the translation. In our experiments the sorting seems to have only a minimal e�e
ton the total running time, but produ
es ni
er looking logi
 program (debugging) output.After the translation has been 
reated, the smodels 
omputational engine is used to 
he
kwhether a stable model of the program exists. If one exists, the deadlo
k 
he
ker outputs anexample deadlo
k 
on�guration using the found stable model. Otherwise the program tells thatthe net is deadlo
k free.5.1. Experimental ResultsWe have made experiments with our approa
h using examples by Corbett [2℄, M
Millan [12, 13℄,and Melzer and Römer [14℄. They were previously used by Melzer and Römer in [14℄ and byBest and Römer in [1℄, where additional information about them 
an be found. We 
ompareour approa
h with two other �nite 
omplete pre�x based deadlo
k 
he
king methods. The �rstmethod is the bran
h-and-bound deadlo
k dete
tion algorithm by M
Millan [12, 13, 14℄, and theother is the mixed integer programming approa
h by Melzer and Römer [14℄.The Figures 2-4 present the running times in se
onds for the various algorithms used in thiswork, and for the mixed integer programming approa
h those presented in [14℄. The runningtimes have been measured using a Pentium 166MHz, 64MB RAM, 128MB swap, Linux 2.0.29,g++ 2.7.2.1, smodels pre-2.0.30, M
Millan's algorithm version 2.1.0 by Stefan Römer, and PEP1.6g. The experiments with the mixed integer programming approa
h by Melzer and Römer useda 
ommer
ial MIP-solver CPLEX, and were 
ondu
ted on a Spar
station 20/712, 96MB RAM.The rows of the tables 
orrespond to di�erent problems. The 
olumns represent: sum of userand system times measured by /usr/bin/time 
ommand, or times reported in [14℄, dependingon the 
olumn:� Unf = time for unfolding (
reation of the �nite 
omplete pre�x) (PEP).� DCMIP = time for Mixed integer programming approa
h in [14℄.� DCM
M = time for M
Millan's algorithm, average of 4 runs.� DCsmo = time for smodels based deadlo
k 
he
ker, average of 4 runs.The marking vm(n) notes that the program ran out of virtual memory after n se
onds. The other�elds of the �gures are as follows: jBj: number of 
onditions, jEj: number of events, #
: numberof 
ut-o� events, DL: Y - the net system has a deadlo
k, CP: 
hoi
e points i.e. the number ofnondeterministi
 guesses smodels did during the run. The DCsmo 
olumn also in
ludes the logi
program translation time, whi
h was always under 10 se
onds for the examples.The logi
 programming approa
h using the smodels system was able to produ
e an answerfor all the examples presented here, while the M
Millan's algorithm implementation ran out ofvirtual memory on some of the larger examples. Our approa
h was sometimes mu
h faster, see
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 DL CP Unf1 DC2MIP DC1M
M DC1smoDPD(5) 1582 790 211 N 0 0.6 17.3 1.6 1.0DPD(6) 3786 1892 499 N 0 3.2 82.8 12.3 6.1DPD(7) 8630 4314 1129 N 0 17.4 652.6 128.9 31.4DPH(5) 2712 1351 547 N 0 1.3 42.9 6.5 1.8DPH(6) 14474 7231 3377 N 0 33.7 1472.8 1063.7 32.9DPH(7) 81358 40672 21427 N 0 929.3 - vm(1690.2) 760.6ELEVATOR(2) 1562 827 331 Y 2 0.6 2.3 0.5 0.7ELEVATOR(3) 7398 3895 1629 Y 3 10.3 14.5 10.1 15.0ELEVATOR(4) 32354 16935 7337 Y 4 186.1 387.8 268.8 231.7FURNACE(1) 535 326 189 N 0 0.1 0.3 0.2 0.0FURNACE(2) 5139 3111 1990 N 0 3.2 18.1 11.1 0.6FURNACE(3) 34505 20770 13837 N 0 134.7 1112.5 vm(392.5) 7.1RING(7) 813 403 79 N 0 0.2 17.1 0.2 0.4RING(9) 1599 795 137 N 0 0.7 71.2 0.7 2.2RW(9) 9272 4627 4106 N 0 2.0 58.5 68.2 0.4RW(12) 98378 49177 45069 N 0 137.5 24599.9 vm(3050.5) 4.2Figure 2 Measured running times in se
onds:1 = Pentium 166MHz, 64MB RAM, Linux 2.0.29.2 = Spar
station 20/712, 96MB RAM [14℄.e.g. FURNACE(3), RW(12), SYNC(3), BDS(1), GASQ(4), and Q(1). The M
Millan's algorithmwas faster than our approa
h on the following problem 
lasses: RING, HART, SENT and SPD.These problems are quite easy for both methods, running times for the �rst three were a fewse
onds, and for the fourth still well under 30 se
onds. On the DME and KEY examples ourapproa
h is s
aling better as the problem sizes in
rease. M
Millan's algorithm is most 
ompetitivewhen the number of 
ut-o� events is relatively small.We do not have a

ess to the MIP-solver used in [14℄, and also our experiments in [9℄ seemto indi
ate that the 
omputer we made our experiments on is faster than theirs. This makesit di�
ult to 
omment on the absolute running times between di�erent ma
hines. However ourapproa
h is s
aling better on most examples, see e.g. RW, DME, and SYNC examples.An observation that should be made is that the number of 
hoi
e points for smodels in theseexamples is very low, with a maximum of 9 
hoi
e points in the example SPD(1). This meansthat on this example set the sear
h spa
e pruning te
hniques were very e�e
tive in minimizingthe number of nondeterministi
 
hoi
es that were needed to solve the examples.The example nets and C++ sour
e 
ode for our translation in
luding smodels are availablefrom the author.
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habilityProblem(size) jBj jEj #
 DL CP Unf1 DC2MIP DC1M
M DC1smoDME(4) 2381 652 16 N 0 1.1 216.1 1.4 3.9DME(5) 4096 1145 25 N 0 3.2 1968.3 5.5 13.7DME(6) 6451 1830 36 N 0 8.5 13678.3 20.1 38.0DME(7) 9542 2737 49 N 0 18.1 - 66.1 86.7DME(8) 13465 3896 64 N 0 37.0 - 196.0 182.3DME(9) 18316 5337 81 N 0 70.0 - 542.2 366.6DME(10) 24191 7090 100 N 0 124.0 - 1268.4 646.1DME(11) 31186 9185 121 N 0 207.0 - 3070.9 1134.8SYNC(2) 4007 2162 490 N 0 4.6 171.6 37.0 1.8SYNC(3) 29132 15974 5381 N 0 218.6 11985.0 14073.3 66.5Figure 3 Measured running times in se
onds:1 = Pentium 166MHz, 64MB RAM, Linux 2.0.29.2 = Spar
station 20/712, 96MB RAM [14℄.6. Con
lusionsOur main 
ontribution is a method to transform the deadlo
k and rea
hability problems for1-safe Petri nets into the problem of �nding a stable model of a logi
 program and its 
orre
tnessproof. We do the translation in two steps: (i) Existing methods and tools are used to generatea �nite 
omplete pre�x of the 1-safe Petri net [5, 8, 12, 13℄. (ii) The deadlo
k and rea
habilityproblems for the �nite 
omplete pre�x are translated into the problem of �nding a stable modelof a logi
 program. This step uses the two new translations presented in this work, both of whi
hare linear in the size of the pre�x.Corre
tness proofs of are done in two steps. First a program is 
onstru
ted whose stablemodels are proved to have a one-to-one 
orresponden
e with the 
on�gurations of the �nite
omplete pre�x whi
h 
ontain no 
ut-o� events. Then additional rules added by the translationsare shown to either remove all potential stable models 
orresponding to live 
on�gurations, or allpotential stable models whi
h do not agree with the used assertion, depending on the translation.We present experimental results to support the feasibility of this approa
h for the dead-lo
k dete
tion problem. We use an existing 
onstraint-based logi
 programming framework, thesmodels system, for solving the problem of �nding a stable model of a logi
 program. Ourexperiments show that the approa
h seems to be quite robust and 
ompetitive on the examplesavailable to us. More experiments are needed to evaluate the feasibility of the approa
h on therea
hability problem.There are interesting topi
s for future resear
h. It seems possible to extend the translations toallow for a larger 
lass of Petri nets to be translated, while still keeping the problem NP-
omplete.M
Millan's algorithm 
an be seen to be more goal dire
ted algorithm than our approa
h, andan alternative translation using the basi
 ideas of M
Millan's algorithm 
ould be 
reated. Thesmodels system is quite a general purpose 
onstraint propagation based sear
h engine. Creatingspe
ialized algorithms for the two problems at hand 
ould further improve the 
ompetitiveness
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 DL CP Unf1 DC1M
M DC1smoBDS(1) 12310 6330 3701 N 0 18.3 171.9 4.1FTP(1) 178077 89042 35247 N 0 6470.5 vm(5413.1) 2080.0GASN(3) 2409 1205 401 N 0 1.2 13.2 2.4GASN(4) 15928 7965 2876 N 0 49.3 2630.4 105.5GASN(5) 100527 50265 18751 N 0 1972.7 vm(3393.7) 3958.4GASQ(3) 2593 1297 490 N 0 1.3 10.1 2.4GASQ(4) 19864 9933 4060 N 0 72.9 4170.3 127.5OVER(4) 1561 797 240 N 0 0.6 0.9 0.1OVER(5) 7388 3761 1251 N 0 11.9 38.1 0.9HART(50) 354 202 1 Y 5 0.1 0.0 0.2HART(75) 529 302 1 Y 6 0.3 0.1 0.4HART(100) 704 402 1 Y 6 0.4 0.1 0.8KEY(2) 1304 650 201 Y 5 0.5 0.3 0.7KEY(3) 13885 6940 2921 Y 5 41.0 38.8 68.4KEY(4) 135556 67775 32081 Y 8 3457.8 vm(3930.9) 4418.7MMGT(3) 11575 5841 2529 Y 0 22.6 592.4 20.0MMGT(4) 92940 46902 20957 Y 0 1466.2 vm(3068.0) 1375.2Q(1) 16090 8402 1173 Y 5 89.5 71.2 4.7SENT(75) 533 266 40 Y 6 0.2 0.1 0.3SENT(100) 608 291 40 Y 6 0.3 0.1 0.4SPD(1) 5317 3138 1311 Y 9 6.1 8.4 21.8Figure 4 Measured running times in se
onds:1 = Pentium 166MHz, 64MB RAM, Linux 2.0.29.of our approa
h. The subje
t of applying our approa
h to some form of model 
he
king is a veryinteresting area for future resear
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orresponden
e between the stable models of program PB(�) and the 
on�gurationsof � whi
h 
ontain no 
ut-o� events. We pro
eed by �rst proving auxiliary Lemma 1. In Lemmas2 and 3 one dire
tion of the 
orresponden
e between stable models of the program PB(�) andthe 
on�gurations of � with no 
ut-o� events is proved. The Lemma 4 shows the other dire
tionof the 
orresponden
e, and together with Corollary 1 shows that the mapping Events(�) is abije
tive mapping between the two sets in question.Lemma 1. Let � be a stable model of program PB(�) obtained from the translation by Def. 4.1,and ei; bei 2 Atoms(PB(�)). Now the following holds: ei 2 � ) bei 2 �, and ei 2 � )bei 2 �.Proof:Assume that ei 2 �. The only rule in whi
h bei appears as a head is a rule of type 2 of the formbei not (ei). By the de�nition of stable models, be
ause ei 2 �, the redu
t R (PB(�);not(�))does not 
ontain this rule, and thus bei 62 D
l(PB(�);not (�)), whi
h implies bei 2 �, be
ause� is a stable model.Assume that ei 2 �. Therefore R (PB(�);not(�)) 
ontains the rule bei  , and thus bei 2D
l(PB(�);not (�)), whi
h implies bei 2 �, be
ause � is a stable model. utCorollary 1. Let � be any stable model of PB(�). The set of events C = Events(�) fullyspe
i�es �, i.e. the following holds: Model(Events(�)) = �.Now we do the main proof of Theorem 4.1. As the �rst step we use a subset of the rules ofthe program PB(�) and prove that for this subset of rules the set of atoms � = Model(C) is astable model.
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k and Rea
habilityLemma 2. Let C be a 
on�guration of � su
h that C \ Cuto�s(�) = ;, and let PA(�) be thelogi
 program 
ontaining only the rules of the types 1 and 2 of the program PB(�). The set ofatoms � = Model(C) is a stable model of PA(�).Proof:We need to prove that D
l(PA(�);not (�)) = �. We pro
eed by 
ase analysis on the pairsof atoms fei; beig in Atoms(PA(�)) showing for both atoms that: For ea
h atom a 2 � thata 2 D
l(PA(�);not (�)), and for ea
h atom a 2 � that a 62 D
l(PA(�);not (�)).1. Investigate the pair of atoms fei; beig su
h that ei 2 �, and thus by Def. 4.2: bei 2 �.The redu
t R (PA(�);not (�)) 
ontains a rule of the form bei  , and also the only way ofdedu
ing ei, the rule of type 1 of the form: ei  ep1 ; : : : ; epn , is not in the redu
t, whi
himplies bei 2 D
l(PA(�);not (�)) and ei 62 D
l(PA(�);not (�)).2. Investigate the pair of atoms fei; beig su
h that ei 2 �, and thus by Def. 4.2: bei 2 �.The redu
t R (PA(�);not (�)) does not 
ontain the rule of type 2 of the form: bei  ,whi
h implies bei 62 D
l(PA(�);not(�)). The redu
t 
ontains a rule of type 1 of the form:ei  ep1 ; : : : ; epn , su
h that fep1 ; : : : ; epng = �(�ei). We need an indu
tion to 
ompletethe proof for this 
ase.What is left to be proved is that ej 2 D
l(PA(�);not (�)) for all ej 2 �, and thus for all ej 2 C.If C = ; we are done. Otherwise, we prove the previous 
laim by indu
tion on the index numberk of a sequen
e of events: e01; : : : ; e0jCj, su
h that fe01; : : : ; e0jCjg = C, and for all k 2 f1; : : : ; jCjgit holds that �(�e0k) � S1�l<kfe0lg. Be
ause C is a 
on�guration, su
h a sequen
e (a 
ausal totalorder of events of a 
on�guration) must exist. We pi
k one su
h a sequen
e.� Base 
ase k = 1: For e01 it holds that �(�e01) = ;. Thus the redu
t has a rule of the forme01  , whi
h implies e01 2 D
l(PA(�);not (�)).� Indu
tive 
ase k > 1: For all 1 � j < k the 
laim e0j 2 D
l(PA(�);not (�)) holds by theindu
tive hypothesis. Be
ause �(�e0k) � S1�l<kfe0lg, the redu
t has a rule of the form e0k  ep1 ; : : : ; epn , su
h that fep1 ; : : : ; epng � D
l(PA(�);not (�)) by the indu
tive hypothesis,whi
h implies e0k 2 D
l(PA(�);not (�)).The union of all the pairs equals Atoms(PA(�)), whi
h implies � is a stable model of PA(�). utNow we 
ontinue our proof by 
onsidering the full program PB(�) in Lemma 3.Lemma 3. Let C be a 
on�guration of � su
h that C \ Cuto�s(�) = ;. The set of atoms� = Model(C) is a stable model of the program PB(�).Proof:By Lemma 2: � = Model (C) is a stable model of PA(�). In the program PB(�) only integrityrules of type 3 of Def. 4.1 have been added. Thus the set of stable models of PB(�) is alwaysa subset of the stable models of PA(�). Be
ause C is a 
on�guration, there does not exists twonon-
ut-o� events ei and ej, and a 
ondition bk su
h that: ei 6= ej , and bk 2 �ei \ �ej . Thereforethere is no integrity rule whi
h 
ould be used, whi
h implies � is a stable model of PB(�). ut
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hability 265Lemma 4. If � is a stable model of the program PB(�), then the set of events C = Events(�)is a 
on�guration of � su
h that C \ Cuto�s(�) = ;.Proof:Be
ause Corollary 1 says that any stable model is fully spe
i�ed by a set of events, to get a
ontradi
tion we need to �nd a set of events E0, whi
h is not a 
on�guration, E0\Cuto�s(�) = ;,and � = Model (E0) is a stable model of PB(�). There are two 
ases:1. Assume that E0 is not 
ausally 
losed. Thus there must exist an event ei 2 E0, su
h that�(�ei) n E0 6= ;. Now by Def. 4.2 and Lemma 1: bei 62 Model(E0), and thus the redu
tR (PB(�);not (�)) 
ontains a rule of the form ei  ep1 ; : : : ; epn , whi
h is the only rule inwhi
h ei appears as a head. However by �(�ei) n E0 6= ; and Def. 4.2: bej 2 Model(E0)for some j 2 fp1; : : : ; png. Thus by Lemma 1: ej 62 �, and thus ei 62 D
l(PB(�);not (�)),whi
h implies � is not a stable model.2. Assume that E0 
ontains a 
on�i
t. Thus there exists two non-
ut-o� events ei and ej, anda 
ondition bk su
h that: ei 6= ej , and bk 2 �ei\�ej . The integrity rule of type 3 of Def. 4.1
orresponding to the 
ondition bk has the form  2fep1 ; : : : ; epng, su
h that fei; ejg � �,whi
h eliminates the possibility that � is a stable model. utThe Lemmas 3 and 4 prove the 
orresponden
e between the 
on�gurations of the pre�x �whi
h 
ontain no 
ut-o� events, and the stable models of the program PB(�). Combined withCorollary 1 the bije
tivity between these two sets is shown. This 
ompletes the proof. utProof of Theorem 4.2First we give Lemma 5, whi
h enables us to add rules of a restri
ted form into a logi
 program.Lemma 5. Let P1, P2 be a logi
 programs su
h that: For ea
h rule in P2 the head of the rule isnot in Atoms(P1), and all its body literals are in Atoms(P1). Then:� If � is a stable model of P1, then �0 = � [ S(�) is the unique stable model of P1 [ P2,su
h that for all a 2 Atoms(P1): a 2 �0 i� a 2 �, whereS(�) = fh j h a1; : : : ; an;not (b1); : : : ;not (bm) 2 P2; su
h thatai 2 � for i = 1; : : : ; n and bj 62 � for j = 1; : : : ; mg:� P1 [ P2 has the same number of stable models as P1.Proof:Let � be any stable model of P1, and r = h  a1; : : : ; an;not (b1); : : : ;not (bm) be any rule ofthe program P2. If we 
reate a program P 01 = P1 [ frg, then 
learly P 01 has the stable model�0 = � [ fhg i� ai 2 � for i = 1; : : : ; n and bj 62 � for j = 1; : : : ; m, and �0 = � otherwise.Also the possible addition of the atom h into the program P 01 does not e�e
t the redu
t i.e.R (P 01;not(�0)) = R (P 01;not(�)), be
ause h doesn't appear as a body literal in any rule inP1 [ P2. Therefore the number of stable models remains the same after the addition of r. The
laim 
an be now proved by indu
tion on the number of rules added from P2. ut
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k and Rea
habilityCorollary 2. Let P1 and P2 be two programs satisfying the requirements of Lemma 5. If � is astable model of P1 [ P2, then �0 = fa 2 � jAtoms(P1)g is a stable model of P1.Next we start using Lemma 5 to in
rementally prove out translation 
orre
t.Lemma 6. Let program PC(�) be a program made by adding rules of the type 1 of Def. 4.4 tothe program PB(�). The program PC(�) has the same number of stable models as PB(�), andthe stable models agree on the set of atoms Atoms(PB(�)).Proof:The proof is immediate by Lemma 5. utLemma 7. For any stable model � of PC(�) and any bi 2 Atoms(PC(�)) it holds that bi 2 �i� bi 2 Cut(Events(�)).Proof:Fix any stable model � of PC(�), and any atom bi of the program. Now the rule 
orrespondingto this atom is: bi el, not (ep1), : : : , not (epn), su
h that felg = �bi, and fep1 , : : : , epng = bi�nCutO�s(�). The 
orresponding rule will be in the redu
t (and by Lemma 5: bi 2 �) i� el 2 �and ep1 , : : : , epn 2 �, and thus by Theorem 4:1 el 2 Events(�) and ep1 ; : : : ; epn 62 Events(�),whi
h is exa
tly the 
ase when bi 2 Cut(Events(�)). utLemma 8. Let PD(�) be the logi
 program translation of the pre�x � by Def. 4.4, and let �be a stable model of PD(�). Then the set of events Events(�) is a deadlo
k 
on�guration of �.Additionally PD(�) has the same number of stable models as there are deadlo
k 
on�gurations of�, whi
h 
ontain no 
ut-o� events.Proof:The program PD(�) is the program PC(�) with only integrity rules of the type 2 of Def. 4.4added. Thus the set of stable models of PD(�) is a subset of the stable models of the programPC(�), whi
h by Lemma 6 
orrespond to the 
on�gurations of � whi
h 
ontain no 
ut-o� events.Fix any stable model � of PC(�). There are now two 
ases to 
onsider:� Events(�) is not a deadlo
k 
on�guration of �: Thus there must exist an event ei (
ut-o�or not) whi
h is enabled by Cut(Events(�)). Consider now the rule of type 2 
orrespondingto the event ei of the form:  bp1 ; : : : ; bpn , su
h that fbp1 ; : : : ; bpng = �ei. Now by Lemma7 ea
h of the atoms bpj 2 � i� bpj 2 Cut(Events(�)). Thus the integrity rule for the eventei will be used, whi
h implies � is not a stable model of PD(�).� Events(�) is a deadlo
k 
on�guration of �: Thus there is no event ei (
ut-o� or not)whi
h is enabled by Cut(Events(�)). Now by Lemma 7 ea
h of the atoms bi 2 � i�bi 2 Cut(Events(�)). Therefore none of the rules of the type 2 of Def. 4.4 
an be used,whi
h implies � is a stable model of PD(�).We have now found a one-to-one 
orresponden
e between the the stable models of PD(�) andthe deadlo
k 
on�gurations of � whi
h 
ontain no 
ut-o� events. ut
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k and Rea
hability 267Now we have all the ingredients needed to prove Theorem 4.2. The fa
t that � is a �nite
omplete pre�x of a 1-safe net system � guarantees the following. For ea
h rea
hable markingMof � there exists a 
on�guration C of � with no 
ut-o� events, su
h that Mark(C) =M , and forevery transition t enabled inM there exists a 
on�guration C[feg su
h that e 62 C and h(e) = t.Clearly this also holds for all rea
hable deadlo
k markings. The �nite 
omplete pre�x � will thushave a 
on�guration C with no 
ut-o� events, whi
h 
an not be extended by any event e 2 E,i� � has a rea
hable deadlo
k marking. Now Lemma 8 has shown a one-to-one 
orresponden
ebetween deadlo
k 
on�gurations without 
ut-o� events, and stable models of PD(�). ThereforePD(�) will have a stable model i� � has a rea
hable deadlo
k marking. It also holds by Lemma8 that for any stable model � of PD(�), C = Events(�) is a deadlo
k 
on�guration of �, su
hthat Mark(C) a rea
hable deadlo
k marking of �. utProof of Theorem 4.3We prove the Theorem 4.3 by stepwise adding rules to the base program PB(�).Lemma 9. Let program PP (�; �) be a program made by adding rules of the type 1 of Def. 4.6to the program PB(�). The program PP (�; �) has the same number of stable models as PB(�),and the stable models agree on the set of atoms Atoms(PB(�)).Proof:The proof is immediate by Lemma 5. utLemma 10. For any stable model � of PP (�; �) and for any bi 2 Atoms(PP (�; �)) it holdsthat bi 2 � i� bi 2 Cut(Events(�)).Proof:Identi
al to the proof of Lemma 7 when PC(�) is repla
ed by PP (�; �). utLemma 11. Let program PQ(�; �) be a program made by adding rules of the type 2 of Def. 4.6 tothe program PP (�; �). The program PQ(�; �) has the same number of stable models as PP (�; �),and the stable models agree on the set of atoms Atoms(PP (�; �)).Proof:The proof is immediate by Lemma 5. utLemma 12. For any stable model � of PQ(�; �) and for any si 2 Atoms(PQ(�; �)) it holdsthat si 2 � i� si 2 Mark(Events(�)).Proof:Fix any stable model � of PQ(�; �), and any atom si of the program. Now the rules 
orrespond-ing to this atom are all of the form: si  bi, su
h that si = h(bi). Now 
learly by Lemma 5:si 2 � i� bi 2 � for some 
ondition bi for whi
h si = h(bi), whi
h 
ombined with Lemma 10implies the 
laim. ut
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k and Rea
habilityWe 
an now prove Theorem 4.3. The fa
t that � is a �nite 
omplete pre�x of a 1-safenet system � guarantees the following. For ea
h rea
hable marking M of � there exists a
on�guration C of � with no 
ut-o� events, su
h that Mark(C) =M . The stable models of theprogram PR(�; �) are always a subset of the stable models of the program PQ(�; �), be
auseonly integrity rules of type 3 and 4 of Def. 4.6 have been added. By Lemma 11 there exists astable model of PQ(�; �) 
orresponding to ea
h 
on�guration of the pre�x � whi
h 
ontains no
ut-o� events. Also Lemma 12 shows that the atoms si re�e
t the 
orresponding marking of �.There are now two 
ases left to prove:� If � has a rea
hable marking M whi
h agrees with �, then by Lemma 11 there exists astable model � of PQ(�; �), su
h that Mark(Events(�)) =M . Be
ause M agrees with �,it holds by Lemma 12 that for all fsi j si 2 S+g: si 2 �, and also for all fsj j sj 2 S�g:sj 2 �. Therefore there is no integrity rule in PR(�; �) whi
h 
an be used, whi
h implies� is also a stable model of PR(�; �).� If � has a rea
hable marking M whi
h does not agree with �, then by Lemma 11 thereexists a stable model � of PQ(�; �), su
h that Mark(Events(�)) = M . Be
ause M doesnot agree with �, it holds by Lemma 12 that either there exists a pla
e si in S+ su
h thatsi 2 �, or there exists a pla
e sj in S� su
h that sj 2 �. In the �rst 
ase an integrityrule of type 3, and in the se
ond 
ase an integrity rule of type 4 implies that � is not astable model of PR(�; �).This 
on
ludes the proof of Theorem 4.3. ut


