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248 Keijo Heljanko / Logi Programs for Deadlok and Reahability1. IntrodutionPetri nets are a widely used model for analyzing onurrent and distributed systems. Often suha system must exhibit reative, non-terminating behavior, and one of the key analysis problemsis that of deadlok-freedom: Do all reahable global states of the system (markings of the net)enable some ation (net transition)? In this work we study this problem for a sublass of Petrinets, the 1-safe Petri nets, whih are apable of modelling �nite state systems. For 1-safe Petrinets the deadlok detetion problem is PSPACE-omplete in the size of the net [4℄, however,restrited sublasses of 1-safe Petri nets exist for whih this problem is NP-omplete [12, 13℄.MMillan has presented a deadlok detetion method for Petri nets based on �nite ompletepre�xes (i.e. net unfoldings) [12, 13℄. The basi idea is to transform the PSPACE-ompletedeadlok detetion problem for a 1-safe Petri net into a potentially exponentially larger NP-omplete problem. This translation reates a �nite omplete pre�x, whih is an ayli 1-safePetri net of a restrited form. Experimental results show that the blowup of the transformationan in many ases be avoided [5, 12, 13, 14℄.In this work we address the NP-omplete deadlok detetion problem for �nite ompletepre�xes. MMillan originally suggested a branh-and-bound algorithm for solving this problem.Reently, Melzer and Römer have presented another algorithm whih is based on solving mixedinteger programming problems generated from pre�xes [14℄. Their approah seems to be fasterthan MMillan's on examples in whih a large perentage of the events of the pre�x are so alledut-o� events. However, if this assumption does not hold, the run times are generally slowerthan those of the MMillan's algorithm [14℄.In this work we study an approah that is similar to that of Melzer and Römer in theway of being apable of handling ases with a large perentage of ut-o� events but with moreompetitive performane. Instead of mixed integer programming our approah is based on aonstraint-based logi programming framework [15, 16, 17℄. We translate the deadlok detetionproblem into the problem of �nding a stable model of a logi program. As a side result we alsoobtain suh a translation for heking the reahability problem, whih is also NP-omplete in thesize of the pre�x [4℄. The main ontribution of this work also inludes the detailed orretnessproofs of the translations. For the deadlok detetion problem we present experimental results,and �nd our approah ompetitive with the two previous approahes.The rest of the paper is divided as follows. First we present Petri net notations used in thepaper. In Set. 3 we will introdue the rule-based onstraint programming framework. Setion4 ontains the main results of this work, linear-size translations from deadlok and reahabilityproperty heking into the problem of �nding a stable model of a logi program, and theirorretness proofs. In Set. 5 we present experimental results from our implementation. In Set.6 we onlude and disuss diretions for future researh.



Keijo Heljanko / Logi Programs for Deadlok and Reahability 2492. Petri Net De�nitionsFirst we de�ne basi Petri net notations. Next we introdue ourrene nets, whih are 1-safePetri nets of a restrited form. Then branhing proesses are given as a way of desribing partialorder semantis for Petri nets. Last but not least we de�ne �nite omplete pre�xes as a way ofgiving a �nite representation of this partial order behavior. We follow mainly the notation of[5, 14℄.2.1. Petri NetsA triple hS; T; F i is a net if S \ T = ; and F � (S � T ) [ (T � S). The elements of S arealled plaes, and the elements of T transitions. Plaes and transitions are also alled nodes. Weidentify F with its harateristi funtion on the set (S � T ) [ (T � S). The preset of a node x,denoted by �x, is the set fy 2 S [ T jF (y; x) = 1g. The postset of a node x, denoted by x�, isthe set fy 2 S [ T jF (x; y) = 1g. Their generalizations on sets of nodes X � S [ T are de�nedas �X = Sx2X �x, and X� = Sx2X x� respetively.A marking of a net hS; T; F i is a mapping S 7! IN. A marking M is identi�ed with themulti-set whih ontains M(s) opies of s for every s 2 S. A 4-tuple � = hS; T; F;M0i is a netsystem if hS; T; F i is a net and M0 is a marking of hS; T; F i. A marking M enables a transitiont if 8s 2 S : F (s; t) � M(s). If t is enabled, it an our leading to a new marking (denotedM t! M 0), where M 0 is de�ned by 8s 2 S : M 0(s) = M(s) � F (s; t) + F (t; s). A marking Mis a deadlok marking i� no transition t is enabled by M . A marking Mn is reahable in � i�there exist a sequene of transitions t1; t2; : : : ; tn and markings M1;M2; : : : ;Mn�1 suh that:M0 t1!M1 t2! : : :Mn�1 tn!Mn. A reahable marking is 1-safe if 8s 2 S :M(s) � 1. A net system� is 1-safe if all its reahable markings are 1-safe. In this work we will restrit ourselves to theset of net systems whih are 1-safe, have a �nite number of plaes and transitions, and also inwhih eah transition t 2 T has both nonempty pre- and postsets.2.2. Ourrene NetsWe use �F to denote the re�exive transitive losure of F . Let hS; T; F i be a net and let x1; x2 2S [ T . The nodes x1 and x2 are in on�it, denoted by x1#x2, if there exist t1; t2 2 T suh thatt1 6= t2, �t1 \ �t2 6= ;, t1 �F x1, and t2 �F x2. An ourrene net is a net N = hB;E; F i suhthat:� 8b 2 B : j�bj � 1,� F is ayli, i.e. the irre�exive transitive losure of F is a partial order,� N is �nitely preeded, i.e. for any node x of the net, the set of nodes y suh that y �F xis �nite, and� 8x 2 S [ T : :(x#x).The elements of B and E are alled onditions and events, respetively. The setMin(N) denotesthe set of minimal elements of the transitive losure of F . A on�guration C of an ourrenenet is a set of events satisfying:



250 Keijo Heljanko / Logi Programs for Deadlok and Reahability� If e 2 C then 8e0 2 E : e0 �F e implies e0 2 C (C is ausally losed),� 8e; e0 2 C : :(e#e0) (C is on�it-free).The o-set of a on�guration is alled a ut: Cut(C) = (Min(N) [ C�) n �C. A on�guration Cis a deadlok on�guration i� the set Cut(C) does not enable any event e 2 E.2.3. Branhing ProessesBranhing proesses are �unfoldings� of net systems and were introdued by Engelfriet [3℄. LetN1 = hS1; T1; F1i and N2 = hS2; T2; F2i be two nets. A homomorphism is a mapping S1 [ T1 7!S2 [ T2 suh that: h(S1) � S2 ^ h(T1) � T2, and for all t 2 T1, the restrition of h to �t isa bijetion between �t and �h(t), and similarly for t� and h(t)�. A branhing proess of a netsystem � is a tuple � = hN 0; hi, where N 0 is a ourrene net, and h is a homomorphism fromN 0 to hS; T; F i suh that: the restrition of h to Min(N 0) is a bijetion between Min(N 0) andM0, and 8e1; e2 2 E, if �e1 = �e2 ^h(e1) = h(e2) then e1 = e2. The set of plaes assoiated witha on�guration C of � is denoted by Mark(C) = h(Cut(C)).2.4. Finite Complete Pre�xesA �nite branhing proess � is a �nite omplete pre�x of a net system � i� for eah reahablemarking M of � there exists a on�guration C of � suh that:� Mark(C) =M , and� for every transition t enabled in M there exists a on�guration C [ feg suh that e 62 Cand h(e) = t.Algorithms to obtain a �nite omplete pre�x � given a 1-safe net system � are presented ine.g. [5, 12, 13℄. The algorithms will mark some events of the pre�x � as speial ut-o� events,whih we denote by the set CutO�s(�) � E. The intuition behind uto� events is that for eahut-o� event e there already exists another event e0 in the pre�x. The markings reahable afterexeuting e an also be reahed after exeuting e0, and thus the markings after e need not to beonsidered any further. We diret the reader interested in the approah to [5, 12, 13, 14℄.3. Rule-Based Constraint ProgrammingWe will use normal logi programs with stable model semantis [7℄ as the underlying formalisminto whih the deadlok and reahability problems for 1-safe Petri nets are translated. Thissetion is to a large extent based on [17℄.The stable model semantis is one of the main delarative semantis for normal logi pro-grams. However, here we use logi programming in a way that is di�erent from the typialPROLOG style paradigm, whih is based on the idea of evaluating a given query. Instead, weemploy logi programs as a onstraint programming framework [15℄, where stable models are



Keijo Heljanko / Logi Programs for Deadlok and Reahability 251the solutions of the program rules seen as onstraints. We onsider normal logi programs thatonsist of rules of the form h a1; : : : ; an;not (b1); : : : ;not (bm) (1)where a1; : : : ; an; b1; : : : ; bm and h are propositional atoms. Suh a rule an be seen as a onstraintsaying that if atoms a1; : : : ; an are in a model and atoms b1; : : : ; bm are not in a model, then theatom h is in a model. The stable model semantis also enfores minimality and groundedness ofmodels. This makes many ombinatorial problems easily and suintly desribable using logiprogramming with stable model semantis.We will demonstrate the basi behavior of the semantis using programs P1-P4:P1: a not (b) P2: a a P3: a not (a) P4: a ;not (b)b not (a) b not (a)Program P1 has two stable models: fag and fbg. The property of this program is that wemay freely make negative assumptions as long as we do not bump into any ontraditions. Forexample, we may assume not (b) in order to dedue the stable model fag. Program P2 has theempty set as its unique stable model. This exposes the fat that we an't use positive assumptionsto dedue what is to be inluded in a model. Program P3 is an example of a program whih hasno stable models. If we assume not (a), then we will dedue a, whih will ontradit with ourassumption not (a). Program P4 has one stable model fbg. If we assume not (a) then we willdedue b. If we assume not (b) then we an't dedue a, beause  an't be dedued from ourassumptions.The stable model semantis for a normal logi program P is de�ned as follows [7℄. The redutPA of P with respet to the set of atoms A is obtained (i) by deleting eah rule in P that has anot-atom not (x) in its body suh that x 2 A and (ii) by deleting all not-atoms in the remainingrules. A set of atoms A is a stable model of P if and only if A is the dedutive losure of PAwhen the rules in PA are seen as inferene rules.A non-deterministi way of onstruting stable models is to guess whih assumptions (not-atoms of the program) to use, and then hek using the dedutive losure (in linear time) whetherthe resulting model agrees with the assumptions. The problem of determining the existene of astable model is in fat NP-omplete [11℄.Next we give rest of the stable model semantis de�nitions, whih are needed in the proofs.De�nition 3.1. Let A be a set of atoms, we de�ne not (A) = fnot (a) j a 2 Ag.For a set of atoms and not-atoms B we denote the atoms in B by B+ and the set of not-atomsby B�. Atoms and not-atoms are also alled literals. We denote with Atoms(P ) the set of allpropositional atoms whih appear in the logi program P as literals. We use the notation � todenote the set Atoms(P ) n�.De�nition 3.2. The dedutive losure of a set of rules P and a set of literals B is denoted byDl (P;B), where Dl (P;B) is the smallest set of atoms that ontains B+ and is losed under



252 Keijo Heljanko / Logi Programs for Deadlok and ReahabilityR (P;B) whenR (P;B) = fh a1; : : : ; an;not (b1); : : : ;not (bm) 2 P and not (bi) 2 B�; for i = 1; : : : ;mgis seen as a set of inferene rules.The dedutive losure gives us a �xpoint haraterization of the stable models.Proposition 3.1. The set � is a stable model of a set of rules P i� � = Dl (P;not (�)).Proof:Note that the redut P� = R (P;not (�)). ut3.1. The tool smodelsThere is a tool, the smodels system [16, 17℄, whih provides an implementation of logi programsas a rule-based onstraint programming framework. It �nds stable models of a logi program,and an also tell when the program has no stable models. The implementation is based onbaktraking searh tehninique similar to the Davis Putnam method (see e.g. [6℄), and it usesa generalization of the well-founded semantis [20℄ to approximate the stable models and toprune the searh spae. The smodels implementation needs spae linear in the size of the inputprogram [17℄. The smodels seems to be the most e�ient implementation of the stable modelsemantis urrently available and it has been applied suessfully in a number of areas inludingplanning and propositional satis�ability heking, see, e.g. [17℄.The stable model semantis is de�ned using rules of the form (1). The smodels 2 handlesextended rule types [18℄, whih an be seen as suint enodings of sets of basi rules. One ofthe rule types is a rule of the form: h  2fa1; : : : ; ang. The semantis of this rule is that iftwo or more atoms from the set a1; : : : ; an belong to the model, then also the atom h will bein the model. It is easy to see that this rule an be enoded by using N2�N2 basi rules of theform: h  ai; aj. Using an extended rule instead of the orresponding basi rule enoding wasneessary to ahieve a linear-size translation of the two problems at hand.We also use the so alled integrity rules in the programs. They are rules with no head,i.e. of the form:  a1; : : : ; an;not (b1); : : : ;not (bm). The semantis is given by the follow-ing: A new atom f is introdued to the program, and the integrity rule is replaed by: f  a1; : : : ; an;not (b1); : : : ;not (bm);not (f). It is easy to see that any set of atoms, suh thata1; : : : ; an are in a model and atoms b1; : : : ; bm are not in a model, is not a stable model. It isalso easy to see that adding one integrity rule doesn't reate any new stable models, and neitherdoes adding any set of integrity rules. The last extended rule we use is of the form: fhg  a1; : : : ; an. The semantis is the following: A new atom h0 is introdued to the program, andthe rule is replaed by two rules: h  a1; : : : ; an;not (h0), and h0  not (h). The atom h0 isremoved from any stable models it appears in, and the rest of the model gives the semantis forthe extended rule.



Keijo Heljanko / Logi Programs for Deadlok and Reahability 2534. Translating Deadlok and Reahability Property Cheking intoLogi ProgramsIn this setion we present the translations of deadlok and reahability properties into logiprograms with stable model semantis. For the deadlok property the main result an be seenas a rephrasing of the Theorem 4 of [14℄, where mixed integer programming has been replaedby the rule-based onstraint programming framework. For the reahability property we giveanother translation. In this work we assume that the set of events of a �nite omplete pre�x isnon-empty. If it is empty, the orresponding net system would have no events enabled in theinitial state, and then the deadlok and reahability properties an be trivially solved by lookingat the initial state only.Now we are ready to de�ne our translation from the �nite omplete pre�xes into logi pro-grams with stable model semantis. The basi part of our translation is given next. It translatesthe notion of a on�guration of a �nite omplete pre�x into the problem of �nding a stable modelof a logi program. The de�nitions will be followed by an example translation given in Fig. 1.First we de�ne some additional notation. We assume a unique numbering of the events(and onditions) of the �nite omplete pre�x. We use the notation ei (bi) to refer to the event(ondition) number i. In the logi programs ei, (bi) is an atom of the logi program orrespondingto the event ei (ondition bi). In the logi program de�nitions we use the onvention that a partof a rule will be omitted, if the orresponding set evaluates to the empty set. For example ruleof type 1 of Def. 4.1 below for an event ei, suh that �(�ei) = ;, would beome: ei  not (bei).De�nition 4.1. Let � = hN;hi with N = hB;E; F i be a �nite omplete pre�x of a given 1-safenet system �. Let PB(�) be a logi program ontaining the following rules:1. For all ei 2 E n CutO�s(�) a rule:ei  ep1 ; : : : ; epn , not (bei),suh that fep1 ; : : : ; epng = �(�ei).2. For all ei 2 E n CutO�s(�) a rule:bei  not (ei).3. For all bi 2 B suh that jbi� n CutO�s(�)j � 2 a rule: 2fep1 ; : : : ; epng,suh that fep1 ; : : : ; epng = bi� n CutO�s(�).The intuition behind the rules of the program PB(�) are the following. Rules of the type 1 givethe preonditions under whih an atom orresponding to eah event an exist in a on�guration.Rules of the type 2 enable an event not to be inluded in a on�guration even if its preonditionsare present. Rules of the type 3 disallow all sets of events whih ontain events in a on�it. Notethat beause in pre�xes eah ondition has only one event in its preset, the program above doesnot need atoms orresponding to the onditions of the pre�x. The translation above ould be



254 Keijo Heljanko / Logi Programs for Deadlok and Reahabilitytrivially extended to also inlude the ut-o� events, but they are not needed by the appliationsin this work.We de�ne a mapping from a set of events of the pre�x to a set of atoms of a logi programand vie versa.De�nition 4.2. The set of atoms of a logi program P orresponding to a set of events C �E n Cuto�s(�) of a �nite omplete pre�x � is Model(C) = fei j ei 2 Cg [ fbej j ej 2 E n fC [Cuto�s(�)gg.De�nition 4.3. The set of events orresponding to a stable model � of a logi program P isEvents(�) = fei 2 E j ei 2 �g.Now we are ready to state the orrespondene between the �nite omplete pre�x and the basipart of our translation.Theorem 4.1. Let � be a �nite omplete pre�x of a 1-safe net system �, let PB(�) be the logiprogram translation by Def. 4.1, and let C be a on�guration of �, suh that C \Cuto�s(�) = ;.Then the set of atoms � = Model(C) is a stable model of PB(�). Additionally, the mappingEvents(�) is a bijetive mapping from the stable models of PB(�) to the on�gurations of �whih ontain no ut-o� events.Proof:See Appendix A. utNext we move to the deadlok translation. We add a set of rules to the program whih plaeadditional onstraints on the stable models of the program PB(�). We add integrity rules to theprogram, whih remove all stable models of the basi program whih are not deadloks. To dothis we model the the enabling of eah event (ut-o� or not) of the pre�x in the logi program.De�nition 4.4. Let � be a �nite omplete pre�x of a given 1-safe net system �. Let PD(�) bea logi program ontaining all the rules of the program PB(�) of Def. 4.1, and also the followingrules:1. For all bi 2 fbj 2 B j bj� 6= ;g a rule:bi  el, not (ep1), : : : , not (epn),suh that felg = �bi, and fep1 , : : : , epng = bi� n CutO�s(�).2. For all ei 2 E a rule: bp1 ; : : : ; bpn ,suh that fbp1 ; : : : ; bpng = �ei.Theorem 4.2. Let � be a �nite omplete pre�x of a 1-safe net system �, and let PD(�) bethe logi program translation by Def. 4.4. There exists a stable model of PD(�) i� � has areahable deadlok marking. Additionally, for any stable model � of PD(�), the set of eventsC = Events(�) is a deadlok on�guration of �, suh that Mark(C) is a reahable deadlokmarking of �.
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PD(N2) :e1  not (be1)be1  not (e1)e2  not (be2)be2  not (e2)e3  not (be3)be3  not (e3)e5  e1; not (be5)be5  not (e5)e8  e5; not (be8)be8  not (e8) 2fe1; e2; e3gb1  not (e1)b2  not (e1); not (e2); not (e3)b3  e1b4  e1; not (e5)b5  e2b7  e5; not (e8) b1; b2 b2 b3 b4 b5 b7Figure 1. Deadlok translation example.Proof:See Appendix A. utIn Fig. 1 an example of the deadlok translation is given. The pre�x N2 is a �nite ompletepre�x of the 1-safe nets system N1. The ut-o� events of N2 are marked with rosses. Thetranslated program PD(N2) has only one stable model � = fbe1; be2; e3; be5; be8; b1g, and theset Events(�) = fe3g is a deadlok on�guration of N2.Next we will present a way of translating reahability problems. First we need a way ofmaking statements about an individual marking.De�nition 4.5. An assertion on a marking of a 1-safe net system � = hS; T; F;M0i is a tuplehS+; S�i, where S+; S� � S, and S+ \ S� = ;. The assertion hS+; S�i agrees with a markingM of � i�: S+ � fs 2 S jM(s) = 1g ^ S� � fs 2 S jM(s) = 0g:With assertions we an easily formulate both the reahability and submarking reahabilityproblems. The idea is again to add some integrity rules to the program whih remove all stable



256 Keijo Heljanko / Logi Programs for Deadlok and Reahabilitymodels of PB(�) whih do not agree with the assertion. The basi struture is the same as fordeadloks, only a set of atoms whih represent the marking of the original net are added.De�nition 4.6. Let � be a �nite omplete pre�x of a given 1-safe net system � = hS; T; F;M0i,and let � = hS+; S�i be an assertion on the plaes of �. Let PR(�; �) be a logi programontaining all the rules of the program PB(�) of Def. 4.1, and also the following rules:1. For all bi 2 fbj 2 B jh(bj) 2 S+ [ S� ^ �bj 2 E n Cuto�s(�)g a rule:bi  el, not (ep1), : : : , not (epn),suh that felg = �bi, and fep1 , : : : , epng = bi� n CutO�s(�).2. For all bi 2 fbj 2 B jh(bj) 2 S+ [ S� ^ �bj 2 E n Cuto�s(�)g a rule:si  bi,suh that si = h(bi).3. For all si 2 S+ a rule: not (si).4. For all si 2 S� a rule: si.Note that only onditions of the pre�x � and plaes of � whih an a�et the assertion � aretranslated. Also ut-o� postset onditions are not translated, beause ut-o�s will not be �red.Theorem 4.3. Let � be a �nite omplete pre�x of a 1-safe net system �, and let PR(�; �) be alogi program translation by Def. 4.6. The logi program PR(�; �) has a stable model i� thereexists a reahable marking of � whih agrees with �. Additionally, for any stable model � ofPR(�; �), the on�guration C = Events(�) is a on�guration of �, suh that Mark(C) is areahable marking of � whih agrees with �.Proof:See Appendix A. utIt is easy to see that the sizes of all the translations presented are linear in the size of thepre�x �, i.e. O(jBj + jEj + jF j). Beause the rule-based onstraint programming system weuse needs linear spae in the size of the input program, deadlok and reahability propertyheking exploiting these translations an be made using linear spae in the size of the pre�x.The translations are also loal, whih makes them straightforward to implement using lineartime in the size of the pre�x.5. Deadlok Property Cheking ImplementationWe have implemented the deadlok property heking translation, and we plan on implementingthe reahability translation in the near future. The translation reads a �le ontaining the de-sription of a �nite omplete pre�x generated by the PEP-tool [8℄. It generates a logi program



Keijo Heljanko / Logi Programs for Deadlok and Reahability 257using the deadlok translation, whih is then through an internal interfae given to the smodelsstable model generator. The translation performs the following optimizations:1. Not generating the program i� the number of ut-o� events is zero.2. Removal of bloking of �stubborn� transitions: If we �nd an event ei suh that (�ei)� nCuto�s(�) = feig, the orresponding rule of type 1 of the program PB(�) is replaed bya rule of the form: ei  ep1 ; : : : ; epn , and the rule 2 of the form: bei  not (ei) is notreated. Also the orresponding liveness rule of type 2 of the program PD(�) of the form: bp1 ; : : : ; bpn does not need to be reated as far as the event ei is onerned.3. Removal of redundant ondition rules: The rule of type 1 of the program PD(�) orre-sponding to ondition bi is removed if the atom bi is does not appear elsewhere in theprogram.4. Removal of redundant atoms: If a rule of the form: a1  a2 would be generated, and thisis the only rule in whih a1 appears as a head, then all instanes of a1 are replaed by a2,and the rule is disarded.5. Dupliate rule removal: Only one opy of eah rule is generated.For the optimization 1 it is easy to see that the net system � will deadlok, beause the �niteomplete pre�x is �nite and does not ontain any ut-o�s. Thus the net system � an �re onlya �nite number of transitions. It also is straightforward to prove that the optimizations 3-5 donot alter the number of stable models the program has. The optimization 2 is motivated bystubborn sets [19℄. The intuition is that whenever ei is enabled, it must be disabled in order toreah a deadlok. However the only way of disabling ei is to �re it. Therefore we an disard allon�gurations in whih ei is enabled as not being deadlok on�gurations.We argue that optimization 2 is orret, i.e. the stable models of the program PD(�) arenot a�eted by it (modulo the possible removal of the atom bei from the set of atoms of theoptimized program). Consider the original program, and an optimized one in whih an eventei has been optimized using optimization 2. If we look only at the two programs without thedeadlok detetion parts added by Def. 4.4, their only di�erene is that in the original programit is possible to leave the event ei enabled but not �red, while this is not possible in the optimizedprogram. Thus learly the set of stable models of the optimized program is a subset of the stablemodels of the original one. If we have any on�guration in whih the event ei is enabled but isnot �red, then the set of atoms orresponding to this on�guration is not a stable model of theoriginal program. This is the ase beause the integrity rule of type 2 of Def. 4.4 orrespondingto the event ei eliminates suh a potential stable model. Therefore the optimized program willhave the same number of stable models as the original one.We do quite an extensive set of optimizations. The optimizations 1 and 2 are deadlokdetetion spei�. The optimizations 3-5 an be seen as general logi program optimizationsbased on stati analysis, and ould in priniple be done in the stable model generator after thetranslation. The optimizations 1-4 are implemented using linear time and spae in the size ofthe pre�x. The dupliate rule removal is implemented with hashing.



258 Keijo Heljanko / Logi Programs for Deadlok and ReahabilityWe use suint rule enodings with extended rules when possible. The two rules ei  ep1 ; : : : ; epn , not (bei), and bei  not (ei) an be more suintly enoded by an extended ruleof the form: feig  ep1 ; : : : ; epn . Also  2fa1; a2g is replaed by:  a1; a2. We also sort therules after the translation. In our experiments the sorting seems to have only a minimal e�eton the total running time, but produes nier looking logi program (debugging) output.After the translation has been reated, the smodels omputational engine is used to hekwhether a stable model of the program exists. If one exists, the deadlok heker outputs anexample deadlok on�guration using the found stable model. Otherwise the program tells thatthe net is deadlok free.5.1. Experimental ResultsWe have made experiments with our approah using examples by Corbett [2℄, MMillan [12, 13℄,and Melzer and Römer [14℄. They were previously used by Melzer and Römer in [14℄ and byBest and Römer in [1℄, where additional information about them an be found. We ompareour approah with two other �nite omplete pre�x based deadlok heking methods. The �rstmethod is the branh-and-bound deadlok detetion algorithm by MMillan [12, 13, 14℄, and theother is the mixed integer programming approah by Melzer and Römer [14℄.The Figures 2-4 present the running times in seonds for the various algorithms used in thiswork, and for the mixed integer programming approah those presented in [14℄. The runningtimes have been measured using a Pentium 166MHz, 64MB RAM, 128MB swap, Linux 2.0.29,g++ 2.7.2.1, smodels pre-2.0.30, MMillan's algorithm version 2.1.0 by Stefan Römer, and PEP1.6g. The experiments with the mixed integer programming approah by Melzer and Römer useda ommerial MIP-solver CPLEX, and were onduted on a Sparstation 20/712, 96MB RAM.The rows of the tables orrespond to di�erent problems. The olumns represent: sum of userand system times measured by /usr/bin/time ommand, or times reported in [14℄, dependingon the olumn:� Unf = time for unfolding (reation of the �nite omplete pre�x) (PEP).� DCMIP = time for Mixed integer programming approah in [14℄.� DCMM = time for MMillan's algorithm, average of 4 runs.� DCsmo = time for smodels based deadlok heker, average of 4 runs.The marking vm(n) notes that the program ran out of virtual memory after n seonds. The other�elds of the �gures are as follows: jBj: number of onditions, jEj: number of events, #: numberof ut-o� events, DL: Y - the net system has a deadlok, CP: hoie points i.e. the number ofnondeterministi guesses smodels did during the run. The DCsmo olumn also inludes the logiprogram translation time, whih was always under 10 seonds for the examples.The logi programming approah using the smodels system was able to produe an answerfor all the examples presented here, while the MMillan's algorithm implementation ran out ofvirtual memory on some of the larger examples. Our approah was sometimes muh faster, see



Keijo Heljanko / Logi Programs for Deadlok and Reahability 259Problem(size) jBj jEj # DL CP Unf1 DC2MIP DC1MM DC1smoDPD(5) 1582 790 211 N 0 0.6 17.3 1.6 1.0DPD(6) 3786 1892 499 N 0 3.2 82.8 12.3 6.1DPD(7) 8630 4314 1129 N 0 17.4 652.6 128.9 31.4DPH(5) 2712 1351 547 N 0 1.3 42.9 6.5 1.8DPH(6) 14474 7231 3377 N 0 33.7 1472.8 1063.7 32.9DPH(7) 81358 40672 21427 N 0 929.3 - vm(1690.2) 760.6ELEVATOR(2) 1562 827 331 Y 2 0.6 2.3 0.5 0.7ELEVATOR(3) 7398 3895 1629 Y 3 10.3 14.5 10.1 15.0ELEVATOR(4) 32354 16935 7337 Y 4 186.1 387.8 268.8 231.7FURNACE(1) 535 326 189 N 0 0.1 0.3 0.2 0.0FURNACE(2) 5139 3111 1990 N 0 3.2 18.1 11.1 0.6FURNACE(3) 34505 20770 13837 N 0 134.7 1112.5 vm(392.5) 7.1RING(7) 813 403 79 N 0 0.2 17.1 0.2 0.4RING(9) 1599 795 137 N 0 0.7 71.2 0.7 2.2RW(9) 9272 4627 4106 N 0 2.0 58.5 68.2 0.4RW(12) 98378 49177 45069 N 0 137.5 24599.9 vm(3050.5) 4.2Figure 2 Measured running times in seonds:1 = Pentium 166MHz, 64MB RAM, Linux 2.0.29.2 = Sparstation 20/712, 96MB RAM [14℄.e.g. FURNACE(3), RW(12), SYNC(3), BDS(1), GASQ(4), and Q(1). The MMillan's algorithmwas faster than our approah on the following problem lasses: RING, HART, SENT and SPD.These problems are quite easy for both methods, running times for the �rst three were a fewseonds, and for the fourth still well under 30 seonds. On the DME and KEY examples ourapproah is saling better as the problem sizes inrease. MMillan's algorithm is most ompetitivewhen the number of ut-o� events is relatively small.We do not have aess to the MIP-solver used in [14℄, and also our experiments in [9℄ seemto indiate that the omputer we made our experiments on is faster than theirs. This makesit di�ult to omment on the absolute running times between di�erent mahines. However ourapproah is saling better on most examples, see e.g. RW, DME, and SYNC examples.An observation that should be made is that the number of hoie points for smodels in theseexamples is very low, with a maximum of 9 hoie points in the example SPD(1). This meansthat on this example set the searh spae pruning tehniques were very e�etive in minimizingthe number of nondeterministi hoies that were needed to solve the examples.The example nets and C++ soure ode for our translation inluding smodels are availablefrom the author.



260 Keijo Heljanko / Logi Programs for Deadlok and ReahabilityProblem(size) jBj jEj # DL CP Unf1 DC2MIP DC1MM DC1smoDME(4) 2381 652 16 N 0 1.1 216.1 1.4 3.9DME(5) 4096 1145 25 N 0 3.2 1968.3 5.5 13.7DME(6) 6451 1830 36 N 0 8.5 13678.3 20.1 38.0DME(7) 9542 2737 49 N 0 18.1 - 66.1 86.7DME(8) 13465 3896 64 N 0 37.0 - 196.0 182.3DME(9) 18316 5337 81 N 0 70.0 - 542.2 366.6DME(10) 24191 7090 100 N 0 124.0 - 1268.4 646.1DME(11) 31186 9185 121 N 0 207.0 - 3070.9 1134.8SYNC(2) 4007 2162 490 N 0 4.6 171.6 37.0 1.8SYNC(3) 29132 15974 5381 N 0 218.6 11985.0 14073.3 66.5Figure 3 Measured running times in seonds:1 = Pentium 166MHz, 64MB RAM, Linux 2.0.29.2 = Sparstation 20/712, 96MB RAM [14℄.6. ConlusionsOur main ontribution is a method to transform the deadlok and reahability problems for1-safe Petri nets into the problem of �nding a stable model of a logi program and its orretnessproof. We do the translation in two steps: (i) Existing methods and tools are used to generatea �nite omplete pre�x of the 1-safe Petri net [5, 8, 12, 13℄. (ii) The deadlok and reahabilityproblems for the �nite omplete pre�x are translated into the problem of �nding a stable modelof a logi program. This step uses the two new translations presented in this work, both of whihare linear in the size of the pre�x.Corretness proofs of are done in two steps. First a program is onstruted whose stablemodels are proved to have a one-to-one orrespondene with the on�gurations of the �niteomplete pre�x whih ontain no ut-o� events. Then additional rules added by the translationsare shown to either remove all potential stable models orresponding to live on�gurations, or allpotential stable models whih do not agree with the used assertion, depending on the translation.We present experimental results to support the feasibility of this approah for the dead-lok detetion problem. We use an existing onstraint-based logi programming framework, thesmodels system, for solving the problem of �nding a stable model of a logi program. Ourexperiments show that the approah seems to be quite robust and ompetitive on the examplesavailable to us. More experiments are needed to evaluate the feasibility of the approah on thereahability problem.There are interesting topis for future researh. It seems possible to extend the translations toallow for a larger lass of Petri nets to be translated, while still keeping the problem NP-omplete.MMillan's algorithm an be seen to be more goal direted algorithm than our approah, andan alternative translation using the basi ideas of MMillan's algorithm ould be reated. Thesmodels system is quite a general purpose onstraint propagation based searh engine. Creatingspeialized algorithms for the two problems at hand ould further improve the ompetitiveness



Keijo Heljanko / Logi Programs for Deadlok and Reahability 261Problem(size) jBj jEj # DL CP Unf1 DC1MM DC1smoBDS(1) 12310 6330 3701 N 0 18.3 171.9 4.1FTP(1) 178077 89042 35247 N 0 6470.5 vm(5413.1) 2080.0GASN(3) 2409 1205 401 N 0 1.2 13.2 2.4GASN(4) 15928 7965 2876 N 0 49.3 2630.4 105.5GASN(5) 100527 50265 18751 N 0 1972.7 vm(3393.7) 3958.4GASQ(3) 2593 1297 490 N 0 1.3 10.1 2.4GASQ(4) 19864 9933 4060 N 0 72.9 4170.3 127.5OVER(4) 1561 797 240 N 0 0.6 0.9 0.1OVER(5) 7388 3761 1251 N 0 11.9 38.1 0.9HART(50) 354 202 1 Y 5 0.1 0.0 0.2HART(75) 529 302 1 Y 6 0.3 0.1 0.4HART(100) 704 402 1 Y 6 0.4 0.1 0.8KEY(2) 1304 650 201 Y 5 0.5 0.3 0.7KEY(3) 13885 6940 2921 Y 5 41.0 38.8 68.4KEY(4) 135556 67775 32081 Y 8 3457.8 vm(3930.9) 4418.7MMGT(3) 11575 5841 2529 Y 0 22.6 592.4 20.0MMGT(4) 92940 46902 20957 Y 0 1466.2 vm(3068.0) 1375.2Q(1) 16090 8402 1173 Y 5 89.5 71.2 4.7SENT(75) 533 266 40 Y 6 0.2 0.1 0.3SENT(100) 608 291 40 Y 6 0.3 0.1 0.4SPD(1) 5317 3138 1311 Y 9 6.1 8.4 21.8Figure 4 Measured running times in seonds:1 = Pentium 166MHz, 64MB RAM, Linux 2.0.29.of our approah. The subjet of applying our approah to some form of model heking is a veryinteresting area for future researh.7. AknowledgementsThe author would like to thank Ilkka Niemelä for introduing him into the rule-based onstraintprogramming framework, and for many onstrutive ideas for this paper. The tool smodels wasprogrammed by Patrik Simons, who gave valuable support for its usage. Stephan Melzer andStefan Römer provided the example nets, and also Linux binaries for MMillan's algorithm, whihboth were invaluable. Thanks to Burkhard Graves and Bernd Grahlmann for supplying C soureode to read PEP pre�x �les. The �nanial support of Helsinki Graduate Shool on ComputerSiene and Engineering (HeCSE), and the Aademy of Finland are gratefully aknowledged.Referenes[1℄ E. Best. Partial order veri�ation with PEP. In G. Holzmann, D. Peled, and V. Pratt,editors, Proeedings of POMIV'96, Workshop on Partial Order Methods in Veri�ation.Amerian Mathematial Soiety, July 1996.
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Keijo Heljanko / Logi Programs for Deadlok and Reahability 263[16℄ I. Niemelä and P. Simons. Smodels � an implementation of the stable model and well-foundedsemantis for normal logi programs. In Proeedings of the 4th International Conferene onLogi Programming and Non-Monotoni Reasoning, pages 420�429, Dagstuhl, Germany,July 1997. Springer-Verlag.[17℄ P. Simons. Towards onstraint satisfation through logi programs and the stable modelsemantis. Researh Report A47, Helsinki University of Tehnology, Espoo, Finland, August1997. Lieniate's thesis.[18℄ P. Simons. Extending the stable model semantis with more expressive rules, 1998. Unpub-lished manusript.[19℄ A. Valmari. A stubborn attak on state explosion. Formal Methods in System Design, 1(1992):297�322.[20℄ A. Van Gelder, K.A. Ross, and J.S. Shlipf. The well-founded semantis for general logiprograms. Journal of the ACM, 38(3):620�650, July 1991.Appendix AProof of Theorem 4.1We prove the orrespondene between the stable models of program PB(�) and the on�gurationsof � whih ontain no ut-o� events. We proeed by �rst proving auxiliary Lemma 1. In Lemmas2 and 3 one diretion of the orrespondene between stable models of the program PB(�) andthe on�gurations of � with no ut-o� events is proved. The Lemma 4 shows the other diretionof the orrespondene, and together with Corollary 1 shows that the mapping Events(�) is abijetive mapping between the two sets in question.Lemma 1. Let � be a stable model of program PB(�) obtained from the translation by Def. 4.1,and ei; bei 2 Atoms(PB(�)). Now the following holds: ei 2 � ) bei 2 �, and ei 2 � )bei 2 �.Proof:Assume that ei 2 �. The only rule in whih bei appears as a head is a rule of type 2 of the formbei not (ei). By the de�nition of stable models, beause ei 2 �, the redut R (PB(�);not(�))does not ontain this rule, and thus bei 62 Dl(PB(�);not (�)), whih implies bei 2 �, beause� is a stable model.Assume that ei 2 �. Therefore R (PB(�);not(�)) ontains the rule bei  , and thus bei 2Dl(PB(�);not (�)), whih implies bei 2 �, beause � is a stable model. utCorollary 1. Let � be any stable model of PB(�). The set of events C = Events(�) fullyspei�es �, i.e. the following holds: Model(Events(�)) = �.Now we do the main proof of Theorem 4.1. As the �rst step we use a subset of the rules ofthe program PB(�) and prove that for this subset of rules the set of atoms � = Model(C) is astable model.



264 Keijo Heljanko / Logi Programs for Deadlok and ReahabilityLemma 2. Let C be a on�guration of � suh that C \ Cuto�s(�) = ;, and let PA(�) be thelogi program ontaining only the rules of the types 1 and 2 of the program PB(�). The set ofatoms � = Model(C) is a stable model of PA(�).Proof:We need to prove that Dl(PA(�);not (�)) = �. We proeed by ase analysis on the pairsof atoms fei; beig in Atoms(PA(�)) showing for both atoms that: For eah atom a 2 � thata 2 Dl(PA(�);not (�)), and for eah atom a 2 � that a 62 Dl(PA(�);not (�)).1. Investigate the pair of atoms fei; beig suh that ei 2 �, and thus by Def. 4.2: bei 2 �.The redut R (PA(�);not (�)) ontains a rule of the form bei  , and also the only way ofdeduing ei, the rule of type 1 of the form: ei  ep1 ; : : : ; epn , is not in the redut, whihimplies bei 2 Dl(PA(�);not (�)) and ei 62 Dl(PA(�);not (�)).2. Investigate the pair of atoms fei; beig suh that ei 2 �, and thus by Def. 4.2: bei 2 �.The redut R (PA(�);not (�)) does not ontain the rule of type 2 of the form: bei  ,whih implies bei 62 Dl(PA(�);not(�)). The redut ontains a rule of type 1 of the form:ei  ep1 ; : : : ; epn , suh that fep1 ; : : : ; epng = �(�ei). We need an indution to ompletethe proof for this ase.What is left to be proved is that ej 2 Dl(PA(�);not (�)) for all ej 2 �, and thus for all ej 2 C.If C = ; we are done. Otherwise, we prove the previous laim by indution on the index numberk of a sequene of events: e01; : : : ; e0jCj, suh that fe01; : : : ; e0jCjg = C, and for all k 2 f1; : : : ; jCjgit holds that �(�e0k) � S1�l<kfe0lg. Beause C is a on�guration, suh a sequene (a ausal totalorder of events of a on�guration) must exist. We pik one suh a sequene.� Base ase k = 1: For e01 it holds that �(�e01) = ;. Thus the redut has a rule of the forme01  , whih implies e01 2 Dl(PA(�);not (�)).� Indutive ase k > 1: For all 1 � j < k the laim e0j 2 Dl(PA(�);not (�)) holds by theindutive hypothesis. Beause �(�e0k) � S1�l<kfe0lg, the redut has a rule of the form e0k  ep1 ; : : : ; epn , suh that fep1 ; : : : ; epng � Dl(PA(�);not (�)) by the indutive hypothesis,whih implies e0k 2 Dl(PA(�);not (�)).The union of all the pairs equals Atoms(PA(�)), whih implies � is a stable model of PA(�). utNow we ontinue our proof by onsidering the full program PB(�) in Lemma 3.Lemma 3. Let C be a on�guration of � suh that C \ Cuto�s(�) = ;. The set of atoms� = Model(C) is a stable model of the program PB(�).Proof:By Lemma 2: � = Model (C) is a stable model of PA(�). In the program PB(�) only integrityrules of type 3 of Def. 4.1 have been added. Thus the set of stable models of PB(�) is alwaysa subset of the stable models of PA(�). Beause C is a on�guration, there does not exists twonon-ut-o� events ei and ej, and a ondition bk suh that: ei 6= ej , and bk 2 �ei \ �ej . Thereforethere is no integrity rule whih ould be used, whih implies � is a stable model of PB(�). ut



Keijo Heljanko / Logi Programs for Deadlok and Reahability 265Lemma 4. If � is a stable model of the program PB(�), then the set of events C = Events(�)is a on�guration of � suh that C \ Cuto�s(�) = ;.Proof:Beause Corollary 1 says that any stable model is fully spei�ed by a set of events, to get aontradition we need to �nd a set of events E0, whih is not a on�guration, E0\Cuto�s(�) = ;,and � = Model (E0) is a stable model of PB(�). There are two ases:1. Assume that E0 is not ausally losed. Thus there must exist an event ei 2 E0, suh that�(�ei) n E0 6= ;. Now by Def. 4.2 and Lemma 1: bei 62 Model(E0), and thus the redutR (PB(�);not (�)) ontains a rule of the form ei  ep1 ; : : : ; epn , whih is the only rule inwhih ei appears as a head. However by �(�ei) n E0 6= ; and Def. 4.2: bej 2 Model(E0)for some j 2 fp1; : : : ; png. Thus by Lemma 1: ej 62 �, and thus ei 62 Dl(PB(�);not (�)),whih implies � is not a stable model.2. Assume that E0 ontains a on�it. Thus there exists two non-ut-o� events ei and ej, anda ondition bk suh that: ei 6= ej , and bk 2 �ei\�ej . The integrity rule of type 3 of Def. 4.1orresponding to the ondition bk has the form  2fep1 ; : : : ; epng, suh that fei; ejg � �,whih eliminates the possibility that � is a stable model. utThe Lemmas 3 and 4 prove the orrespondene between the on�gurations of the pre�x �whih ontain no ut-o� events, and the stable models of the program PB(�). Combined withCorollary 1 the bijetivity between these two sets is shown. This ompletes the proof. utProof of Theorem 4.2First we give Lemma 5, whih enables us to add rules of a restrited form into a logi program.Lemma 5. Let P1, P2 be a logi programs suh that: For eah rule in P2 the head of the rule isnot in Atoms(P1), and all its body literals are in Atoms(P1). Then:� If � is a stable model of P1, then �0 = � [ S(�) is the unique stable model of P1 [ P2,suh that for all a 2 Atoms(P1): a 2 �0 i� a 2 �, whereS(�) = fh j h a1; : : : ; an;not (b1); : : : ;not (bm) 2 P2; suh thatai 2 � for i = 1; : : : ; n and bj 62 � for j = 1; : : : ; mg:� P1 [ P2 has the same number of stable models as P1.Proof:Let � be any stable model of P1, and r = h  a1; : : : ; an;not (b1); : : : ;not (bm) be any rule ofthe program P2. If we reate a program P 01 = P1 [ frg, then learly P 01 has the stable model�0 = � [ fhg i� ai 2 � for i = 1; : : : ; n and bj 62 � for j = 1; : : : ; m, and �0 = � otherwise.Also the possible addition of the atom h into the program P 01 does not e�et the redut i.e.R (P 01;not(�0)) = R (P 01;not(�)), beause h doesn't appear as a body literal in any rule inP1 [ P2. Therefore the number of stable models remains the same after the addition of r. Thelaim an be now proved by indution on the number of rules added from P2. ut



266 Keijo Heljanko / Logi Programs for Deadlok and ReahabilityCorollary 2. Let P1 and P2 be two programs satisfying the requirements of Lemma 5. If � is astable model of P1 [ P2, then �0 = fa 2 � jAtoms(P1)g is a stable model of P1.Next we start using Lemma 5 to inrementally prove out translation orret.Lemma 6. Let program PC(�) be a program made by adding rules of the type 1 of Def. 4.4 tothe program PB(�). The program PC(�) has the same number of stable models as PB(�), andthe stable models agree on the set of atoms Atoms(PB(�)).Proof:The proof is immediate by Lemma 5. utLemma 7. For any stable model � of PC(�) and any bi 2 Atoms(PC(�)) it holds that bi 2 �i� bi 2 Cut(Events(�)).Proof:Fix any stable model � of PC(�), and any atom bi of the program. Now the rule orrespondingto this atom is: bi el, not (ep1), : : : , not (epn), suh that felg = �bi, and fep1 , : : : , epng = bi�nCutO�s(�). The orresponding rule will be in the redut (and by Lemma 5: bi 2 �) i� el 2 �and ep1 , : : : , epn 2 �, and thus by Theorem 4:1 el 2 Events(�) and ep1 ; : : : ; epn 62 Events(�),whih is exatly the ase when bi 2 Cut(Events(�)). utLemma 8. Let PD(�) be the logi program translation of the pre�x � by Def. 4.4, and let �be a stable model of PD(�). Then the set of events Events(�) is a deadlok on�guration of �.Additionally PD(�) has the same number of stable models as there are deadlok on�gurations of�, whih ontain no ut-o� events.Proof:The program PD(�) is the program PC(�) with only integrity rules of the type 2 of Def. 4.4added. Thus the set of stable models of PD(�) is a subset of the stable models of the programPC(�), whih by Lemma 6 orrespond to the on�gurations of � whih ontain no ut-o� events.Fix any stable model � of PC(�). There are now two ases to onsider:� Events(�) is not a deadlok on�guration of �: Thus there must exist an event ei (ut-o�or not) whih is enabled by Cut(Events(�)). Consider now the rule of type 2 orrespondingto the event ei of the form:  bp1 ; : : : ; bpn , suh that fbp1 ; : : : ; bpng = �ei. Now by Lemma7 eah of the atoms bpj 2 � i� bpj 2 Cut(Events(�)). Thus the integrity rule for the eventei will be used, whih implies � is not a stable model of PD(�).� Events(�) is a deadlok on�guration of �: Thus there is no event ei (ut-o� or not)whih is enabled by Cut(Events(�)). Now by Lemma 7 eah of the atoms bi 2 � i�bi 2 Cut(Events(�)). Therefore none of the rules of the type 2 of Def. 4.4 an be used,whih implies � is a stable model of PD(�).We have now found a one-to-one orrespondene between the the stable models of PD(�) andthe deadlok on�gurations of � whih ontain no ut-o� events. ut



Keijo Heljanko / Logi Programs for Deadlok and Reahability 267Now we have all the ingredients needed to prove Theorem 4.2. The fat that � is a �niteomplete pre�x of a 1-safe net system � guarantees the following. For eah reahable markingMof � there exists a on�guration C of � with no ut-o� events, suh that Mark(C) =M , and forevery transition t enabled inM there exists a on�guration C[feg suh that e 62 C and h(e) = t.Clearly this also holds for all reahable deadlok markings. The �nite omplete pre�x � will thushave a on�guration C with no ut-o� events, whih an not be extended by any event e 2 E,i� � has a reahable deadlok marking. Now Lemma 8 has shown a one-to-one orrespondenebetween deadlok on�gurations without ut-o� events, and stable models of PD(�). ThereforePD(�) will have a stable model i� � has a reahable deadlok marking. It also holds by Lemma8 that for any stable model � of PD(�), C = Events(�) is a deadlok on�guration of �, suhthat Mark(C) a reahable deadlok marking of �. utProof of Theorem 4.3We prove the Theorem 4.3 by stepwise adding rules to the base program PB(�).Lemma 9. Let program PP (�; �) be a program made by adding rules of the type 1 of Def. 4.6to the program PB(�). The program PP (�; �) has the same number of stable models as PB(�),and the stable models agree on the set of atoms Atoms(PB(�)).Proof:The proof is immediate by Lemma 5. utLemma 10. For any stable model � of PP (�; �) and for any bi 2 Atoms(PP (�; �)) it holdsthat bi 2 � i� bi 2 Cut(Events(�)).Proof:Idential to the proof of Lemma 7 when PC(�) is replaed by PP (�; �). utLemma 11. Let program PQ(�; �) be a program made by adding rules of the type 2 of Def. 4.6 tothe program PP (�; �). The program PQ(�; �) has the same number of stable models as PP (�; �),and the stable models agree on the set of atoms Atoms(PP (�; �)).Proof:The proof is immediate by Lemma 5. utLemma 12. For any stable model � of PQ(�; �) and for any si 2 Atoms(PQ(�; �)) it holdsthat si 2 � i� si 2 Mark(Events(�)).Proof:Fix any stable model � of PQ(�; �), and any atom si of the program. Now the rules orrespond-ing to this atom are all of the form: si  bi, suh that si = h(bi). Now learly by Lemma 5:si 2 � i� bi 2 � for some ondition bi for whih si = h(bi), whih ombined with Lemma 10implies the laim. ut



268 Keijo Heljanko / Logi Programs for Deadlok and ReahabilityWe an now prove Theorem 4.3. The fat that � is a �nite omplete pre�x of a 1-safenet system � guarantees the following. For eah reahable marking M of � there exists aon�guration C of � with no ut-o� events, suh that Mark(C) =M . The stable models of theprogram PR(�; �) are always a subset of the stable models of the program PQ(�; �), beauseonly integrity rules of type 3 and 4 of Def. 4.6 have been added. By Lemma 11 there exists astable model of PQ(�; �) orresponding to eah on�guration of the pre�x � whih ontains nout-o� events. Also Lemma 12 shows that the atoms si re�et the orresponding marking of �.There are now two ases left to prove:� If � has a reahable marking M whih agrees with �, then by Lemma 11 there exists astable model � of PQ(�; �), suh that Mark(Events(�)) =M . Beause M agrees with �,it holds by Lemma 12 that for all fsi j si 2 S+g: si 2 �, and also for all fsj j sj 2 S�g:sj 2 �. Therefore there is no integrity rule in PR(�; �) whih an be used, whih implies� is also a stable model of PR(�; �).� If � has a reahable marking M whih does not agree with �, then by Lemma 11 thereexists a stable model � of PQ(�; �), suh that Mark(Events(�)) = M . Beause M doesnot agree with �, it holds by Lemma 12 that either there exists a plae si in S+ suh thatsi 2 �, or there exists a plae sj in S� suh that sj 2 �. In the �rst ase an integrityrule of type 3, and in the seond ase an integrity rule of type 4 implies that � is not astable model of PR(�; �).This onludes the proof of Theorem 4.3. ut


