
Minimizing Finite Complete Pre�xesKeijo Heljanko�Helsinki University of Te
hnology,Laboratory for Theoreti
al Computer S
ien
eP.O.Box 5400, FIN-02015 HUT, FinlandKeijo.Heljanko�hut.�September 13, 1999Abstra
tFinite
omplete pre�xes are used as a veri�
ation method for Petri netsand other formalisms where a similar notion of partial order behavior
anbe applied. They were introdu
ed by M
Millan, who also gave an algo-rithm to generate a �nite
omplete pre�x from a system des
ription givenas a Petri net. Later Esparza, Römer and Vogler improved M
Millan'spre�x generation algorithm, whi
h
ould sometimes
reate exponentiallylarger pre�xes than required. In this work we re�ne the approa
h of Es-parza et.al. further, and de�ne a re�ned
ut-o�
riterion, whi
h makes itsometimes possible to
reate mu
h smaller �nite
omplete pre�xes. Ex-perimental results from a prototype implementation, a pre�x minimizer,are presented. The method
an also be applied dire
tly during pre�xgeneration.1 Introdu
tionPetri nets are a widely used model for analyzing
on
urrent and distributedsystems. Finite
omplete pre�xes are used as a veri�
ation method for Petri netsand other formalisms where a similar notion of partial order behavior
an beapplied. They were introdu
ed by M
Millan [11, 12℄, who also gave an algorithmto generate a �nite
omplete pre�x from a system des
ription given as a Petrinet. Later Esparza, Römer and Vogler improved M
Millan's pre�x generation(i.e. unfolding) algorithm [5℄, whi
h
ould sometimes
reate exponentially largerpre�xes than required. In this work we re�ne the approa
h of Esparza et.al.further, and de�ne a re�ned
ut-o�
riterion, whi
h makes it sometimes possibleto
reate mu
h smaller �nite
omplete pre�xes.�Currently visiting Te
hnis
he Universität Mün
hen, Fakultät für Informatik1

The rest of the paper is divided as follows. First we present Petri net no-tations used in the paper. The Se
t. 3 present the main result of this work, are�ned
ut-o�
riterion for �nite
omplete pre�xes. In Se
t. 4 we will introdu
ethe rule-based
onstraint programming framework. The next se
tion deals withrea
hability
he
king in pre�xes, whi
h we need for the implementation. Se
tion6 dis
usses the implementation, and gives experimental results.2 Petri Net De�nitionsFirst we de�ne basi
 Petri net notations. Next we introdu
e o

urren
e nets,whi
h are Petri nets of a restri
ted form. Then bran
hing pro
esses are givenas a way of des
ribing partial order semanti
s for Petri nets. We de�ne �nite
omplete pre�xes as a way of giving a �nite representation of this partial orderbehavior. We follow mainly the notation of [5, 13℄.2.1 Petri NetsA triple hS; T; F i is a net if S \ T = ; and F � (S � T) [(T � S). Theelements of S are
alled pla
es, and the elements of T transitions. Pla
es andtransitions are also
alled nodes. We identify F with its
hara
teristi
 fun
tionon the set (S � T) [(T � S). The preset of a node x, denoted by �x, is the setfy 2 S [T jF (y; x) = 1g. The postset of a node x, denoted by x�, is the setfy 2 S [T jF (x; y) = 1g. Their generalizations on sets of nodes X � S [T arede�ned as �X = Sx2X �x, and X� = Sx2X x� respe
tively.Amarking of a net hS; T; F i is a mapping S 7! IN. A markingM is identi�edwith the multi-set whi
h
ontains M (s)
opies of s for every s 2 S. A 4-tuple� = hS; T; F;M0i is a net system if hS; T; F i is a net and M0 is a marking ofhS; T; F i. A marking M enables a transition t if 8s 2 S : F (s; t) � M (s).If t is enabled, it
an o

ur leading to a new marking (denoted M t! M 0),where M 0 is de�ned by 8s 2 S : M 0(s) = M (s) � F (s; t) + F (t; s). A markingMn is rea
hable in � i� there exist a sequen
e of transitions t1; t2; : : : ; tn andmarkings M1;M2; : : : ;Mn�1 su
h that: M0 t1! M1 t2! : : :Mn�1 tn! Mn. Area
hable marking is 1-safe if 8s 2 S : M (s) � 1. A net system � is 1-safeif all its rea
hable markings are 1-safe. In this work we will restri
t ourselvesto the set of net systems whi
h are 1-safe, have a �nite number of pla
es andtransitions, and also in whi
h ea
h transition t 2 T has both nonempty pre- andpostsets.2.2 O

urren
e NetsWe use �F to denote the re�exive transitive
losure of F . Let hS; T; F i be a netand let x1; x2 2 S [T . The nodes x1 and x2 are in
on�i
t, denoted by x1#x2,if there exist t1; t2 2 T su
h that t1 6= t2, �t1 \ �t2 6= ;, t1 �F x1, and t2 �F x2.An o

urren
e net is a net N = hB;E; F i su
h that:� 8b 2 B : j�bj � 1, 2

� F is a
y
li
, i.e. the irre�exive transitive
losure of F is a partial order,� N is �nitely pre
eded, i.e. for any node x of the net, the set of nodes ysu
h that y �F x is �nite, and� 8x 2 S [T : :(x#x).The elements of B and E are
alled
onditions and events, respe
tively. The setMin(N) denotes the set of minimal elements of the transitive
losure of F . A
on�guration C of an o

urren
e net is a set of events satisfying:� If e 2 C then 8e0 2 E : e0 �F e implies e0 2 C (C is
ausally
losed),� 8e; e0 2 C : :(e#e0) (C is
on�i
t-free).A lo
al
on�guration [e℄ of an event e is the set of events e0, su
h that e0 �F e.2.3 Bran
hing Pro
essesBran
hing pro
esses are �unfoldings� of net systems and were introdu
ed byEngelfriet [3℄. Let N1 = hS1; T1; F1i and N2 = hS2; T2; F2i be two nets. Ahomomorphism is a mapping S1[T1 7! S2[T2 su
h that: h(S1) � S2^h(T1) �T2, and for all t 2 T1, the restri
tion of h to �t is a bije
tion between �t and�h(t), and similarly for t� and h(t)�. A bran
hing pro
ess of a net system � isa tuple � = hN 0; hi, where N 0 is a o

urren
e net, and h is a homomorphismfrom N 0 to hS; T; F i su
h that: the restri
tion of h to Min(N 0) is a bije
tionbetween Min(N 0) and M0, and 8e1; e2 2 E, if �e1 = �e2 ^ h(e1) = h(e2) thene1 = e2. The set of pla
es asso
iated with a
on�guration C of � is denoted byMark(C) = h((Min(N) [C�) n �C).It is shown in [3℄ that a net has a maximal bran
hing pro
ess up to iso-mophism,
alled the unfolding of the system. Given a
on�guration C of theunfolding, we denote by C�E the set C[E (the extension of C by E), under the
ondition that C[E is a
on�guration of the unfolding satisfying C\E = ;. Wealso use the same notation ��E on bra
hing pro
esses to denote the extensionof a bran
hing pro
ess � by the set of events E and their postset
onditions.2.4 Finite Complete Pre�xesA �nite bran
hing pro
ess � is a �nite
omplete pre�x of a net system � i� forea
h rea
hable marking M of � there exists a
on�guration C of � su
h that:� Mark(C) = M , and� for every transition t enabled in M there exists a
on�guration C [fegsu
h that e 62 C and h(e) = t.Algorithms to obtain a �nite
omplete pre�x � given a 1-safe net system � arepresented in e.g. [5, 11, 12℄. The algorithms will mark some events of the pre�x� as spe
ial
ut-o� events, whi
h we denote by the set CutO�s(�) � E. These3

algorithms have as a parameter a spe
ial partial order on the
on�gurations ofthe unfolding
alled the adequate order. Due to spa
e limitations we dire
t theinterested reader to [5, 11, 12, 13℄.3 Re�ning the Cut-o� CriterionThe se
tion represents the main
ontribution of this paper, a re�ned
ut-o�
riterion for �nite
omplete pre�xes. For �nite
omplete pre�x generation (i.e.unfolding) we use exa
tly the approa
h as Esparza et.al. in [5℄. The only
hangewe do to their approa
h is re�ning the following de�nition of a
ut-o� event:De�nition 3.1 Let � be an adequate order on the
on�gurations of the unfold-ing of a net system. Let � be pre�x of the unfolding
ontaining an event e. Theevent e is a
ut-o� event of � i� �
ontains a lo
al
on�guration [e0℄ su
h that:(a) Mark ([e℄) = Mark([e0℄), and(b) [e0℄ � [e℄.The intuition behind
uto� events is that for ea
h
ut-o� event e there al-ready exists another
orresponding event e0 in the pre�x. The markings rea
h-able after exe
uting e
an also be rea
hed after exe
uting e0, and thus themarkings after e need not to be
onsidered any further.We suggest that the
orresponding
on�guration doesn't need to be a lo
al
on�guration of another event, but any
on�guration whi
h
ontains no
ut-o�events, and �lls the other requirements, will do. Unfortunately this leads to anindu
tive, and not as intuitive notion of a
ut-o� events:De�nition 3.2 Let � be an adequate order on the
on�gurations of the unfold-ing of a net system. We de�ne the
ut-o� events of a pre�x � indu
tively on thenumber of events in the pre�x. Let e1; e2; : : : ; ek be a sequen
e of all the eventsof �, sorted in a non-de
reasing � order of their lo
al
on�gurations.Let �0 be the empty pre�x with Cuto�s(�0) = ;. For the indu
tion step, let�i = �i�1 � feig, and let Cuto�s(�i) = Cuto�s(�i�1). The event ei is addedinto Cuto�s(�i) i� �i�1
ontains a
on�guration Ci su
h that:(a) Mark ([ei℄) =Mark (Ci),(b) Ci � [ei℄, and(
) Ci \ Cuto�s(�i�1) = ;.Now the set of
ut-o� events of � is de�ned as Cuto�s(�) = Cuto�s(�k).The proofs of pre�x �niteness and
ompleteness with this re�ned
ut-o�
ri-terion are almost identi
al to similar proofs in [5℄, the only
hange is
hangingthe lo
al
on�guration [e0℄ into the
on�guration C. (The fa
t that the
or-responding
on�guration is a lo
al
on�guration is not needed by the proofs.)4

Note that we need totality of the order � between lo
al
on�gurations of a pre�xfor the de�nition above to be non-ambiguous. Thankfully this
an be done byusing a total order su
h as the one presented in [5℄.4 Rule-Based Constraint ProgrammingWe will use normal logi
 programs with stable model semanti
s [6℄ as the under-lying formalism to represent
ombinatorial problems. This se
tion is to a largeextent based on [17℄. We employ logi
 programs as a
onstraint programmingframework [14℄, where stable models are the solutions of the program rules seenas
onstraints. We
onsider normal logi
 programs that
onsist of rules of theform h a1; : : : ; an; not (b1); : : : ; not (bm) (1)where a1; : : : ; an; b1; : : : ; bm and h are propositional atoms. Su
h a rule
anbe seen as a
onstraint saying that if atoms a1; : : : ; an are in a model andatoms b1; : : : ; bm are not in a model, then the atom h is in a model. Thestable model semanti
s also enfor
es minimality and groundedness of models.This makes many
ombinatorial problems easily and su

in
tly des
ribable usinglogi
 programming with stable model semanti
s.The stable model semanti
s for a normal logi
 program P is de�ned asfollows [6℄. The redu
t PA of P with respe
t to the set of atoms A is obtained(i) by deleting ea
h rule in P that has a not-atom not (x) in its body su
h thatx 2 A and (ii) by deleting all not-atoms in the remaining rules. A set of atomsA is a stable model of P if and only if A is the dedu
tive
losure of PA whenthe rules in PA are seen as inferen
e rules.A non-deterministi
 way of
onstru
ting stable models is to guess whi
hassumptions (not-atoms of the program) to use, and then
he
k using the de-du
tive
losure (in linear time) whether the resulting model agrees with theassumptions. The problem of determining the existen
e of a stable model is infa
t NP-
omplete [10℄.4.1 The tool smodelsThere is a tool, the smodels system [15, 17℄, whi
h provides an implementationof logi
 programs as a rule-based
onstraint programming framework. It �nds(some or all) stable models of a logi
 program. It
an also tell when the programhas no stable models. It
ontains strong pruning te
hniques to make the problemtra
table for a large
lass of programs. The smodels implementation needs spa
elinear in the size of the input program [17℄.The stable model semanti
s is de�ned using rules of the form (1). Thesmodels 2 handles extended rule types, whi
h
an be seen as su

in
t en-
odings of sets of basi
 rules. One of the rule types is a rule of the form:h nfa1; : : : ; akg. The semanti
s of this rule is that if n or more atoms fromthe set a1; : : : ; ak belong to the model, then also the atom h will be in the model.5

We also use the so
alled integrity rules in the programs. They are rules withno head, i.e. of the form: a1; : : : ; an; not (b1); : : : ; not (bm). The semanti
sare de�ned in su
h a way that if atoms a1; : : : ; an are in a model and atomsb1; : : : ; bm are not in a model, then this model is not a stable model. For moreinformation about the extended rules, see [16℄.5 Translating Rea
hability into Logi
 ProgramsIn this se
tion we brie�y review the method used in our previous work to dorea
hability and deadlo
k
he
king with pre�xes [8, 9, 7℄. We need this forthe basis of our minimization algorithm, whi
h is based on solving rea
habilityproblems on pre�xes.First we de�ne some additional notation. We assume a unique numbering ofthe events (and
onditions) of the �nite
omplete pre�x. We use the notationei (bi) to refer to the event (
ondition) number i. In the logi
 programs ei, (bi)is an atom of the logi
 program
orresponding to the event ei (
ondition bi). Inthe logi
 program de�nitions of this paper we use the
onvention that a part ofa rule will be omitted, if the
orresponding set evaluates to the empty set.We de�ne a mapping from the atoms of a logi
 program to the events of apre�x.De�nition 5.1 The set of events
orresponding to a stable model � of a logi
program P is Events(�) = fei 2 E j ei 2 �g.With assertions we
an easily formulate the rea
hability problem.De�nition 5.2 An assertion on a marking of a 1-safe net system � = hS; T; F;M0iis a tuple hS+ ; S�i, where S+; S� � S, and S+ \ S� = ;. The assertionhS+ ; S�i agrees with a marking M of � i�:S+ � fs 2 S jM (s) = 1g ^ S� � fs 2 S jM (s) = 0g:Next we de�ne a logi
 program whose stable models are exa
tly those
on-�gurations of the pre�x, whose marking agrees with the given assertion.De�nition 5.3 Let � = hN; hi with N = hB;E; F i be a �nite
omplete pre�xof a given 1-safe net system � = hS; T; F;M0i, and let � = hS+; S�i be anassertion on the pla
es of �. Let PR(�; �) be a logi
 program
ontaining thefollowing rules:1. For all ei 2 E nCutO�s(�) a rule:ei ep1 ; : : : ; epn , not (bei),su
h that fep1 ; : : : ; epng = �(�ei).2. For all ei 2 E nCutO�s(�) a rule:bei not (ei). 6

3. For all bi 2 B su
h that jbi� nCutO�s(�)j � 2 a rule: 2fep1 ; : : : ; epng,su
h that fep1 ; : : : ; epng = bi� nCutO�s(�).4. For all bi 2 fbj 2 B jh(bj) 2 S+ [S� ^ �bj 2 E nCuto�s(�)g a rule:bi el, not (ep1), : : : , not (epn),su
h that felg = �bi, and fep1 , : : : , epng = bi� nCutO�s(�).5. For all bi 2 fbj 2 B jh(bj) 2 S+ [S� ^ �bj 2 E nCuto�s(�)g a rule:si bi,su
h that si = h(bi).6. For all si 2 S+ a rule: not (si).7. For all si 2 S� a rule: si.Note that
ut-o� postset
onditions are not translated, be
ause
ut-o�s willnot be �red by the translation. Proof of the following theorem
an be foundfrom [8℄.Theorem 5.1 The logi
 program PR(�; �) has a stable model i� there exists area
hable marking of � whi
h agrees with �. Additionally, for any stable model� of PR(�; �), the
on�guration C = Events(�) is a
on�guration of �, su
hthat Mark (C) is a rea
hable marking of � whi
h agrees with �.To be more exa
t, the
orresponden
e is a little stronger than what is statedabove, the stable models of the program PR(�; �) and the
on�gurations whi
hagree with � have a one-to-one
orresponden
e with ea
h other [8℄. It is easy tosee that the sizes of all the translations are linear in the size of the pre�x �, i.e.O(jBj + jEj+ jF j).6 ImplementationIn this work we have implemented the pre�x minimization as an o�-line toolto be run after pre�x generation. However, the approa
h
an also be used tominimize the pre�x during pre�x generation.The pre�x minimizer reads a binary �le
ontaining the des
ription of a �nite
omplete pre�x generated by the ERVunfold algorithm [4℄. We have to use thesame adequate order the pre�x generation algorithm for this approa
h to work.We denote by <PEP the adequate order used by the ERVunfold algorithm. We7

experimentally found out (and later got a
on�rmation from the ERVunfold au-thor) that the only di�eren
e from the adequate order presented in [5℄ (denoted<ERV) is in the way Foata normal form levels are
ompared. The di�eren
eis that the <ERV order uses a lexi
ographi
al order, while <PEP uses a size-lexi
ographi
al order (a shorter string is always smaller than a longer one, onlywhen sizes mat
h are strings
ompared with lexi
ographi
al order), for detailssee [5℄.The minimized pre�x is initialized to
ontain all the minimal
onditions ofthe original pre�x. Then minimizer main routine loops over events e 2 E of theoriginal pre�x, and does the following:1. If the event is a
ut-o� event of the original pre�x (and has not beenremoved by the steps below), then e is added as a
ut-o� event into theminimized pre�x together with its postset
onditions, and we
ontinuewith the next event from step 1.2. Otherwise, we generate a rea
hability program from the part of the min-imized pre�x whi
h in
ludes all events ei, su
h that j[ei℄j < j[e℄j. Therea
hability program is given the assertion � = hfs 2 Mark([e℄)g; fs 2S nMark([e℄)gi.3. We add an integrity rule into the program, whi
h disallows all solutionswhi
h have more than j[e℄j events in the
on�guration.4. We �nd the next stable model � of the program with smodels, if nosolution is found, we add e and its postset
onditions into the minimizedpre�x, and
ontinue with the next event from step 1.5. If a solution is found, it is
ompared using a subroutine whether C =Events(�) <PEP [e℄. If this is true, then e is added to the set of
ut-o�events of the minimized pre�x together with its postset
onditions. Thenall events ei of the original pre�x, su
h that e <F ei, are removed from theoriginal pre�x together with their postset
onditions. If the
omparisonwas false, we
ompute the next solution in step 4.The rea
hability program generation ensures that the marking Mark(C) =Mark([e℄) for all stable models found in step 4. The step 3 guarantees that allsolutions have at most j[e℄j events in them, and rules out most of the solutionswhi
h would be larger in the adequate order, and thus reje
ted by step 5.Note that our approa
h
an also be adjusted to other adequate orders thanthe one used in this work. However, the fa
t that larger
on�gurations arealways larger in the adequate order was very useful for implementation. In fa
t,the implementation only generates one base program for all events whose lo
al
on�guration size is the same, and only
hanges the rea
hability assertion forea
h event. We
an do this, be
ause the pre�x generator has already markedas
ut-o�s all events, whose
orresponding
on�guration is a (smaller in theadequate order) lo
al
on�guration of the same size. To use this optimizationof the algorithm during the pre�x generation, we need to
ompare the lo
al8

on�guration of an event against all other event whose lo
al
on�guration is ofthe same size. We do not believe this to be a big problem for implementingminimization in a pre�x generator, as this is something whi
h is already doneby the
urrent pre�x generators.6.1 Experimental ResultsWe have made experiments with our approa
h using examples by Corbett [2℄,M
Millan [11, 12℄, and Melzer and Römer [13℄. They were previously usedby Melzer and Römer in [13℄ and by Best and Römer in [1℄, where additionalinformation
an be found.The Figures 1-3 present the running times in se
onds for the various algo-rithms used in this work. The �gures might be des
ribed as the good news, thebad news, and the indi�erent news, respe
tively. The running times have beenmeasured using a Pentium 266MHz, 512MB RAM, Linux 2.2.3, eg
s 2.91.60C++
ompiler, smodels 2.22, and ERVunfold 4.5.1 by Stefan Römer [4℄.Original Pre�x Minimized Pre�x Time (s)Problem(size) jBj jEj #
 jBj jEj #
 Unf MinsmoBDS(1) 12310 6330 3701 3167 1660 832 2.5 11.6DPD(4) 594 296 81 318 158 62 0.0 0.3DPD(5) 1582 790 211 652 325 130 0.1 1.0DPD(6) 3786 1892 499 1282 640 258 0.5 3.6DPD(7) 8630 4314 1129 2488 1243 502 2.2 14.6DPH(4) 680 336 117 472 232 75 0.0 0.4DPH(5) 2712 1351 547 1326 658 235 0.2 2.5DPH(6) 14590 7289 3407 3338 1663 636 4.1 17.0DPH(7) 74558 37272 19207 7840 3913 1580 101.4 117.9FURNACE(1) 535 326 189 305 183 99 0.0 0.2FURNACE(2) 4573 2767 1750 1966 1168 688 0.4 4.6FURNACE(3) 30820 18563 12207 10177 5995 3710 14.3 162.3GASN(2) 338 169 46 194 97 22 0.0 0.1GASN(3) 2409 1205 401 837 419 109 0.2 1.6GASN(4) 15928 7965 2876 3360 1681 460 8.1 28.3GASN(5) 100527 50265 18751 12867 6435 1783 399.4 521.9GASQ(1) 43 21 4 39 19 4 0.0 0.0GASQ(2) 346 173 54 186 93 26 0.0 0.1GASQ(3) 2593 1297 490 941 471 150 0.3 1.7GASQ(4) 19864 9933 4060 5488 2745 916 14.1 65.7MMGT(1) 118 58 20 118 58 20 0.0 0.0MMGT(2) 1280 645 260 834 420 170 0.1 0.8MMGT(3) 11575 5841 2529 4893 2470 1046 3.4 31.1MMGT(4) 92940 46902 20957 25944 13100 5650 307.8 1104.2OVER(2) 83 41 10 59 29 7 0.0 0.0OVER(3) 369 187 53 166 84 24 0.0 0.1OVER(4) 1536 783 237 386 198 62 0.1 0.4OVER(5) 7266 3697 1232 951 491 165 1.7 2.2SYNC(2) 3884 2091 474 1276 700 137 0.6 5.2SYNC(3) 28138 15401 5210 9431 5233 1591 22.9 270.1Figure 1: Minimization results9

Original Pre�x Minimized Pre�x Time (s)Problem(size) jBj jEj #
 jBj jEj #
 Unf MinsmoCYCL(3) 52 23 4 52 23 4 0.0 0.0CYCL(6) 112 50 7 112 50 7 0.0 0.1CYCL(9) 172 77 10 172 77 10 0.0 0.2CYCL(12) 232 104 13 232 104 13 0.0 0.3DME(2) 487 122 4 487 122 4 0.1 0.6DME(3) 1210 321 9 1210 321 9 0.2 2.9DME(4) 2381 652 16 2381 652 16 0.5 11.4DME(5) 4096 1145 25 4096 1145 25 1.5 37.4DME(6) 6451 1830 36 6451 1830 36 4.2 100.9DME(7) 9542 2737 49 9542 2737 49 10.4 231.2DME(8) 13465 3896 64 13465 3896 64 23.0 470.5DME(9) 18316 5337 81 18316 5337 81 44.8 881.2DME(10) 24191 7090 100 24191 7090 100 82.5 1556.0DME(11) 31186 9185 121 31186 9185 121 142.0 2607.7DP(6) 204 96 30 204 96 30 0.0 0.1DP(8) 368 176 56 368 176 56 0.0 0.2DP(10) 580 280 90 580 280 90 0.0 0.6DP(12) 840 408 132 840 408 132 0.1 1.1DPFM(2) 12 5 2 12 5 2 0.0 0.0DPFM(5) 67 31 20 67 31 20 0.0 0.0DPFM(8) 426 209 162 426 209 162 0.1 0.0DPFM(11) 2433 1211 1012 2433 1211 1012 1.9 0.4HART(25) 179 102 1 179 102 1 0.0 0.2HART(50) 354 202 1 354 202 1 0.1 1.0HART(75) 529 302 1 529 302 1 0.1 2.3HART(100) 704 402 1 704 402 1 0.2 4.0RW(6) 806 397 327 806 397 327 0.1 0.1RW(9) 9272 4627 4106 9272 4627 4106 0.5 2.8RW(12) 98378 49177 45069 98378 49177 45069 25.3 265.7Figure 2: Minimization resultsThe rows of the tables
orrespond to di�erent problems. The
olumns rep-resent: sum of user and system times measured by /usr/bin/time
ommand:� Unf = time for unfolding (
reation of the �nite
omplete pre�x) (ERVun-fold).� Minsmo = time for the pre�x minimization algorithm (
urrently withoutpre�x output).The other �elds of the �gures are as follows: jBj: number of
onditions, jEj:number of events, #
: number of
ut-o� events.Note that the original pre�x sizes di�er from those presented in previouswork [1, 13, 8℄. When we implemented the
ode to
ompare
on�gurations withrespe
t to the adequate order <PEP, we ran into a bug in the pre�x generatorof the PEP tool, whi
h was promptly �xed by Stefan Römer in the ERVunfoldalgorithm version 4.5.1.The Fig. 1 shows quite large savings in the pre�x size, with pre�x sizeredu
tions of up-to almost 90%. Also, the gap between the original pre�x and10

Original Pre�x Minimized Pre�x Time (s)Problem(size) jBj jEj #
 jBj jEj #
 Unf MinsmoABP(1) 337 167 56 329 163 54 0.0 0.2DAC(6) 92 53 0 62 38 5 0.0 0.0DAC(9) 167 95 0 95 59 8 0.0 0.1DAC(12) 260 146 0 128 80 11 0.0 0.1DAC(15) 371 206 0 161 101 14 0.0 0.1ELEVATOR(1) 296 157 59 246 132 47 0.0 0.1ELEVATOR(2) 1562 827 331 1480 786 309 0.1 2.5ELEVATOR(3) 7398 3895 1629 7284 3838 1597 1.4 78.6ELEVATOR(4) 32354 16935 7337 32208 16862 7295 27.4 1721.9FTP(1) 178085 89046 35197 130156 65080 25902 953.4 34135.3KEY(2) 1310 653 199 1194 595 175 0.2 2.7KEY(3) 13941 6968 2911 12573 6284 2534 4.8 290.7KEY(4) 135914 67954 32049 121930 60962 27803 397.6 26992.0Q(1) 16123 8417 1188 15770 8240 1060 14.8 1059.2RING(3) 97 47 11 67 32 7 0.0 0.0RING(5) 339 167 37 223 109 21 0.0 0.2RING(7) 813 403 79 523 258 43 0.1 0.7RING(9) 1599 795 137 1015 503 73 0.2 2.7SENT(25) 383 216 40 290 157 23 0.0 0.3SENT(50) 458 241 40 365 182 23 0.1 0.5SENT(75) 533 266 40 440 207 23 0.1 0.8SENT(100) 608 291 40 515 232 23 0.1 1.1SPD(1) 4929 2882 1219 3155 1824 787 0.7 14.8Figure 3: Minimization resultsthe minimized pre�x seems to be growing when moving to larger instan
es ofthe problem. The running times are a

eptable, with all being under 1 hour.The Fig. 2 shows another side of the story, the pre�xes after minimizationare identi
al to those before it. The running times are quite similar to those ofthe previous Figure, only the largest DME instan
es being signi�
antly slower.The Fig. 3 shows pre�xes whi
h only partially bene�ted from the mini-mization. However, there are two hard
ases for the minimization algorithm:the FTP example and the largest KEY example. Their running times are
ur-rently una

eptable. We will experiment with alternative minimization strate-gies, whi
h might help these
ases. Also interesting is the
ase of DAC problems,the minimization introdu
ed some
ut-o� events. Thus for example deadlo
k
he
king is not anymore trivial using the optimized pre�x, while it was trivial inthe original one. The
omplexity results of deadlo
k and rea
hability
he
kingfor pre�xes are however not a�e
ted by our minimization, and these problemsstill remain NP-
omplete.7 Con
lusionsWe have demonstrated that re�ning the
ut-o�
riterion
an sometimes helpto
reate mu
h smaller pre�xes. Whether the e�ort needed to generate thesesmaller pre�xes is justi�ed is still under dis
ussion. If the pre�x is used as an11

input to algorithms whi
h have very large running times, then even the
ur-rent approa
h might be viable. The minimized pre�xes
an be dire
tly used fordeadlo
k and rea
hability
he
king. Other veri�
ation algorithms might alsowork, but they need to be modi�ed to use the notion of a
orresponding
on-�guration instead of the notion of a
orresponding event, and their
orre
tnessproofs revisited with this
hange in mind. The
omplexity results of di�erentmodel
he
king questions for non-minimized vs. minimized pre�xes is left asfurther work.It would be very interesting to know is there a stru
tural property the ex-amples in Fig. 1 have whi
h makes them behave better than the examples inFig. 2. If this would be possible, then it
ould be used to
hoose when to usethe re�ned
ut-o�
riterion with pre�xes. One observation is that the problemslisted in Fig. 2 have a simpler
ommuni
ation stru
ture (when modelled as statema
hines) than the problems in Fig. 1, see [2℄.One open question is the problem of de�ning an algorithm whi
h
omputesthe �nite
omplete pre�x, whi
h would be minimal in e.g. the number of non-
ut-o� events. There is an example in an extended version of [5℄, for whi
hour re�ned
ut-o�
riterion doesn't
reate the minimal pre�x in this sense.We believe that this work
an be used as a starting point for de�ning su
h atheoreti
al algorithm for a minimal (in a stri
ter sense than [5℄) pre�x generationalgorithm.Another interesting area for future work is the use of NP-
omplete problemsolvers for pre�x generation. They
an also be used for other parts of the pre�xgeneration pro
ess, with or without using the re�ned
ut-o�
riterion presentedhere. This
ould be of pra
ti
al interest for the pre�x based veri�
ation tools.8 A
knowledgementsThe author would like to thank Javier Esparza for the possibility of visitinghis resear
h group. The tool smodels was
reated by Patrik Simons, who gaveex
ellent support for it. Stefan Römer provided the example nets, and alsoLinux binaries for ERVunfold algorithm, whi
h both were invaluable. The �-nan
ial support of Helsinki Graduate S
hool on Computer S
ien
e and Engineer-ing (HeCSE), the A
ademy of Finland (Proje
t 8309), the Support Foundationof Helsinki University of Te
hnology, and the Eemil Aaltonen Foundation aregratefully a
knowledged.Referen
es[1℄ E. Best. Partial order veri�
ation with PEP. In G. Holzmann, D. Peled, andV. Pratt, editors, Pro
eedings of POMIV'96, Workshop on Partial OrderMethods in Veri�
ation. Ameri
an Mathemati
al So
iety, July 1996.12

[2℄ J. C. Corbett. Evaluating deadlo
k dete
tion methods for
on
urrent soft-ware. Te
hni
al report, Department of Information and Computer S
ien
e,University of Hawaii at Manoa, 1995.[3℄ J. Engelfriet. Bran
hing pro
esses of Petri nets. In A
ta Informati
a 28,pages 575�591, 1991.[4℄ J. Esparza and S. Römer. An unfolding algorithm for syn
hronous produ
tsof transition systems. In Pro
eedings of the 10th International Conferen
eon Con
urren
y Theory (Con
ur'99). Springer-Verlag, Berlin, 1999. Invitedpaper, a

epted for publi
ation.[5℄ J. Esparza, S. Römer, and W. Vogler. An improvement of M
Millan'sunfolding algorithm. In Pro
eedings of Se
ond International Workshopon Tools and Algorithms for the Constru
tion and Analysis of Systems(TACAS'96), pages 87�106, Passau, Germany, Mar 1996. Springer-Verlag.LNCS 1055.[6℄ M. Gelfond and V. Lifs
hitz. The stable model semanti
s for logi
 program-ming. In Pro
eedings of the 5th International Conferen
e on Logi
 Program-ming, pages 1070�1080, Seattle, USA, August 1988. The MIT Press.[7℄ K. Heljanko. Deadlo
k
he
king for
omplete �nite pre�xes using logi
programs with stable model semanti
s (extended abstra
t). In Pro
eed-ings of the Workshop Con
urren
y, Spe
i�
ation & Programming 1998,Informatik-Beri
ht Nr. 110, pages 106�115. Humboldt-University, Berlin,September 1998.[8℄ K. Heljanko. Using logi
 programs with stable model semanti
s to solvedeadlo
k and rea
hability problems for 1-safe Petri nets. Fundamenta In-formati
ae, 37(3):247�268, 1999.[9℄ K. Heljanko. Using logi
 programs with stable model semanti
s to solvedeadlo
k and rea
hability problems for 1-safe Petri nets. In Pro
eedings ofFifth International Conferen
e on Tools and Algorithms for the Constru
-tion and Analysis of Systems (TACAS'99), pages 240�254. Springer-Verlag,Berlin, Mar
h 1999. LNCS 1579.[10℄ W. Marek and M. Trusz
zy«ski. Autoepistemi
 logi
. Journal of the ACM,38:588�619, 1991.[11℄ K. L. M
Millan. Using unfoldings to avoid the state spa
e explosionproblem in the veri�
ation of asyn
hronous
ir
uits. In Pro
eeding of 4thWorkshop on Computer Aided Veri�
ation (CAV'92), pages 164�174, 1992.LNCS 663.[12℄ K. L. M
Millan. A te
hnique of a state spa
e sear
h based on unfolding.In Formal Methods is System Design 6(1), pages 45�65, 1995.13

[13℄ S. Melzer and S. Römer. Deadlo
k
he
king using net unfoldings. In Pro-
eeding of 9th International Conferen
e on Computer Aided Veri�
ation(CAV'97), pages 352�363, Haifa, Israel, Jun 1997. Springer-Verlag. LNCS1254.[14℄ I. Niemelä. Logi
 programs with stable model semanti
s as a
onstraintprogramming paradigm. In Pro
eedings of the Workshop on ComputationalAspe
ts of Nonmonotoni
 Reasoning, pages 72�79, Trento, Italy, May 1998.Helsinki University of Te
hnology, Digital Systems Laboratory, Resear
hReport A52.[15℄ I. Niemelä and P. Simons. Smodels � an implementation of the stable modeland well-founded semanti
s for normal logi
 programs. In Pro
eedings of the4th International Conferen
e on Logi
 Programming and Non-Monotoni
Reasoning, pages 420�429, Dagstuhl, Germany, July 1997. Springer-Verlag.[16℄ P. Simons. Extending stable model semanti
s with more expressiverules. Unpublished manus
ript, available on the Internet at http://www.t
s.hut.�/Publi
ations/papers/simons99.ps.gz.[17℄ P. Simons. Towards
onstraint satisfa
tion through logi
 programs andthe stable model semanti
s. Resear
h Report A47, Helsinki University ofTe
hnology, Espoo, Finland, August 1997. Li
en
iate's thesis, Available athttp://www.t
s.hut.�/pub/reports/A47.ps.gz.

14

