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The rest of the paper is divided as follows. First we present Petri net no-tations used in the paper. The Set. 3 present the main result of this work, are�ned ut-o� riterion for �nite omplete pre�xes. In Set. 4 we will introduethe rule-based onstraint programming framework. The next setion deals withreahability heking in pre�xes, whih we need for the implementation. Setion6 disusses the implementation, and gives experimental results.2 Petri Net De�nitionsFirst we de�ne basi Petri net notations. Next we introdue ourrene nets,whih are Petri nets of a restrited form. Then branhing proesses are givenas a way of desribing partial order semantis for Petri nets. We de�ne �niteomplete pre�xes as a way of giving a �nite representation of this partial orderbehavior. We follow mainly the notation of [5, 13℄.2.1 Petri NetsA triple hS; T; F i is a net if S \ T = ; and F � (S � T ) [ (T � S). Theelements of S are alled plaes, and the elements of T transitions. Plaes andtransitions are also alled nodes. We identify F with its harateristi funtionon the set (S � T ) [ (T � S). The preset of a node x, denoted by �x, is the setfy 2 S [ T jF (y; x) = 1g. The postset of a node x, denoted by x�, is the setfy 2 S [ T jF (x; y) = 1g. Their generalizations on sets of nodes X � S [ T arede�ned as �X = Sx2X �x, and X� = Sx2X x� respetively.Amarking of a net hS; T; F i is a mapping S 7! IN. A markingM is identi�edwith the multi-set whih ontains M (s) opies of s for every s 2 S. A 4-tuple� = hS; T; F;M0i is a net system if hS; T; F i is a net and M0 is a marking ofhS; T; F i. A marking M enables a transition t if 8s 2 S : F (s; t) � M (s).If t is enabled, it an our leading to a new marking (denoted M t! M 0),where M 0 is de�ned by 8s 2 S : M 0(s) = M (s) � F (s; t) + F (t; s). A markingMn is reahable in � i� there exist a sequene of transitions t1; t2; : : : ; tn andmarkings M1;M2; : : : ;Mn�1 suh that: M0 t1! M1 t2! : : :Mn�1 tn! Mn. Areahable marking is 1-safe if 8s 2 S : M (s) � 1. A net system � is 1-safeif all its reahable markings are 1-safe. In this work we will restrit ourselvesto the set of net systems whih are 1-safe, have a �nite number of plaes andtransitions, and also in whih eah transition t 2 T has both nonempty pre- andpostsets.2.2 Ourrene NetsWe use �F to denote the re�exive transitive losure of F . Let hS; T; F i be a netand let x1; x2 2 S [ T . The nodes x1 and x2 are in on�it, denoted by x1#x2,if there exist t1; t2 2 T suh that t1 6= t2, �t1 \ �t2 6= ;, t1 �F x1, and t2 �F x2.An ourrene net is a net N = hB;E; F i suh that:� 8b 2 B : j�bj � 1, 2



� F is ayli, i.e. the irre�exive transitive losure of F is a partial order,� N is �nitely preeded, i.e. for any node x of the net, the set of nodes ysuh that y �F x is �nite, and� 8x 2 S [ T : :(x#x).The elements of B and E are alled onditions and events, respetively. The setMin(N ) denotes the set of minimal elements of the transitive losure of F . Aon�guration C of an ourrene net is a set of events satisfying:� If e 2 C then 8e0 2 E : e0 �F e implies e0 2 C (C is ausally losed),� 8e; e0 2 C : :(e#e0) (C is on�it-free).A loal on�guration [e℄ of an event e is the set of events e0, suh that e0 �F e.2.3 Branhing ProessesBranhing proesses are �unfoldings� of net systems and were introdued byEngelfriet [3℄. Let N1 = hS1; T1; F1i and N2 = hS2; T2; F2i be two nets. Ahomomorphism is a mapping S1[T1 7! S2[T2 suh that: h(S1) � S2^h(T1) �T2, and for all t 2 T1, the restrition of h to �t is a bijetion between �t and�h(t), and similarly for t� and h(t)�. A branhing proess of a net system � isa tuple � = hN 0; hi, where N 0 is a ourrene net, and h is a homomorphismfrom N 0 to hS; T; F i suh that: the restrition of h to Min(N 0) is a bijetionbetween Min(N 0) and M0, and 8e1; e2 2 E, if �e1 = �e2 ^ h(e1) = h(e2) thene1 = e2. The set of plaes assoiated with a on�guration C of � is denoted byMark(C) = h((Min(N ) [ C�) n �C).It is shown in [3℄ that a net has a maximal branhing proess up to iso-mophism, alled the unfolding of the system. Given a on�guration C of theunfolding, we denote by C�E the set C[E (the extension of C by E), under theondition that C[E is a on�guration of the unfolding satisfying C\E = ;. Wealso use the same notation ��E on brahing proesses to denote the extensionof a branhing proess � by the set of events E and their postset onditions.2.4 Finite Complete Pre�xesA �nite branhing proess � is a �nite omplete pre�x of a net system � i� foreah reahable marking M of � there exists a on�guration C of � suh that:� Mark(C) = M , and� for every transition t enabled in M there exists a on�guration C [ fegsuh that e 62 C and h(e) = t.Algorithms to obtain a �nite omplete pre�x � given a 1-safe net system � arepresented in e.g. [5, 11, 12℄. The algorithms will mark some events of the pre�x� as speial ut-o� events, whih we denote by the set CutO�s(�) � E. These3



algorithms have as a parameter a speial partial order on the on�gurations ofthe unfolding alled the adequate order. Due to spae limitations we diret theinterested reader to [5, 11, 12, 13℄.3 Re�ning the Cut-o� CriterionThe setion represents the main ontribution of this paper, a re�ned ut-o�riterion for �nite omplete pre�xes. For �nite omplete pre�x generation (i.e.unfolding) we use exatly the approah as Esparza et.al. in [5℄. The only hangewe do to their approah is re�ning the following de�nition of a ut-o� event:De�nition 3.1 Let � be an adequate order on the on�gurations of the unfold-ing of a net system. Let � be pre�x of the unfolding ontaining an event e. Theevent e is a ut-o� event of � i� � ontains a loal on�guration [e0℄ suh that:(a) Mark ([e℄) = Mark([e0℄), and(b) [e0℄ � [e℄.The intuition behind uto� events is that for eah ut-o� event e there al-ready exists another orresponding event e0 in the pre�x. The markings reah-able after exeuting e an also be reahed after exeuting e0, and thus themarkings after e need not to be onsidered any further.We suggest that the orresponding on�guration doesn't need to be a loalon�guration of another event, but any on�guration whih ontains no ut-o�events, and �lls the other requirements, will do. Unfortunately this leads to anindutive, and not as intuitive notion of a ut-o� events:De�nition 3.2 Let � be an adequate order on the on�gurations of the unfold-ing of a net system. We de�ne the ut-o� events of a pre�x � indutively on thenumber of events in the pre�x. Let e1; e2; : : : ; ek be a sequene of all the eventsof �, sorted in a non-dereasing � order of their loal on�gurations.Let �0 be the empty pre�x with Cuto�s(�0) = ;. For the indution step, let�i = �i�1 � feig, and let Cuto�s(�i) = Cuto�s(�i�1). The event ei is addedinto Cuto�s(�i) i� �i�1 ontains a on�guration Ci suh that:(a) Mark ([ei℄) =Mark (Ci),(b) Ci � [ei℄, and() Ci \ Cuto�s(�i�1 ) = ;.Now the set of ut-o� events of � is de�ned as Cuto�s(�) = Cuto�s(�k).The proofs of pre�x �niteness and ompleteness with this re�ned ut-o� ri-terion are almost idential to similar proofs in [5℄, the only hange is hangingthe loal on�guration [e0℄ into the on�guration C. (The fat that the or-responding on�guration is a loal on�guration is not needed by the proofs.)4



Note that we need totality of the order � between loal on�gurations of a pre�xfor the de�nition above to be non-ambiguous. Thankfully this an be done byusing a total order suh as the one presented in [5℄.4 Rule-Based Constraint ProgrammingWe will use normal logi programs with stable model semantis [6℄ as the under-lying formalism to represent ombinatorial problems. This setion is to a largeextent based on [17℄. We employ logi programs as a onstraint programmingframework [14℄, where stable models are the solutions of the program rules seenas onstraints. We onsider normal logi programs that onsist of rules of theform h a1; : : : ; an; not (b1); : : : ; not (bm) (1)where a1; : : : ; an; b1; : : : ; bm and h are propositional atoms. Suh a rule anbe seen as a onstraint saying that if atoms a1; : : : ; an are in a model andatoms b1; : : : ; bm are not in a model, then the atom h is in a model. Thestable model semantis also enfores minimality and groundedness of models.This makes many ombinatorial problems easily and suintly desribable usinglogi programming with stable model semantis.The stable model semantis for a normal logi program P is de�ned asfollows [6℄. The redut PA of P with respet to the set of atoms A is obtained(i) by deleting eah rule in P that has a not-atom not (x) in its body suh thatx 2 A and (ii) by deleting all not-atoms in the remaining rules. A set of atomsA is a stable model of P if and only if A is the dedutive losure of PA whenthe rules in PA are seen as inferene rules.A non-deterministi way of onstruting stable models is to guess whihassumptions (not-atoms of the program) to use, and then hek using the de-dutive losure (in linear time) whether the resulting model agrees with theassumptions. The problem of determining the existene of a stable model is infat NP-omplete [10℄.4.1 The tool smodelsThere is a tool, the smodels system [15, 17℄, whih provides an implementationof logi programs as a rule-based onstraint programming framework. It �nds(some or all) stable models of a logi program. It an also tell when the programhas no stable models. It ontains strong pruning tehniques to make the problemtratable for a large lass of programs. The smodels implementation needs spaelinear in the size of the input program [17℄.The stable model semantis is de�ned using rules of the form (1). Thesmodels 2 handles extended rule types, whih an be seen as suint en-odings of sets of basi rules. One of the rule types is a rule of the form:h  nfa1; : : : ; akg. The semantis of this rule is that if n or more atoms fromthe set a1; : : : ; ak belong to the model, then also the atom h will be in the model.5



We also use the so alled integrity rules in the programs. They are rules withno head, i.e. of the form:  a1; : : : ; an; not (b1); : : : ; not (bm). The semantisare de�ned in suh a way that if atoms a1; : : : ; an are in a model and atomsb1; : : : ; bm are not in a model, then this model is not a stable model. For moreinformation about the extended rules, see [16℄.5 Translating Reahability into Logi ProgramsIn this setion we brie�y review the method used in our previous work to doreahability and deadlok heking with pre�xes [8, 9, 7℄. We need this forthe basis of our minimization algorithm, whih is based on solving reahabilityproblems on pre�xes.First we de�ne some additional notation. We assume a unique numbering ofthe events (and onditions) of the �nite omplete pre�x. We use the notationei (bi) to refer to the event (ondition) number i. In the logi programs ei, (bi)is an atom of the logi program orresponding to the event ei (ondition bi). Inthe logi program de�nitions of this paper we use the onvention that a part ofa rule will be omitted, if the orresponding set evaluates to the empty set.We de�ne a mapping from the atoms of a logi program to the events of apre�x.De�nition 5.1 The set of events orresponding to a stable model � of a logiprogram P is Events(�) = fei 2 E j ei 2 �g.With assertions we an easily formulate the reahability problem.De�nition 5.2 An assertion on a marking of a 1-safe net system � = hS; T; F;M0iis a tuple hS+ ; S�i, where S+; S� � S, and S+ \ S� = ;. The assertionhS+ ; S�i agrees with a marking M of � i�:S+ � fs 2 S jM (s) = 1g ^ S� � fs 2 S jM (s) = 0g:Next we de�ne a logi program whose stable models are exatly those on-�gurations of the pre�x, whose marking agrees with the given assertion.De�nition 5.3 Let � = hN; hi with N = hB;E; F i be a �nite omplete pre�xof a given 1-safe net system � = hS; T; F;M0i, and let � = hS+; S�i be anassertion on the plaes of �. Let PR(�; �) be a logi program ontaining thefollowing rules:1. For all ei 2 E nCutO�s(�) a rule:ei  ep1 ; : : : ; epn , not (bei),suh that fep1 ; : : : ; epng = �(�ei).2. For all ei 2 E nCutO�s(�) a rule:bei  not (ei). 6



3. For all bi 2 B suh that jbi� nCutO�s(�)j � 2 a rule: 2fep1 ; : : : ; epng,suh that fep1 ; : : : ; epng = bi� nCutO�s(�).4. For all bi 2 fbj 2 B jh(bj) 2 S+ [ S� ^ �bj 2 E nCuto�s(�)g a rule:bi  el, not (ep1), : : : , not (epn ),suh that felg = �bi, and fep1 , : : : , epng = bi� nCutO�s(�).5. For all bi 2 fbj 2 B jh(bj) 2 S+ [ S� ^ �bj 2 E nCuto�s(�)g a rule:si  bi,suh that si = h(bi).6. For all si 2 S+ a rule: not (si).7. For all si 2 S� a rule: si.Note that ut-o� postset onditions are not translated, beause ut-o�s willnot be �red by the translation. Proof of the following theorem an be foundfrom [8℄.Theorem 5.1 The logi program PR(�; �) has a stable model i� there exists areahable marking of � whih agrees with �. Additionally, for any stable model� of PR(�; �), the on�guration C = Events(�) is a on�guration of �, suhthat Mark (C) is a reahable marking of � whih agrees with �.To be more exat, the orrespondene is a little stronger than what is statedabove, the stable models of the program PR(�; �) and the on�gurations whihagree with � have a one-to-one orrespondene with eah other [8℄. It is easy tosee that the sizes of all the translations are linear in the size of the pre�x �, i.e.O(jBj + jEj+ jF j).6 ImplementationIn this work we have implemented the pre�x minimization as an o�-line toolto be run after pre�x generation. However, the approah an also be used tominimize the pre�x during pre�x generation.The pre�x minimizer reads a binary �le ontaining the desription of a �niteomplete pre�x generated by the ERVunfold algorithm [4℄. We have to use thesame adequate order the pre�x generation algorithm for this approah to work.We denote by <PEP the adequate order used by the ERVunfold algorithm. We7



experimentally found out (and later got a on�rmation from the ERVunfold au-thor) that the only di�erene from the adequate order presented in [5℄ (denoted<ERV) is in the way Foata normal form levels are ompared. The di�ereneis that the <ERV order uses a lexiographial order, while <PEP uses a size-lexiographial order (a shorter string is always smaller than a longer one, onlywhen sizes math are strings ompared with lexiographial order), for detailssee [5℄.The minimized pre�x is initialized to ontain all the minimal onditions ofthe original pre�x. Then minimizer main routine loops over events e 2 E of theoriginal pre�x, and does the following:1. If the event is a ut-o� event of the original pre�x (and has not beenremoved by the steps below), then e is added as a ut-o� event into theminimized pre�x together with its postset onditions, and we ontinuewith the next event from step 1.2. Otherwise, we generate a reahability program from the part of the min-imized pre�x whih inludes all events ei, suh that j[ei℄j < j[e℄j. Thereahability program is given the assertion � = hfs 2 Mark([e℄)g; fs 2S nMark([e℄)gi.3. We add an integrity rule into the program, whih disallows all solutionswhih have more than j[e℄j events in the on�guration.4. We �nd the next stable model � of the program with smodels, if nosolution is found, we add e and its postset onditions into the minimizedpre�x, and ontinue with the next event from step 1.5. If a solution is found, it is ompared using a subroutine whether C =Events(�) <PEP [e℄. If this is true, then e is added to the set of ut-o�events of the minimized pre�x together with its postset onditions. Thenall events ei of the original pre�x, suh that e <F ei, are removed from theoriginal pre�x together with their postset onditions. If the omparisonwas false, we ompute the next solution in step 4.The reahability program generation ensures that the marking Mark(C) =Mark([e℄) for all stable models found in step 4. The step 3 guarantees that allsolutions have at most j[e℄j events in them, and rules out most of the solutionswhih would be larger in the adequate order, and thus rejeted by step 5.Note that our approah an also be adjusted to other adequate orders thanthe one used in this work. However, the fat that larger on�gurations arealways larger in the adequate order was very useful for implementation. In fat,the implementation only generates one base program for all events whose loalon�guration size is the same, and only hanges the reahability assertion foreah event. We an do this, beause the pre�x generator has already markedas ut-o�s all events, whose orresponding on�guration is a (smaller in theadequate order) loal on�guration of the same size. To use this optimizationof the algorithm during the pre�x generation, we need to ompare the loal8



on�guration of an event against all other event whose loal on�guration is ofthe same size. We do not believe this to be a big problem for implementingminimization in a pre�x generator, as this is something whih is already doneby the urrent pre�x generators.6.1 Experimental ResultsWe have made experiments with our approah using examples by Corbett [2℄,MMillan [11, 12℄, and Melzer and Römer [13℄. They were previously usedby Melzer and Römer in [13℄ and by Best and Römer in [1℄, where additionalinformation an be found.The Figures 1-3 present the running times in seonds for the various algo-rithms used in this work. The �gures might be desribed as the good news, thebad news, and the indi�erent news, respetively. The running times have beenmeasured using a Pentium 266MHz, 512MB RAM, Linux 2.2.3, egs 2.91.60C++ ompiler, smodels 2.22, and ERVunfold 4.5.1 by Stefan Römer [4℄.Original Pre�x Minimized Pre�x Time (s)Problem(size) jBj jEj # jBj jEj # Unf MinsmoBDS(1) 12310 6330 3701 3167 1660 832 2.5 11.6DPD(4) 594 296 81 318 158 62 0.0 0.3DPD(5) 1582 790 211 652 325 130 0.1 1.0DPD(6) 3786 1892 499 1282 640 258 0.5 3.6DPD(7) 8630 4314 1129 2488 1243 502 2.2 14.6DPH(4) 680 336 117 472 232 75 0.0 0.4DPH(5) 2712 1351 547 1326 658 235 0.2 2.5DPH(6) 14590 7289 3407 3338 1663 636 4.1 17.0DPH(7) 74558 37272 19207 7840 3913 1580 101.4 117.9FURNACE(1) 535 326 189 305 183 99 0.0 0.2FURNACE(2) 4573 2767 1750 1966 1168 688 0.4 4.6FURNACE(3) 30820 18563 12207 10177 5995 3710 14.3 162.3GASN(2) 338 169 46 194 97 22 0.0 0.1GASN(3) 2409 1205 401 837 419 109 0.2 1.6GASN(4) 15928 7965 2876 3360 1681 460 8.1 28.3GASN(5) 100527 50265 18751 12867 6435 1783 399.4 521.9GASQ(1) 43 21 4 39 19 4 0.0 0.0GASQ(2) 346 173 54 186 93 26 0.0 0.1GASQ(3) 2593 1297 490 941 471 150 0.3 1.7GASQ(4) 19864 9933 4060 5488 2745 916 14.1 65.7MMGT(1) 118 58 20 118 58 20 0.0 0.0MMGT(2) 1280 645 260 834 420 170 0.1 0.8MMGT(3) 11575 5841 2529 4893 2470 1046 3.4 31.1MMGT(4) 92940 46902 20957 25944 13100 5650 307.8 1104.2OVER(2) 83 41 10 59 29 7 0.0 0.0OVER(3) 369 187 53 166 84 24 0.0 0.1OVER(4) 1536 783 237 386 198 62 0.1 0.4OVER(5) 7266 3697 1232 951 491 165 1.7 2.2SYNC(2) 3884 2091 474 1276 700 137 0.6 5.2SYNC(3) 28138 15401 5210 9431 5233 1591 22.9 270.1Figure 1: Minimization results9



Original Pre�x Minimized Pre�x Time (s)Problem(size) jBj jEj # jBj jEj # Unf MinsmoCYCL(3) 52 23 4 52 23 4 0.0 0.0CYCL(6) 112 50 7 112 50 7 0.0 0.1CYCL(9) 172 77 10 172 77 10 0.0 0.2CYCL(12) 232 104 13 232 104 13 0.0 0.3DME(2) 487 122 4 487 122 4 0.1 0.6DME(3) 1210 321 9 1210 321 9 0.2 2.9DME(4) 2381 652 16 2381 652 16 0.5 11.4DME(5) 4096 1145 25 4096 1145 25 1.5 37.4DME(6) 6451 1830 36 6451 1830 36 4.2 100.9DME(7) 9542 2737 49 9542 2737 49 10.4 231.2DME(8) 13465 3896 64 13465 3896 64 23.0 470.5DME(9) 18316 5337 81 18316 5337 81 44.8 881.2DME(10) 24191 7090 100 24191 7090 100 82.5 1556.0DME(11) 31186 9185 121 31186 9185 121 142.0 2607.7DP(6) 204 96 30 204 96 30 0.0 0.1DP(8) 368 176 56 368 176 56 0.0 0.2DP(10) 580 280 90 580 280 90 0.0 0.6DP(12) 840 408 132 840 408 132 0.1 1.1DPFM(2) 12 5 2 12 5 2 0.0 0.0DPFM(5) 67 31 20 67 31 20 0.0 0.0DPFM(8) 426 209 162 426 209 162 0.1 0.0DPFM(11) 2433 1211 1012 2433 1211 1012 1.9 0.4HART(25) 179 102 1 179 102 1 0.0 0.2HART(50) 354 202 1 354 202 1 0.1 1.0HART(75) 529 302 1 529 302 1 0.1 2.3HART(100) 704 402 1 704 402 1 0.2 4.0RW(6) 806 397 327 806 397 327 0.1 0.1RW(9) 9272 4627 4106 9272 4627 4106 0.5 2.8RW(12) 98378 49177 45069 98378 49177 45069 25.3 265.7Figure 2: Minimization resultsThe rows of the tables orrespond to di�erent problems. The olumns rep-resent: sum of user and system times measured by /usr/bin/time ommand:� Unf = time for unfolding (reation of the �nite omplete pre�x) (ERVun-fold).� Minsmo = time for the pre�x minimization algorithm (urrently withoutpre�x output).The other �elds of the �gures are as follows: jBj: number of onditions, jEj:number of events, #: number of ut-o� events.Note that the original pre�x sizes di�er from those presented in previouswork [1, 13, 8℄. When we implemented the ode to ompare on�gurations withrespet to the adequate order <PEP, we ran into a bug in the pre�x generatorof the PEP tool, whih was promptly �xed by Stefan Römer in the ERVunfoldalgorithm version 4.5.1.The Fig. 1 shows quite large savings in the pre�x size, with pre�x sizeredutions of up-to almost 90%. Also, the gap between the original pre�x and10



Original Pre�x Minimized Pre�x Time (s)Problem(size) jBj jEj # jBj jEj # Unf MinsmoABP(1) 337 167 56 329 163 54 0.0 0.2DAC(6) 92 53 0 62 38 5 0.0 0.0DAC(9) 167 95 0 95 59 8 0.0 0.1DAC(12) 260 146 0 128 80 11 0.0 0.1DAC(15) 371 206 0 161 101 14 0.0 0.1ELEVATOR(1) 296 157 59 246 132 47 0.0 0.1ELEVATOR(2) 1562 827 331 1480 786 309 0.1 2.5ELEVATOR(3) 7398 3895 1629 7284 3838 1597 1.4 78.6ELEVATOR(4) 32354 16935 7337 32208 16862 7295 27.4 1721.9FTP(1) 178085 89046 35197 130156 65080 25902 953.4 34135.3KEY(2) 1310 653 199 1194 595 175 0.2 2.7KEY(3) 13941 6968 2911 12573 6284 2534 4.8 290.7KEY(4) 135914 67954 32049 121930 60962 27803 397.6 26992.0Q(1) 16123 8417 1188 15770 8240 1060 14.8 1059.2RING(3) 97 47 11 67 32 7 0.0 0.0RING(5) 339 167 37 223 109 21 0.0 0.2RING(7) 813 403 79 523 258 43 0.1 0.7RING(9) 1599 795 137 1015 503 73 0.2 2.7SENT(25) 383 216 40 290 157 23 0.0 0.3SENT(50) 458 241 40 365 182 23 0.1 0.5SENT(75) 533 266 40 440 207 23 0.1 0.8SENT(100) 608 291 40 515 232 23 0.1 1.1SPD(1) 4929 2882 1219 3155 1824 787 0.7 14.8Figure 3: Minimization resultsthe minimized pre�x seems to be growing when moving to larger instanes ofthe problem. The running times are aeptable, with all being under 1 hour.The Fig. 2 shows another side of the story, the pre�xes after minimizationare idential to those before it. The running times are quite similar to those ofthe previous Figure, only the largest DME instanes being signi�antly slower.The Fig. 3 shows pre�xes whih only partially bene�ted from the mini-mization. However, there are two hard ases for the minimization algorithm:the FTP example and the largest KEY example. Their running times are ur-rently unaeptable. We will experiment with alternative minimization strate-gies, whih might help these ases. Also interesting is the ase of DAC problems,the minimization introdued some ut-o� events. Thus for example deadlokheking is not anymore trivial using the optimized pre�x, while it was trivial inthe original one. The omplexity results of deadlok and reahability hekingfor pre�xes are however not a�eted by our minimization, and these problemsstill remain NP-omplete.7 ConlusionsWe have demonstrated that re�ning the ut-o� riterion an sometimes helpto reate muh smaller pre�xes. Whether the e�ort needed to generate thesesmaller pre�xes is justi�ed is still under disussion. If the pre�x is used as an11



input to algorithms whih have very large running times, then even the ur-rent approah might be viable. The minimized pre�xes an be diretly used fordeadlok and reahability heking. Other veri�ation algorithms might alsowork, but they need to be modi�ed to use the notion of a orresponding on-�guration instead of the notion of a orresponding event, and their orretnessproofs revisited with this hange in mind. The omplexity results of di�erentmodel heking questions for non-minimized vs. minimized pre�xes is left asfurther work.It would be very interesting to know is there a strutural property the ex-amples in Fig. 1 have whih makes them behave better than the examples inFig. 2. If this would be possible, then it ould be used to hoose when to usethe re�ned ut-o� riterion with pre�xes. One observation is that the problemslisted in Fig. 2 have a simpler ommuniation struture (when modelled as statemahines) than the problems in Fig. 1, see [2℄.One open question is the problem of de�ning an algorithm whih omputesthe �nite omplete pre�x, whih would be minimal in e.g. the number of non-ut-o� events. There is an example in an extended version of [5℄, for whihour re�ned ut-o� riterion doesn't reate the minimal pre�x in this sense.We believe that this work an be used as a starting point for de�ning suh atheoretial algorithm for a minimal (in a striter sense than [5℄) pre�x generationalgorithm.Another interesting area for future work is the use of NP-omplete problemsolvers for pre�x generation. They an also be used for other parts of the pre�xgeneration proess, with or without using the re�ned ut-o� riterion presentedhere. This ould be of pratial interest for the pre�x based veri�ation tools.8 AknowledgementsThe author would like to thank Javier Esparza for the possibility of visitinghis researh group. The tool smodels was reated by Patrik Simons, who gaveexellent support for it. Stefan Römer provided the example nets, and alsoLinux binaries for ERVunfold algorithm, whih both were invaluable. The �-nanial support of Helsinki Graduate Shool on Computer Siene and Engineer-ing (HeCSE), the Aademy of Finland (Projet 8309), the Support Foundationof Helsinki University of Tehnology, and the Eemil Aaltonen Foundation aregratefully aknowledged.Referenes[1℄ E. Best. Partial order veri�ation with PEP. In G. Holzmann, D. Peled, andV. Pratt, editors, Proeedings of POMIV'96, Workshop on Partial OrderMethods in Veri�ation. Amerian Mathematial Soiety, July 1996.12
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