Minimizing Finite Complete Prefixes
Keijo Heljanko™

Helsinki University of Technology,
Laboratory for Theoretical Computer Science
P.O.Box 5400, FIN-02015 HUT, Finland
Keijo.Heljanko@hut.fi

September 13, 1999

Abstract

Finite complete prefixes are used as a verification method for Petri nets
and other formalisms where a similar notion of partial order behavior can
be applied. They were introduced by McMillan, who also gave an algo-
rithm to generate a finite complete prefix from a system description given
as a Petri net. Later Esparza, Rémer and Vogler improved McMillan’s
prefix generation algorithm, which could sometimes create exponentially
larger prefixes than required. In this work we refine the approach of Es-
parza et.al. further, and define a refined cut-off criterion, which makes it
sometimes possible to create much smaller finite complete prefixes. Ex-
perimental results from a prototype implementation, a prefix minimizer,
are presented. The method can also be applied directly during prefix
generation.

1 Introduction

Petri nets are a widely used model for analyzing concurrent and distributed
systems. Finite complete prefixes are used as a verification method for Petri nets
and other formalisms where a similar notion of partial order behavior can be
applied. They were introduced by McMillan [11, 12], who also gave an algorithm
to generate a finite complete prefix from a system description given as a Petri
net. Later Esparza, Romer and Vogler improved McMillan’s prefix generation
(i.e. unfolding) algorithm [5], which could sometimes create exponentially larger
prefixes than required. In this work we refine the approach of Esparza et.al.
further, and define a refined cut-off criterion, which makes it sometimes possible
to create much smaller finite complete prefixes.

*Currently visiting Technische Universitat Miinchen, Fakultiat fiir Informatik

The rest of the paper is divided as follows. First we present Petri net no-
tations used in the paper. The Sect. 3 present the main result of this work, a
refined cut-off criterion for finite complete prefixes. In Sect. 4 we will introduce
the rule-based constraint programming framework. The next section deals with
reachability checking in prefixes, which we need for the implementation. Section
6 discusses the implementation, and gives experimental results.

2 Petri Net Definitions

First we define basic Petri net notations. Next we introduce occurrence nets,
which are Petri nets of a restricted form. Then branching processes are given
as a way of describing partial order semantics for Petri nets. We define finite
complete prefives as a way of giving a finite representation of this partial order
behavior. We follow mainly the notation of [5, 13].

2.1 Petri Nets
A triple (S, T,FY is a net if SNT = § and F C (S x T)U (T x S). The

elements of § are called places, and the elements of T transitions. Places and
transitions are also called nodes. We identify F' with its characteristic function
on the set (S x T) U (T x 5). The preset of a node x, denoted by *z, is the set
{y € SUT|F(y,x) = 1}. The postset of a node z, denoted by z°*, is the set
{y € SUT | F(x,y) = 1}. Their generalizations on sets of nodes X C SUT are
defined as *X = J,cx *r, and X* = |, x ©° respectively.

A marking of anet (S, T, F) is a mapping S — IN. A marking M is identified
with the multi-set which contains M (s) copies of s for every s € S. A 4-tuple
Y = (S, T,F, M) is a net system if (S, T, F} is a net and My is a marking of
(S, T,F). A marking M enables a transition ¢ if Vs € S : F(s,t) < M(s).
If ¢t is enabled, it can occur leading to a new marking (denoted M iN M),
where M’ is defined by Vs € §: M'(s) = M(s) — F(s,t) + F(t,s). A marking
M, is reachable in X iff there exist a sequence of transitions #1,%2,...,%, and
markings My, My, ..., M, _1 such that: M, by My L oMy, I M,. A
reachable marking is 1-safe if Vs € S : M(s) < 1. A net system X is l-safe
if all its reachable markings are 1-safe. In this work we will restrict ourselves
to the set of net systems which are 1-safe, have a finite number of places and
transitions, and also in which each transition ¢ € T has both nonempty pre- and
postsets.

2.2 Occurrence Nets

We use <p to denote the reflexive transitive closure of F'. Let (S, T, F') be a net
and let 1,29 € SUT. The nodes z1 and x4 are in conflict, denoted by z# x5,
if there exist t1,t3 € T such that t; # t, *t1 N*ty # 0, 11 <p z1, and t3 <p z2.
An occurrence net is a net N = (B, E, F') such that:

e Vbe B:|°b <1,

e I is acyclic, i.e. the irreflexive transitive closure of F' is a partial order,

e NN is finitely preceded, i.e. for any node x of the net, the set of nodes y
such that y <p @ is finite, and

o Ve e SUT : ~(z#z).

The elements of B and E are called conditions and events, respectively. The set
Min(N) denotes the set of minimal elements of the transitive closure of F. A
configuration C' of an occurrence net is a set of events satisfying:

e Ife e CthenVe' € F:e' <peimpliese € C (C is causally closed),
e Ve, el € C: —(efte’) (C is conflict-free).

A local configuration [e] of an event e is the set of events ¢’, such that ¢’ <p e.

2.3 Branching Processes

Branching processes are “unfoldings” of net systems and were introduced by
Engelfriet [3]. Let Ny = (S1,T1, F1) and Ny = (53,73, F3) be two nets. A
homomorphism is a mapping S1UTy — Sy UTy such that: h(S1) C SaAR(Ty) C
T5, and for all t € T3, the restriction of hA to °t is a bijection between *t and
h(t), and similarly for t and A(¢)*. A branching process of a net system X is
a tuple 8 = (N’ h), where N’ is a occurrence net, and % is a homomorphism
from N’ to (S, T, F') such that: the restriction of A to Min(N') is a bijection
between Min(N') and My, and Vey,e; € E, if ®*e1 = "e3 A h(e1) = h(ez) then
€1 = ez. The set of places associated with a configuration C' of 5 is denoted by
Mark(C) = h(Min(N)U C*)\ *C).

It is shown in [3] that a net has a maximal branching process up to iso-
mophism, called the unfolding of the system. Given a configuration C of the
unfolding, we denote by C'@ E the set CUFE (the extension of C' by F), under the
condition that C'UE is a configuration of the unfolding satisfying CNE = . We
also use the same notation 5 & E on braching processes to denote the extension
of a branching process 3 by the set of events £ and their postset conditions.

2.4 Finite Complete Prefixes

A finite branching process J is a finite complete prefiz of a net system X iff for
each reachable marking M of ¥ there exists a configuration C' of 8 such that:

e Mark(C)= M, and

e for every transition ¢ enabled in M there exists a configuration C'U {e}

such that e & C' and h(e) =t.

Algorithms to obtain a finite complete prefix J given a 1-safe net system X are
presented in e.g. [5, 11, 12]. The algorithms will mark some events of the prefix
5 as special cut-off events, which we denote by the set CutOffs(8) C E. These

algorithms have as a parameter a special partial order on the configurations of
the unfolding called the adequate order. Due to space limitations we direct the
interested reader to [5, 11, 12, 13].

3 Refining the Cut-off Criterion

The section represents the main contribution of this paper, a refined cut-off
criterion for finite complete prefixes. For finite complete prefix generation (i.e.
unfolding) we use exactly the approach as Esparza et.al. in [5]. The only change
we do to their approach is refining the following definition of a cut-off event:

Definition 3.1 Let < be an adequate order on the configurations of the unfold-
ing of a net system. Let 8 be prefix of the unfolding containing an event e. The
event e is a cut-off event of 8 iff B contains a local configuration [e'] such that:

(a) Mark([e]) = Mark([e']), and
() [< [e].

The intuition behind cutoff events is that for each cut-off event e there al-
ready exists another corresponding event €’ in the prefix. The markings reach-
able after executing e can also be reached after executing e’, and thus the
markings after e need not to be considered any further.

We suggest that the corresponding configuration doesn’t need to be a local
configuration of another event, but any configuration which contains no cut-off
events, and fills the other requirements, will do. Unfortunately this leads to an
inductive, and not as intuitive notion of a cut-off events:

Definition 3.2 Let < be an adequate order on the configurations of the unfold-
ing of a net system. We define the cut-off events of a prefiz 8 inductively on the
number of events in the prefir. Let ey, eq,...,e; be a sequence of all the events
of B, sorted in a non-decreasing < order of their local configurations.

Let By be the empty prefiv with Cutoffs(Bo) = 0. For the induction step, let
Bi = Bic1 @ {ei}, and let Cutoffs(5;) = Cutoffs(Bi—1). The event e; is added
into Cutoffs(8;) iff Bi—1 contains a configuration C; such that:

(a) Mark([e;]) = Mark(C;),
(b) C; < le;], and
(¢) CiN Cutoffs(Bi_y) = 0.
Now the set of cut-off events of B is defined as Cutoffs(8) = Cutoffs(By).

The proofs of prefix finiteness and completeness with this refined cut-off cri-
terion are almost identical to similar proofs in [5], the only change is changing
the local configuration [¢'] into the configuration C. (The fact that the cor-
responding configuration is a local configuration is not needed by the proofs.)

Note that we need totality of the order < between local configurations of a prefix
for the definition above to be non-ambiguous. Thankfully this can be done by
using a total order such as the one presented in [5].

4 Rule-Based Constraint Programming

We will use normal logic programs with stable model semantics [6] as the under-
lying formalism to represent combinatorial problems. This section is to a large
extent based on [17]. We employ logic programs as a constraint programming
framework [14], where stable models are the solutions of the program rules seen
as constraints. We consider normal logic programs that consist of rules of the

form

h+ ai,...,ay not (by),..., not (by) (1)
where aj,...,a,,bs,...,by, and h are propositional atoms. Such a rule can
be seen as a constraint saying that if atoms ay,...,a, are in a model and
atoms by,...,b, are not in a model, then the atom h is in a model. The

stable model semantics also enforces minimality and groundedness of models.
This makes many combinatorial problems easily and succinctly describable using
logic programming with stable model semantics.

The stable model semantics for a normal logic program P is defined as
follows [6]. The reduct P# of P with respect to the set of atoms A is obtained
(i) by deleting each rule in P that has a not-atom not (x) in its body such that
x € A and (ii) by deleting all not-atoms in the remaining rules. A set of atoms
A is a stable model of P if and only if A is the deductive closure of P# when
the rules in P4 are seen as inference rules.

A non-deterministic way of constructing stable models is to guess which
assumptions (not-atoms of the program) to use, and then check using the de-
ductive closure (in linear time) whether the resulting model agrees with the
assumptions. The problem of determining the existence of a stable model is in
fact NP-complete [10].

4.1 The tool smodels

There is a tool, the smodels system [15, 17], which provides an implementation
of logic programs as a rule-based constraint programming framework. It finds
(some or all) stable models of a logic program. It can also tell when the program
has no stable models. It contains strong pruning techniques to make the problem
tractable for a large class of programs. The smodels implementation needs space
linear in the size of the input program [17].

The stable model semantics is defined using rules of the form (1). The
smodels 2 handles extended rule types, which can be seen as succinct en-
codings of sets of basic rules. One of the rule types is a rule of the form:
h < n{ai,...,ax}. The semantics of this rule is that if n or more atoms from
the set ay, ..., ax belong to the model, then also the atom h will be in the model.

We also use the so called integrity rules in the programs. They are rules with
no head, i.e. of the form: « ay,...,an, not(by),...,not (by). The semantics
are defined in such a way that if atoms a;,...,a, are in a model and atoms
by, ..., by are not in a model, then this model is not a stable model. For more
information about the extended rules, see [16].

5 Translating Reachability into Logic Programs

In this section we briefly review the method used in our previous work to do
reachability and deadlock checking with prefixes [8, 9, 7]. We need this for
the basis of our minimization algorithm, which is based on solving reachability
problems on prefixes.

First we define some additional notation. We assume a unique numbering of
the events (and conditions) of the finite complete prefix. We use the notation
e; (b;) to refer to the event (condition) number 7. In the logic programs e, (bs)
is an atom of the logic program corresponding to the event e; (condition &;). In
the logic program definitions of this paper we use the convention that a part of
a rule will be omitted, if the corresponding set evaluates to the empty set.

We define a mapping from the atoms of a logic program to the events of a
prefix.

Definition 5.1 The set of events corresponding to a stable model A of a logic
program P is Bvents(A) = {e; € E|e; € A}.

With assertions we can easily formulate the reachability problem.

Definition 5.2 An assertion on a marking of a 1-safe net system & = (S, T, F, M)
is a tuple (ST,S7), where ST,8~ C S, and St NS~ = 0. The assertion
(S, 57) agrees with a marking M of ¥ iff:

StC{secS|M(s)=1}AS™ C{s€ S| M(s) =0}.

Next we define a logic program whose stable models are exactly those con-
figurations of the prefix, whose marking agrees with the given assertion.

Definition 5.3 Let 8 = (N, h) with N = (B, E, F) be a finite complete prefir
of a given I-safe net system ¥ = (S, T, F, Mo), and let ¢ = (ST,S57) be an
assertion on the places of ¥. Let Pr(B,¢) be a logic program containing the
following rules:

1. For alle; € E\ CutOffs(8) a rule:
e; ¢ €p,,...,ep,, not(be;),
such that {ep,,... e, + = *(%€i).

2. For all e; € E\ CutOffs(8) a rule:
be; + not (ei).

3. For all b; € B such that |b;" \ CutOffs(B)| > 2 a rule:

« g{epm s 7epn};
such that {ep,, ... ep, } = b\ CutOffs(8).

4. For allb; € {b; € B|h(bj) € St US™ A*b; € E\ Cutoffs(B)} a rule:
b; « e1, not (ep,), ..., not(ep,),
such that {e;} = *b;, and {e,,, ..., €y, } =b;" \ CutOffs(p).

5. For all b; € {b; € B|h(b;) € STUS™ A*b; € E\ Cutoffs(8)} a rule:
s; « bi,
such that s; = h(b;).

6. For all s; € ST a rule:
+ not (si).

7. For all s; € 87 a rule:
— S8i.

Note that cut-off postset conditions are not translated, because cut-offs will
not be fired by the translation. Proof of the following theorem can be found
from [8].

Theorem 5.1 The logic program Pgr(f3, ¢) has a stable model iff there exists a
reachable marking of X which agrees with ¢. Additionally, for any stable model
A of Pr(B,¢), the configuration C' = Buvents(A) is a configuration of 8, such
that Mark(C) is a reachable marking of ¥ which agrees with ¢.

To be more exact, the correspondence is a little stronger than what is stated
above, the stable models of the program Pr(f, ¢) and the configurations which
agree with ¢ have a one-to-one correspondence with each other [8]. It is easy to
see that the sizes of all the translations are linear in the size of the prefix f, i.e.

OBl + [E| + |F]).

6 Implementation

In this work we have implemented the prefix minimization as an off-line tool
to be run after prefix generation. However, the approach can also be used to
minimize the prefix during prefix generation.

The prefix minimizer reads a binary file containing the description of a finite
complete prefix generated by the ERVunfold algorithm [4]. We have to use the
same adequate order the prefix generation algorithm for this approach to work.
We denote by < pgp the adequate order used by the ERVunfold algorithm. We

experimentally found out (and later got a confirmation from the ERVunfold au-
thor) that the only difference from the adequate order presented in [5] (denoted
<prv) is in the way Foata normal form levels are compared. The difference
is that the <gry order uses a lexicographical order, while <pgp uses a size-
lexicographical order (a shorter string is always smaller than a longer one, only
when sizes match are strings compared with lexicographical order), for details
see [5].

The minimized prefix is initialized to contain all the minimal conditions of
the original prefix. Then minimizer main routine loops over events e € E of the
original prefix, and does the following:

1. Tf the event is a cut-off event of the original prefix (and has not been
removed by the steps below), then e is added as a cut-off event into the
minimized prefix together with its postset conditions, and we continue
with the next event from step 1.

2. Otherwise, we generate a reachability program from the part of the min-
imized prefix which includes all events e;, such that |[e;]] < |[e]|. The
reachability program is given the assertion ¢ = {{s € Mark([e])}, {s €
S\ Mark([e]) }).

3. We add an integrity rule into the program, which disallows all solutions
which have more than |[e]| events in the configuration.

4. We find the next stable model A of the program with smodels, if no
solution is found, we add e and its postset conditions into the minimized
prefix, and continue with the next event from step 1.

5. If a solution is found, it is compared using a subroutine whether C' =
Events(A) <ppp [e]. If this is true, then e is added to the set of cut-off
events of the minimized prefix together with its postset conditions. Then
all events e; of the original prefix, such that e <g €;, are removed from the
original prefix together with their postset conditions. If the comparison
was false, we compute the next solution in step 4.

The reachability program generation ensures that the marking Mark(C) =
Mark([e]) for all stable models found in step 4. The step 3 guarantees that all
solutions have at most |[e]| events in them, and rules out most of the solutions
which would be larger in the adequate order, and thus rejected by step 5.

Note that our approach can also be adjusted to other adequate orders than
the one used in this work. However, the fact that larger configurations are
always larger in the adequate order was very useful for implementation. In fact,
the implementation only generates one base program for all events whose local
configuration size is the same, and only changes the reachability assertion for
each event. We can do this, because the prefix generator has already marked
as cut-offs all events, whose corresponding configuration is a (smaller in the
adequate order) local configuration of the same size. To use this optimization
of the algorithm during the prefix generation, we need to compare the local

configuration of an event against all other event whose local configuration is of
the same size. We do not believe this to be a big problem for implementing
minimization in a prefix generator, as this is something which is already done
by the current prefix generators.

6.1 Experimental Results

We have made experiments with our approach using examples by Corbett [2],
McMillan [11, 12], and Melzer and Romer [13]. They were previously used
by Melzer and Rémer in [13] and by Best and Romer in [1], where additional
information can be found.

The Figures 1-3 present the running times in seconds for the various algo-
rithms used in this work. The figures might be described as the good news, the
bad news, and the indifferent news, respectively. The running times have been
measured using a Pentium 266MHz, 512MB RAM, Linux 2.2.3, egcs 2.91.60
C++ compiler, smodels 2.22, and ERVunfold 4.5.1 by Stefan Rémer [4].

Original Prefix Minimized Prefix Time (s)
Problem(size) |B| |E] #c |B| |E] #c Unf | Mingmo
BDS(1) 12310 6330 3701 3167 1660 832 2.5 11.6
DPD(4) 594 296 81 318 158 62 0.0 0.3
DPD(5) 1582 790 211 652 325 130 0.1 1.0
DPD(6) 3786 1892 499 1282 640 258 0.5 3.6
DPD(7) 8630 4314 1129 2488 1243 502 2.2 14.6
DPH(4) 680 336 117 472 232 75 0.0 0.4
DPH(5) 2712 1351 547 1326 658 235 0.2 2.5
DPH(s6) 14590 7289 3407 3338 1663 636 4.1 17.0
DPH(7) 74558 | 37272 | 19207 7840 3913 | 1580 | 101.4 117.9
FURNACE(1) 535 326 189 305 183 99 0.0 0.2
FURNACE(2) 4573 2767 1750 1966 1168 688 0.4 4.6
FURNACE(3) 30820 | 18563 | 12207 | 10177 5995 | 3710 14.3 162.3
GASN(2) 338 169 46 194 97 22 0.0 0.1
GASN(3) 2409 1205 401 837 419 109 0.2 1.6
GASN(4) 15928 7965 2876 3360 16381 460 8.1 28.3
GASN(5) 100527 | 50265 | 18751 12867 6435 | 1783 | 399.4 521.9
GASQ(1) 43 21 4 39 19 4 0.0 0.0
GASQ(2) 346 173 54 186 93 26 0.0 0.1
GASQ(3) 2593 1297 490 941 471 150 0.3 1.7
GASQ(4) 19864 9933 4060 5488 2745 916 14.1 65.7
MMGT(1) 118 58 20 118 58 20 0.0 0.0
MMGT(2) 1280 645 260 834 420 170 0.1 0.8
MMGT(3) 11575 5841 2529 4893 2470 | 1046 3.4 31.1
MMGT(4) 92940 | 46902 | 20957 | 25944 | 13100 | 5650 | 307.8 1104.2
OVER(2) 83 41 10 59 29 7 0.0 0.0
OVER(3) 369 187 53 166 84 24 0.0 0.1
OVER(4) 1536 783 237 386 198 62 0.1 0.4
OVER(5) 7266 3697 1232 951 491 165 1.7 2.2
SYNC(2) 3884 2091 474 1276 700 137 0.6 5.2
SYNC(3) 28138 | 15401 5210 9431 5233 | 1591 22.9 270.1

Figure 1: Minimization results

Original Prefix Minimized Prefix Time (s)
Problem (size) |B] |E] #c |B] |E] #c Unf | Mingmo
CYCL(3) 52 23 4 52 23 4 0.0 0.0
CYCL(6) 112 50 7 112 50 7 0.0 0.1
CYCL(9) 172 77 10 172 77 10 0.0 0.2
CYCL(12) 232 104 13 232 104 13 0.0 0.3
DME(2) 487 122 4 487 122 4 0.1 0.6
DME(3) 1210 321 9 1210 321 9 0.2 2.9
DME(4) 2381 652 16 2381 652 16 0.5 11.4
DME(5) 4096 1145 25 4096 1145 25 1.5 37.4
DME(6) 6451 1830 36 6451 1830 36 4.2 100.9
DME(7) 9542 2737 49 9542 2737 49 10.4 231.2
DME(8) 13465 3896 64 | 13465 3896 64 23.0 470.5
DME(9) 18316 5337 81 18316 5337 81 44.8 881.2
DME(10) 24191 7090 100 | 24191 7090 100 82.5 1556.0
DME(11) 31186 9185 121 | 31186 9185 121 142.0 2607.7
DP(6) 204 96 30 204 96 30 0.0 0.1
DP(8) 368 176 56 368 176 56 0.0 0.2
DP(10) 580 280 90 580 280 90 0.0 0.6
DP(12) 840 408 132 840 408 132 0.1 1.1
DPFM(2) 12 5 2 12 5 2 0.0 0.0
DPFM(5) 67 31 20 67 31 20 0.0 0.0
DPFM(8) 426 209 162 426 209 162 0.1 0.0
DPFM(11) 2433 1211 1012 2433 1211 1012 1.9 0.4
HART(25) 179 102 1 179 102 1 0.0 0.2
HART(50) 354 202 1 354 202 1 0.1 1.0
HART(75) 529 302 1 529 302 1 0.1 2.3
HART(100) 704 402 1 704 402 1 0.2 4.0
RW(6) 806 397 327 806 397 327 0.1 0.1
RW(9) 9272 4627 4106 9272 4627 4106 0.5 2.8
RW(12) 98378 | 49177 | 45069 | 98378 | 49177 | 45069 25.3 265.7

Figure 2: Minimization results

The rows of the tables correspond to different problems. The columns rep-
resent: sum of user and system times measured by /usr/bin/time command:

e Unf = time for unfolding (creation of the finite complete prefix) (ERVun-
fold).

e Mingmo = time for the prefix minimization algorithm (currently without
prefix output).

The other fields of the figures are as follows: |B|: number of conditions, |F|:
number of events, #c: number of cut-off events.

Note that the original prefix sizes differ from those presented in previous
work [1, 13, 8]. When we implemented the code to compare configurations with
respect to the adequate order < pgp, we ran into a bug in the prefix generator
of the PEP tool, which was promptly fixed by Stefan Rémer in the ERVunfold
algorithm version 4.5.1.

The Fig. 1 shows quite large savings in the prefix size, with prefix size
reductions of up-to almost 90%. Also, the gap between the original prefix and

10

Original Prefix Minimized Prefix Time (s)
Problem(size) |B| |E] #c |B| |E] #c Unf | Mingmo
ABP(1) 337 167 56 329 163 54 0.0 0.2
DAC(6) 92 53 0 62 38 5 0.0 0.0
DAC(9) 167 95 0 95 59 8 0.0 0.1
DAC(12) 260 146 0 128 80 11 0.0 0.1
DAC(15) 371 206 0 161 101 14 0.0 0.1
ELEVATOR(1) 296 157 59 246 132 47 0.0 0.1
ELEVATOR(2) 1562 827 331 1480 786 309 0.1 2.5
ELEVATOR(3) 7398 3895 1629 7284 3838 1597 1.4 78.6
ELEVATOR(4) 32354 | 16935 7337 32208 | 16862 7295 27.4 1721.9
FTP(1) 178085 | 89046 | 35197 | 130156 | 65080 | 25902 | 953.4 34135.3
KEY(2) 1310 653 199 1194 595 175 0.2 2.7
KEY(3) 13941 6968 2911 12573 6284 2534 4.8 290.7
KEY(4) 135914 | 67954 | 32049 | 121930 | 60962 | 27803 | 397.6 26992.0
Q(1) 16123 8417 1188 15770 8240 1060 14.8 1059.2
RING(3) 97 a7 11 67 32 7| 00 0.0
RING(5) 339 167 37 223 109 21 0.0 0.2
RING(7) 813 403 79 523 258 43 0.1 0.7
RING(9) 1599 795 137 1015 503 73 0.2 2.7
SENT(25) 383 216 40 290 157 23 0.0 0.3
SENT(50) 458 241 40 365 182 23 0.1 0.5
SENT(75) 533 266 40 440 207 23 0.1 0.8
SENT(100) 608 291 40 515 232 23 0.1 1.1
SPD(1) 4929 2882 1219 3155 18324 787 0.7 14.8

Figure 3: Minimization results

the minimized prefix seems to be growing when moving to larger instances of
the problem. The running times are acceptable, with all being under 1 hour.

The Fig. 2 shows another side of the story, the prefixes after minimization
are identical to those before it. The running times are quite similar to those of
the previous Figure, only the largest DME instances being significantly slower.

The Fig. 3 shows prefixes which only partially benefited from the mini-
mization. However, there are two hard cases for the minimization algorithm:
the FTP example and the largest KEY example. Their running times are cur-
rently unacceptable. We will experiment with alternative minimization strate-
gies, which might help these cases. Also interesting is the case of DAC problems,
the minimization introduced some cut-off events. Thus for example deadlock
checking is not anymore trivial using the optimized prefix, while it was trivial in
the original one. The complexity results of deadlock and reachability checking
for prefixes are however not affected by our minimization, and these problems
still remain NP-complete.

7 Conclusions
We have demonstrated that refining the cut-off criterion can sometimes help

to create much smaller prefixes. Whether the effort needed to generate these
smaller prefixes is justified is still under discussion. If the prefix is used as an

11

input to algorithms which have very large running times, then even the cur-
rent approach might be viable. The minimized prefixes can be directly used for
deadlock and reachability checking. Other verification algorithms might also
work, but they need to be modified to use the notion of a corresponding con-
figuration instead of the notion of a corresponding event, and their correctness
proofs revisited with this change in mind. The complexity results of different
model checking questions for non-minimized vs. minimized prefixes is left as
further work.

It would be very interesting to know is there a structural property the ex-
amples in Fig. 1 have which makes them behave better than the examples in
Fig. 2. If this would be possible, then it could be used to choose when to use
the refined cut-off criterion with prefixes. One observation is that the problems
listed in Fig. 2 have a simpler communication structure (when modelled as state
machines) than the problems in Fig. 1, see [2].

One open question is the problem of defining an algorithm which computes
the finite complete prefix, which would be minimal in e.g. the number of non-
cut-off events. There is an example in an extended version of [5], for which
our refined cut-off criterion doesn’t create the minimal prefix in this sense.
We believe that this work can be used as a starting point for defining such a
theoretical algorithm for a minimal (in a stricter sense than [5]) prefix generation
algorithm.

Another interesting area for future work is the use of NP-complete problem
solvers for prefix generation. They can also be used for other parts of the prefix
generation process, with or without using the refined cut-off criterion presented
here. This could be of practical interest for the prefix based verification tools.

8 Acknowledgements

The author would like to thank Javier Esparza for the possibility of visiting
his research group. The tool smodels was created by Patrik Simons, who gave
excellent support for it. Stefan Romer provided the example nets, and also
Linux binaries for ERVunfold algorithm, which both were invaluable. The fi-
nancial support of Helsinki Graduate School on Computer Science and Engineer-
ing (HeCSE), the Academy of Finland (Project 8309), the Support Foundation
of Helsinki University of Technology, and the Eemil Aaltonen Foundation are
gratefully acknowledged.

References

[1] E.Best. Partial order verification with PEP. In G. Holzmann, D. Peled, and
V. Pratt, editors, Proceedings of POMIV’96, Workshop on Partial Order
Methods in Verification. American Mathematical Society, July 1996.

12

[2]

[3]

[4]

[8]

[9]

[10]

[11]

J. C. Corbett. Evaluating deadlock detection methods for concurrent soft-
ware. Technical report, Department of Information and Computer Science,
University of Hawaii at Manoa, 1995.

J. Engelfriet. Branching processes of Petri nets. In Acta Informatica 28,
pages 575591, 1991.

J. Esparza and S. Rémer. An unfolding algorithm for synchronous products
of transition systems. In Proceedings of the 10th International Conference
on Concurrency Theory (Concur’99). Springer-Verlag, Berlin, 1999. Invited
paper, accepted for publication.

J. Esparza, S. Romer, and W. Vogler. An improvement of McMillan’s
unfolding algorithm. In Proceedings of Second International Workshop
on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’96), pages 87-106, Passau, Germany, Mar 1996. Springer-Verlag.
LNCS 1055.

M. Gelfond and V. Lifschitz. The stable model semantics for logic program-
ming. In Proceedings of the 5th International Conference on Logic Program-

ming, pages 1070-1080, Seattle, USA, August 1988. The MIT Press.

K. Heljanko. Deadlock checking for complete finite prefixes using logic
programs with stable model semantics (extended abstract). In Proceed-
ings of the Workshop Concurrency, Specification & Programming 1998,
Informatik-Bericht Nr. 110, pages 106-115. Humboldt-University, Berlin,
September 1998.

K. Heljanko. Using logic programs with stable model semantics to solve
deadlock and reachability problems for 1-safe Petri nets. Fundamenta In-

formaticae, 37(3):247-268, 1999.

K. Heljanko. Using logic programs with stable model semantics to solve
deadlock and reachability problems for 1-safe Petri nets. In Proceedings of
Fifth International Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems (TACAS’99), pages 240-254. Springer-Verlag,
Berlin, March 1999. LNCS 1579.

W. Marek and M. Truszczyniski. Autoepistemic logic. Journal of the ACM,
38:588-619, 1991.

K. L. McMillan. Using unfoldings to avoid the state space explosion
problem in the verification of asynchronous circuits. In Proceeding of 4th
Workshop on Computer Aided Verification (CAV’92), pages 164-174, 1992.
LNCS 663.

K. L. McMillan. A technique of a state space search based on unfolding.
In Formal Methods is System Design 6(1), pages 45-65, 1995.

13

[13]

S. Melzer and S. Rémer. Deadlock checking using net unfoldings. In Pro-
ceeding of 9th International Conference on Computer Aided Verification
(CAV°97), pages 352-363, Haifa, Israel, Jun 1997. Springer-Verlag. LNCS
1254.

I. Niemeld. Logic programs with stable model semantics as a constraint
programming paradigm. In Proceedings of the Workshop on Computational
Aspects of Nonmonotonic Reasoning, pages 72-79, Trento, Italy, May 1998.
Helsinki University of Technology, Digital Systems Laboratory, Research
Report Ab2.

I. Niemel&d and P. Simons. Smodels — an implementation of the stable model
and well-founded semantics for normal logic programs. In Proceedings of the
4th International Conference on Logic Programming and Non-Monotonic
Reasoning, pages 420-429, Dagstuhl, Germany, July 1997. Springer-Verlag.

P. Simons. Extending stable model semantics with more expressive
rules. Unpublished manuscript, available on the Internet at http://
www.tcs.hut.fi/Publications/papers/simons99.ps.gz.

P. Simons. Towards constraint satisfaction through logic programs and
the stable model semantics. Research Report A47, Helsinki University of
Technology, Espoo, Finland, August 1997. Licenciate’s thesis, Available at
http://www.tcs.hut.fi/pub/reports/A47.ps.gz.

14

