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We will show that model 
he
king a �xed CTL formula 
ontaining nestedtemporal modalities is PSPACE-
omplete in the size of a �nite 
omplete pre-�x of a 1-safe Petri net. Be
ause model 
he
king a �xed CTL formula is alsoPSPACE-
omplete in the size of a 1-safe Petri net [6℄, using a pre�x as input toa model 
he
ker does not 
hange the 
omplexity of CTL model 
he
king. The�xed CTL formula we use 
an be expressed in most temporal logi
s interpretedover interleaved rea
hability graphs, and we obtain PSPACE-
ompleteness re-sults for several of them.Our proof employs a 
lass of 1-safe Petri nets for whi
h it is easy to gen-erate a �nite 
omplete pre�x in deterministi
 polynomial time. We will showthat the pre�xes generated by 
urrently employed pre�x generation algorithms(see [10℄) 
an sometimes be exponentially larger than what is allowed by thesemanti
 pre�x 
ompleteness 
riterion. We do not know whether these pre�xeshave some properties whi
h would make model 
he
king using them easier thanwith pre�xes ful�lling only the semanti
 pre�x 
ompleteness 
riterion.The rest of the paper is stru
tured as follows. First in Se
t. 2 we de�ne thePetri net notation used in this paper, followed by the de�nition of �nite 
ompletepre�xes. We show in Se
t. 3 that it is possible to sometimes 
reate exponentiallysmaller pre�xes than the algorithm of [10℄. Next in Se
t. 4 we present the mainresult of this work, a proof of model 
he
king PSPACE-
ompleteness for severallogi
s in the size of a �nite 
omplete pre�x. We give the 
on
lusions in Se
t. 5.2 Petri Net De�nitionsOur aim is to de�ne �nite 
omplete pre�xes as a symboli
 representation ofa rea
hability graph of a 1-safe Petri net system. Finite 
omplete pre�xes arebran
hing pro
esses ful�lling some additional 
onstraints. To de�ne bran
hingpro
esses we introdu
e o

urren
e nets, whi
h are Petri nets of a restri
ted form.We do the de�nitions bottom-up, and begin with basi
 Petri net notation. Wefollow mainly the notation of [10℄.2.1 Petri NetsA triple hS; T; F i is a net if S \ T = ; and F � (S � T ) [ (T � S). Theelements of S are 
alled pla
es, and the elements of T transitions. Pla
es andtransitions are also 
alled nodes. We identify F with its 
hara
teristi
 fun
tionon the set (S � T ) [ (T � S). The preset of a node x, denoted by �x, is the setfy 2 S [ T jF (y; x) = 1g. The postset of a node x, denoted by x�, is the setfy 2 S [ T jF (x; y) = 1g. Their generalizations on sets of nodes X � S [ T arede�ned as �X = Sx2X �x, and X� = Sx2X x�, respe
tively.A marking of a net hS; T; F i is a mapping S 7! IN. A markingM is identi�edwith the multi-set whi
h 
ontains M(s) 
opies of s for every s 2 S. A 4-tuple� = hS; T; F;M0i is a net system if hS; T; F i is a net and M0 is a marking ofhS; T; F i. A marking M enables a transition t 2 T if 8s 2 S : F (s; t) �M(s). Ift is enabled, it 
an o

ur leading to a new marking (denoted M t! M 0), where



M 0 is de�ned by 8s 2 S : M 0(s) = M(s) � F (s; t) + F (t; s). A marking Mn isrea
hable in � if there is an exe
ution, i.e. a sequen
e of transitions t1; t2; : : : ; tnand markings M1;M2; : : : ;Mn�1 su
h that: M0 t1! M1 t2! : : :Mn�1 tn! Mn. Area
hable marking is 1-safe if 8s 2 S : M(s) � 1. A net system � is 1-safe ifall its rea
hable markings are 1-safe. In this work we will restri
t ourselves tonet systems whi
h are 1-safe, have a �nite number of pla
es and transitions, andalso in whi
h ea
h transition has both nonempty pre- and postsets.2.2 O

urren
e NetsWe use <F (�F ) to denote the (re�exive) transitive 
losure of F . De�ne � =hS; T; F i to be a net and let x1; x2 2 S [T . The nodes x1 and x2 are in 
on�i
t,denoted by x1#x2, if there exist t1; t2 2 T su
h that t1 6= t2, �t1 \ �t2 6= ;,t1 �F x1, and t2 �F x2.An o

urren
e net is a net N = hB;E; F i su
h that:� 8b 2 B : j�bj � 1,� F is a
y
li
, i.e. the irre�exive transitive 
losure of F is a partial order,� N is �nitely pre
eded, i.e. for any node x of the net, the set of nodes y su
hthat y �F x is �nite, and� 8x 2 B [ E : :(x#x).The elements of B and E are 
alled 
onditions and events, respe
tively. The setMin(N) denotes the set of minimal elements of <F . In this work the minimalelements will be 
onditions, and thus Min(N) 
an be seen as an initial marking.A 
on�guration C of an o

urren
e net is a set of events satisfying:� If e 2 C then 8e0 2 E : e0 �F e implies e0 2 C (C is 
ausally 
losed), and� 8e; e0 2 C : :(e# e0) (C is 
on�i
t-free).A lo
al 
on�guration [e℄ of an event e is the set of events e0, su
h that e0 �F e.A level of an event e is the length i of the longest sequen
e e1; e2; : : : ; ei ofevents, su
h that ei = e, and e1 <F e2 <F : : : <F ei. Thus level (e) = 1 when�e � Min(N).2.3 Bran
hing Pro
essesBran
hing pro
esses are �unfoldings� of net systems and were introdu
ed byEngelfriet [4℄. Let N1 = hS1; T1; F1i and N2 = hS2; T2; F2i be two nets. A homo-morphism h is a mapping S1 [ T1 7! S2 [ T2 su
h that: h(S1) � S2, h(T1) � T2,and for all t 2 T1, the restri
tion of h to �t is a bije
tion between �t and �h(t), andsimilarly for t� and h(t)�. A bran
hing pro
ess of a net system � = hS; T; F;M0iis a tuple � = hN 0; hi, where N 0 = hB0; E0; F 0i is an o

urren
e net, and h is ahomomorphism from N 0 to hS; T; F i su
h that: the restri
tion of h to Min(N 0)is a bije
tion between Min(N 0) and M0, and 8e1; e2 2 E0, if �e1 = �e2 andh(e1) = h(e2), then e1 = e2. Thus h maps the 
onditions and events of an o
-
urren
e net to the pla
es and transitions of the 
orresponding net system in a



way whi
h respe
ts the initial marking and the labeling of the transitions andtheir pre- and postsets.The marking of � asso
iated with a 
on�guration C of � is denoted byMark (C) = h((Min(N) [ C�) n �C). A 
on�guration of the bran
hing pro
essalways 
orresponds to a rea
hable marking of �. It is shown in [4℄ that a netsystem has a maximal bran
hing pro
ess up to isomorphism, 
alled the unfolding.If the net system has some in�nite behavior, the unfolding will also be in�nite.2.4 Finite Complete Pre�xesWe now de�ne �nite 
omplete pre�xes:De�nition 1. A �nite bran
hing pro
ess � of a net system � is a �nite 
ompletepre�x if for ea
h rea
hable marking M of � there exists a 
on�guration C of �,su
h that:� Mark(C) =M , and� for every transition t enabled in M there exists a 
on�guration C [feg of �,su
h that e 62 C and h(e) = t.A �nite 
omplete pre�x 
ontains all the information about the interleaved rea
h-ability graph of the net system. Algorithms to obtain a �nite 
omplete pre�xgiven a (�nite state) net system are presented in [10, 9, 19℄. The algorithms willmark some events of the pre�x � as spe
ial 
ut-o� events, whi
h we will denoteby events marked with 
rosses in the �gures. The intuition behind 
ut-o� eventsis that they 
orrespond to repetition of behavior found �earlier� in the pre�x.Due to spa
e limitations we dire
t the interested reader to [10, 9, 19℄.3 Compa
t Finite Complete Pre�xesIt is well known that �nite 
omplete pre�xes 
an sometimes be exponentiallymore su

in
t than the rea
hability graph of the net system [19℄. A simple ex-ample of su
h a family of net systems (with the instan
e n = 4 in Fig. 1) has 2nrea
hable markings, while the �nite 
omplete pre�x is polynomial in the size ofthe net system. In fa
t, the �nite 
omplete pre�xes of this family of net systemsare isomorphi
 to the net system itself. The improved pre�x generation algo-
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t2 t3 t4Fig. 1. A 1-safe net system with a 
ompa
t pre�x.



rithm by Esparza, Römer, and Vogler [10℄ guarantees for 1-safe net systems thatthe number of non-
ut-o� events of the generated pre�x is never larger than thenumber of rea
hable markings. What is not to our knowledge presented in theliterature is the fa
t that sometimes the pre�x generation algorithm by M
Mil-lan [19℄ (and also the improved version [10℄) 
reates exponentially larger pre�xesthan are needed to ful�ll the semanti
 pre�x 
ompleteness 
riterion.For an example of su
h a family of 1-safe Petri net systems, see Fig. 2. Thisnet system is an instan
e of a binary 
ounter net system with initialization to a�random� initial state (Fig. 2 is a three bit instan
e, i.e. n = 3). The net systema
ts like a binary 
ounter starting from all low bits, when the initial markingis M 00 = fs(
0); s(b0l); s(b1l); s(b2l)g. The 
ontents of the binary 
ounter are
onsistent when the pla
e s(
0) is marked, otherwise the 
arry propagation 
anbe thought to be in progress. The exa
t behavior of the net system is a
tually ofno interest to us, we are only interested in the sizes of di�erent �nite 
ompletepre�xes generated from it.
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Fig. 2. A three bit binary 
ounter net system.Let us 
onsider what happens when the initial marking is the marking inFig. 2. We 
an �nd the invariants: M(s(i
)) +P0�i<nM(s(
i)) = 1, and for all0 � j < n : M(s(ibj))+M(s(bjh))+M(s(bj l)) = 1. These n+1 invariants givean upper bound of (n+1) �3n rea
hable markings. This is also the exa
t numberof rea
hable markings, whi
h 
an also be seen by simple stati
 analysis. Namely,�ring one (or none) of the transitions of the set ft(i
0); : : : ; t(i
n�1)g 
an setthe �rst invariant to any of n + 1 values, and also �ring one (or none) of the



transitions ft(ibjh); t(ibj l)g 
an set the invariant of the bit j into any of threevalues. Also in the initial state these n + 1 sets of transitions are 
on
urrentlyenabled, and thus �ring a transition from one set does not disable transitionsfrom other sets. Thus all the (n + 1) � 3n rea
hable markings are within one
on
urrent �step� from the initial marking.We 
an a
tually 
reate the �nite pre�x of Fig. 3 from this net system, andthen verify that it ful�lls the semanti
 pre�x 
ompleteness 
riterion (Def. 1).We 
an see that the pre�x of Fig. 3 is polynomial in the size of the 
ounternet system of Fig. 2, and that su
h a �
ompa
t pre�x� 
an be 
onstru
ted for a
ounter net system of any �xed amount of bits.
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Fig. 3. A �nite 
omplete pre�x for the three bit 
ounter example.Here we give a proof sket
h for the 
ompleteness of the �nite pre�x in Fig. 3.The pre�x is identi
al to the two �rst levels of the unfolding of the net system ofFig. 2. The �rst requirement of pre�x 
ompleteness is ful�lled, as all of the rea
h-able markings 
an be rea
hed by a 
on�guration 
ontaining only events from the�rst level of the pre�x. The se
ond pre�x 
ompleteness 
riterion intuitively re-quires that all the ar
s of the rea
hability graph are present in the pre�x. Thisis the 
ase, be
ause both the �rst and se
ond levels of this pre�x are identi
alto the unfolding, and thus they 
ontain extensions for all the 
on�gurations (ofthe �rst level) mentioned in the se
ond 
ompleteness 
riterion.Note that all the events on the se
ond level are marked as 
ut-o� events, asthey introdu
e no new rea
hable markings to the pre�x. This requires allowingthat the 
orresponding 
on�guration (see [10℄) of a 
ut-o� event is a non-lo
al
on�guration. Su
h an idea was already presented in our earlier work [14℄.



When we 
onsider the sizes of �nite 
omplete pre�xes generated by the 
ur-rently employed pre�x generation tools, the pi
ture is quite di�erent. We havegathered pre�x sizes for small instan
es of this family of net systems in Table 1.For this family of examples, the M
Millan's algorithm [19℄ and the improve-ment by Esparza et.al. [10℄ (implemented in the PEP tool [1℄) both generate thesame pre�xes. While the number of non-
ut-o� events (the 
olumn jEj�#
 ofM
Millan/ERV Pre�x) grows mu
h more slowly than the number of rea
hablemarkings, the growth in this 
olumn is still exponential (we get the re
ursionxi = 2xi�1+i+4, with the initial value x2 = 16). Contrast this with the 
ompa
tpre�x, whose size grows polynomially in the number of bits in the 
ounter. ThusTable 1. Pre�x sizes for 
ounter net systems.System Rea
hability Graph M
Millan/ERV Pre�x Compa
t Pre�xSize jSj jT j Markings Ar
s jBj jEj #
 jEj�#
 jBj jEj #
 jEj�#
2 9 10 27 66 43 23 7 16 17 10 4 63 13 15 108 351 105 55 16 39 25 15 6 94 17 20 405 1620 225 116 30 86 33 20 8 125 21 25 1458 6885 453 231 50 181 41 25 10 156 25 30 5103 27702 887 449 77 372 49 30 12 187 29 35 17496 107163 1721 867 112 755 57 35 14 21the pre�xes generated by the 
urrent pre�x generation algorithms [19, 10℄ 
an beexponentially larger than the 
ompa
t �nite 
omplete pre�x whi
h we generatedusing semanti
 arguments. This 
onstru
tion relied on the spe
ial properties thefamily of net systems under dis
ussion has. We don't know of a pra
ti
al algo-rithm to always generate a polynomial pre�x when it is allowed by the semanti
notion of pre�x 
ompleteness.In the rest of this work we adopt the semanti
 de�nition of pre�x 
omplete-ness (Def. 1) as the only property a �nite 
omplete pre�x has. Thus we 
anuse purely semanti
 arguments, and do not have to 
onsider the pe
uliaritiesof a �xed pre�x generation algorithm. However, as presented by Table 1, some-times the 
urrent algorithms will generate exponentially larger pre�xes. Thus the
omplexity results we will present do not automati
ally apply to these pre�xes.4 Complexity of Model Che
king with Complete Pre�xesWe 
an see a 1-safe Petri net system as a representation of its (�nite, interleaved)rea
hability graph. Thus in model 
he
king a Petri net we a
tually interpret themodel 
he
king questions on its rea
hability graph. Be
ause a �nite 
ompletepre�x is a symboli
 representation of the same rea
hability graph, we 
an domodel 
he
king when a �nite 
omplete pre�x is given as input. We will nowshow that many model 
he
king problems for �nite 
omplete pre�xes of 1-safePetri nets are PSPACE-
omplete in the size of the pre�x. This result has been�rst published in [13℄, where detailed proofs 
an be found.



The proof is based on the PSPACE-hardness proof of the rea
hability problemfor 1-safe Petri nets by Jones, Landweber and Lien [15℄. The proof involvessimulating a Turing ma
hine with a �xed number of tape 
ells with a 1-safePetri net. Our proof is based on the variation of this proof by Esparza [6℄, fromwhi
h most of the material of the following se
tion is from. We �rst introdu
ethis proof, be
ause our proof is built on top of it in two steps.4.1 Rea
hability with 1-safe Petri netsWe use slightly nonstandard notation in this work. We 
onsider Turing ma
hineswith �nite tape, i.e. they have both a �rst and a last 
ell on their tape. As inthe standard de�nition, a move to the left of the �rst 
ell results in the ma
hinestaying on the �rst 
ell. Slightly nonstandard is the handling of the last 
ell. Ifthe program of the Turing ma
hine tries to move right when being on the last
ell, it stays on the last 
ell. We de�ne the notions of exe
ution and a

eptan
eof a Turing ma
hine in what is in the essen
e a standard way, see e.g. [20℄, withonly minor notational di�eren
es, for the details see [13℄.A Turing ma
hine is de�ned to be a tuple M = hQ;�; Æ; q0; F i, where Q isa �nite set of states, � a �nite set of tape symbols (
ontaining a spe
ial blanksymbol #), Æ : (Q�� ) 7! P(Q���fR;Lg) is the (non-deterministi
) transitionfun
tion, q0 2 Q is the initial state, and F � Q is the set of �nal states. Wede�ne the size of a Turing ma
hine to be the number of bits needed to en
odeits transition relation, i.e. 2 � jQj2 � j� j2.We de�ne a linearly bounded automaton to be a Turing ma
hine whi
h usesn tape 
ells for a Turing ma
hine des
ription of size n (i.e. the amount of tapemat
hes the size of the transition relation). We en
ode the 
on�guration of an au-tomaton as hq; i; wi, where q is the 
ontrol state of the automaton, i 2 f1; : : : ; ngis the 
urrent lo
ation of the tape head, and w 2 �n is a string of length n whi
hgives the 
ontents of the n tape 
ells of the automaton. We 
all a 
on�gurationhq; i; wi an initial 
on�guration if q = q0.Many question about the 
omputations of linearly bounded automata arePSPACE-hard. The �rst one we use is the empty-tape a

eptan
e problem:De�nition 2. EMPTY-TAPE ACCEPTANCE:Given a linearly bounded automaton A = hQ;�; Æ; q0; F i, does A a

ept on theempty input?It is well known that EMPTY-TAPE ACCEPTANCE is PSPACE-
omplete.Moreover, it remains PSPACE-
omplete even if we restri
t the automaton A tohave only one a

epting state qF , see e.g. [6℄. We de�ne the size of a 1-safe Petrinet system � = hS; T; F;M0i to be the number of bits needed to en
ode the�ow relation F , i.e. O(jSj � jT j). The result we use is the following theorem, �rstproved by Jones, Landweber and Lien [15℄:Theorem 1. A linearly bounded automaton of size n 
an be simulated by a 1-safe Petri net system of size O(n2). Moreover, there is a deterministi
 polynomialtime pro
edure in the size of the automaton whi
h 
onstru
ts this net.



We now introdu
e this mapping from a linearly bounded automaton to a1-safe Petri net system N(A). See Fig. 4 for an example when jQj = 3, n = 2(smaller than the real n to make the �gure smaller), and � = f#; a; bg.Let A = hQ;�; Æ; q0; F i be a linearly bounded automaton of size n. We denotethe set of tape 
ells with C = f
1; : : : ; 
ng. The simulating Petri net N(A)
ontains a pla
e s(q) for ea
h state q 2 Q, a pla
e s(
i) for ea
h 
ell 
i 2 C,and a pla
e s(a; 
i) for ea
h pair a 2 �; 
i 2 C. A token on pla
e s(q) tells thatthe ma
hine is in state q, a token on s(
i) marks the 
urrent head lo
ation, andwhen the pla
e s(a; 
i) is marked it means that the symbol on tape 
ell 
i is a.The transitions of N(A) are obtained from the transition fun
tion of A.If s(q0; a0; R) 2 Æ(q; a), then there exists for ea
h 
ell 
 2 C a 
orrespondingtransition t(s(q; a; 
)w(a0)s(q0; 
0)), whose input pla
es are s(q), s(
), and s(a; 
),and whose output pla
es are s(q0), s(
0), and s(a0; 
), where 
0 is the 
ell to theright of 
, ex
ept when 
 is the last 
ell, in whi
h 
ase 
0 = 
. The left movesare handled similarly, ex
ept that now the �rst 
ell is an ex
eption, moving lefton it will leave the head on the leftmost 
ell. The initial marking of N(A) hasone token on s(q0), one on s(
1), and one on ea
h of the pla
es s(#; 
i), for alli 2 f1; : : : ; ng. The total size of the net system N(A) is O(n2) [6℄.
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Fig. 4. A part of N(A) simulating a transition (q1; a; R) 2 Æ(q0;#).In this work we use polynomial-time many-one redu
tions (i.e. Karp redu
-tions). Thus given a linearly bounded automaton A with a unique a

eptingstate qF , we 
an in deterministi
 polynomial time 
onstru
t N(A). Now to de-
ide EMPTY-TAPE ACCEPTANCE we need to answer the following problemon N(A): Is there a rea
hable marking M of N(A), su
h that M(s(qF )) = 1?It is easy to see from the semanti
s of the bran
hing time temporal logi
 CTL[3℄, that the question above is equivalent to the CTL model 
he
king question:N(A) j= EF (s(qF )), i.e. does the formula EF (s(qF )) hold on the interleavedrea
hability graph of N(A)? (We use pla
e names as atomi
 propositions, e.g.s(qF ) is true in a marking M i� M(s(qF )) = 1.) Thus CTL model 
he
king is



PSPACE-hard in the size of the net system N(A). The model 
he
king problemis also in PSPACE in the size of the 1-safe net system for CTL [6℄.4.2 Another PSPACE-hardness Proof with 1-safe Petri NetsWe present an alternative PSPACE-hardness proof for CTL model 
he
king with1-safe Petri nets. This proof was 
reated to make our proof about pre�x model
he
king 
omplexity (to be presented in the next se
tion) easier.We use another PSPACE-
omplete problem for linearly bounded automata:De�nition 3. ARBITRARY-TAPE-STATE ACCEPTANCE:Given a linearly bounded automaton A = hQ;�; Æ; q0; F i with unique a

eptingstate qF , does there exists an initial 
on�guration on whi
h A a

epts?In other words: Does there exist an a

epting exe
ution of A starting fromsome initial 
on�guration hq0; i; wi, where i 2 f1; : : : ; ng and w 2 �n?Theorem 2. ARBITRARY-TAPE-STATE ACCEPTANCE is PSPACE-
omplete.Proof. See [13℄. utGiven a linearly bounded automaton A we will now redu
e the problemARBITRARY-TAPE-STATE ACCEPTANCE into the problem of model 
he
k-ing a 
ertain �xed CTL-formula � on a 1-safe net system C(A). The main intu-ition behind the redu
tion is that C(A) is a �
heating simulation� of A, namelyit has also behaviors whi
h do not 
orrespond to a simulation of an exe
ution ofA. The formula � takes 
are of ignoring the 
heating runs of the net system. We
onstru
t a 1-safe Petri net, whi
h �rst �randomly� initializes the system intosome initial state, and then starts to simulate the behavior of the automaton A.We use the net system N(A) as de�ned in the previous se
tion as the basisof our mapping, add some pla
es and transitions, and 
hange the initial markingto 
reate a net system C(A) (for details, see [13℄). See Fig. 5 for an example ofthe initialization and simulation of the same transition as in Fig. 4. The pla
ess(nq); s(n
), and s(n
i) for all i 2 f1; : : : ; ng are new. They are used to markthat the 
ontrol state, head lo
ation, or 
ontents of the tape 
ell 
i has not beeninitialized yet, respe
tively. For ea
h state qi 2 Q there exists a new transitiont(nqi) whose preset is s(nq) and whose postset is s(qi). For ea
h tape 
ell 
i 2 Cthere exists a new transition t(n
i) whose preset is s(n
) and whose postset iss(
i). Also for ea
h pair (a; 
i), su
h that a 2 �; 
i 2 C, there exists a newtransition t(n(a; 
i)) whose preset is s(n
i) and whose postset is s(a; 
i). Theinitial marking is 
hanged to have a token on the new pla
es added to C(A),and no tokens on other pla
es. This denotes the fa
t that the initialization needsto be done for state, head lo
ation, and ea
h tape 
ell.Note that we are even initializing the simulation initial state randomly, in-stead of initializing it to the state q0. Thus our simulator is a 
heating one. Also
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Fig. 5. A 
heating Turing ma
hine simulator.note that the initialization and the beginning of the simulation are not syn
hro-nized. This is needed for the pre�x to be 
reated to be a 
ompa
t one, however,it somewhat 
ompli
ates the proofs in [13℄.Lemma 1. The net system C(A) is 1-safe.Proof. The net system C(A) has the following marking invariants:� M(s(nq)) +Pqi2Q M(s(qi)) = 1,� M(s(n
)) +P
i2C M(s(
i)) = 1, and� for all i 2 f1; : : : ; ng : M(s(n
i)) +Pa2� M(s(a; 
i)) = 1.The invariants 
over all the pla
es of the net system C(A), thus it is 1-safe. utNow we 
an show PSPACE-
ompleteness by model 
he
king the CTL formula� = EF (s(q0) ^ EF (s(qF ))) on the net system C(A).Lemma 2. Let A be a linearly bounded automaton with a unique a

epting stateqF . It holds that C(A) j= EF (s(q0) ^ EF (s(qF ))) i� A has an a

epting exe
u-tion starting from some initial 
on�guration of A.Proof. The idea of the proof in one dire
tion is to take an a

epting exe
ution ofA, and transform it to an exe
ution of C(A), whi
h �rst �res n+2 initializationtransitions and then starts simulating the exe
ution of A, giving a witness forthe formula �. The other dire
tion is a bit more involved. Whenever C(A) hasan exe
ution whi
h is a witness of �, it a
tually also has an exe
ution whi
h �rst�res n + 2 initialization transitions, and then starts simulating (an a

eptingexe
ution of) A. Proving this requires a number of lemmas about (a parti
ularkind of) 
ommutativity between the initialization and simulation transitions ofC(A). For more details, see [13℄. ut



Theorem 3. Model 
he
king a �xed size CTL formula � is PSPACE-
ompletein the size of the 1-safe net �.Proof. To show PSPACE-hardness we use the Lemma 2 to redu
e the problemARBITRARY-TAPE-STATE ACCEPTANCE to the problem of CTL model
he
king a �xed size formula � = EF (s(q0) ^ EF (s(qF ))) on the net systemC(A). The size of C(A) is O(n2), i.e. polynomial in the size of A, and theredu
tion 
an be done in deterministi
 polynomial time.The problem is in PSPACE by Lemma 1, 
ombined with the proof of CTLmodel 
he
king being in PSPACE in the size of 1-safe net system, see e.g. [6℄. ut4.3 Model Che
king with Finite Complete Pre�xesWe will now make use of the ma
hinery 
reated in the previous se
tions. We willprove model 
he
king 
omplexity results for algorithms whi
h are given a �nite
omplete pre�x of a 1-safe Petri net as the input.We use the net system C(A) as our starting point, and de�ne the pre�x�C(A) to be identi
al to the �rst two levels of the unfolding of C(A) (see [13℄for the formal de�nition). For an example of the pre�x, see Fig. 6, whi
h is thepre�x of the net system in Fig. 5. The pre�x �C(A) 
ontains exa
tly as many
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b(a,c2,e(...))Fig. 6. A �nite 
omplete pre�x of the 
heating Turing ma
hine simulator.events as there are transitions in C(A). Only the 
onditions in the postsets of thetransitions 
orresponding to the simulation transitions are new, and there are atmost 6 � jQj2 � j� j2 of them. Therefore the size of the pre�x �C(A) is polynomialin the size of C(A) (and thus also in size of A).



Lemma 3. The pre�x �C(A) is a �nite 
omplete pre�x of the net system C(A).Proof. See [13℄. utNow we 
an present the main result of this work.Theorem 4. Model 
he
king a �xed size CTL formula � is PSPACE-
ompletein the size of a �nite 
omplete pre�x � of a 1-safe net �.Proof. See [13℄ for details. To show PSPACE-hardness we use the redu
tion usedin the proof of Theorem 3, and then redu
e this problem further to CTL model
he
king � with �C(A) by 
reating �C(A) in deterministi
 polynomial time fromC(A). Thus by Lemma 3 we get the PSPACE-hardness result.To show that the problem is in PSPACE in the size of the pre�x we use thefa
t that given a pre�x � of a 1-safe net system �, and a formula �, we 
an inpolynomial spa
e 
onstru
t a net system �0 (by folding the a
y
li
 pre�x ba
kinto a 
y
li
 net system in the labelling respe
ting way). For this net system itholds that �0 j= � i� � j= �. Then we CTL model 
he
k �0 j= � in PSPACE [6℄for a total 
omplexity of PSPACE. utThe CTL formula � = EF (s(q0) ^ EF (s(qF ))) synta
ti
ally belongs to allthe logi
s UB�, UB, CTL, and CTL� (see [3℄, for the UB logi
s see e.g. [8℄).Therefore the PSPACE-hardness result also applies to them.We will now require without loss of generality that all exe
utions of theautomaton A entering the �nal state qF will keep on looping ba
k to the �nalstate qF thus 
reating an in�nite exe
ution in whi
h the �nal state is repeated.We 
an then 
reate the linear temporal logi
 LTL (see [3℄) formula  =2(:(s(q0)) _ 2(:(s(qF )))). Now it is easy to see from the semanti
s of LTLthat C(A) j= � i� C(A) 6j=  . A violation of this LTL formula 
an be expressedby a Bü
hi automaton, whi
h 
an be translated into an equivalent linear-time�-
al
ulus formula (see e.g. [2℄). The LTL formula  is also a synta
ti
 safetyformula, and thus a violation of this property 
an also be expressed by a de-terministi
 �nite automaton [17℄. Thus we get a PSPACE-hardness result forLTL model 
he
king, Bü
hi emptiness 
he
king, linear-time �-
al
ulus model
he
king, and safety model 
he
king.The model 
he
king problems mentioned above are in PSPACE in the sizeof the 1-safe net system, and thus we 
an use the proof of Theorem 4 also withthem (see [6℄, for CTL� we 
reate a 
on
urrent program from a 1-safe Petri netin deterministi
 polynomial time, and then use a similar result presented for
on
urrent programs in e.g. [16℄). Therefore these model 
he
king problems arePSPACE-
omplete in the size of a �nite 
omplete pre�x of a 1-safe Petri net.5 Con
lusionsWe have shown that model 
he
king a �xed size formula of several temporal log-i
s, in
luding LTL, CTL, and CTL�, is PSPACE-
omplete in the size of a �nite




omplete pre�x of a 1-safe Petri net. This is to be 
ontrasted with the rea
h-ability problem, in whi
h a PSPACE-
omplete problem for 1-safe Petri nets istransformed by the pre�x generation pro
ess into (a potentially exponentiallylarger) NP-
omplete problem, see e.g. [13℄. However, su
h a drop in 
omplexity(assuming NP is easier than PSPACE) does not o

ur in the 
ase of model 
he
k-ing involving nested temporal modalities. Thus, loosely speaking, with pre�xesrea
hability is easier than �repeated rea
hability� (see [13℄).Our proof employs a 
lass of 1-safe Petri nets for whi
h it is easy to 
reate a�nite 
omplete pre�x by using semanti
 arguments. We have shown that some-times the pre�xes 
reated by 
urrent pre�x generation algorithms [10℄ will be ex-ponentially larger than allowed by the semanti
 
ompleteness 
riterion (Def. 1).The de�nition of a suitable pre�x minimality 
riterion, and the 
reation of apro
edure to always obtain these 
ompa
t pre�xes is left for further work.There are pre�x based model 
he
kers whi
h handle nested temporal modal-ities. The LTL model 
he
ker of [21℄ 
reates a 
ertain graph, whose size 
an beexponential in the size of the pre�x. The 
onstru
tion employed by the bran
h-ing time model 
he
ker of [5, 12℄ to handle nested temporal modalities is moreinvolved, and relating our work to the results of [12℄ is left for further study. Wewould also like to know whether the pre�xes generated by [10℄ have some prop-erties whi
h would allow simpler model 
he
king algorithms than the pre�xesful�lling only the semanti
 pre�x 
ompleteness 
riterion. Finally, for LTL model
he
king we 
an 
hange the model 
he
ker to take both the net system, and theLTL(-X) formula  as input to the pre�x generation pro
ess. In this approa
halso the semanti
 pre�x 
ompleteness 
riterion is parameterized by the 
he
kedformula, and the model 
he
king 
an be done in polynomial time in the size ofthis �produ
t� pre�x [7℄. The pri
e to pay is a larger pre�x. A simpler produ
tmethod works with safety model 
he
king.A
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