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Abstract. This paper develops novel bounded model check-
ing (BMC) techniques for asynchronous parallel systems. The
aim is to increase the ef£ciency of BMC by exploiting the
inherent concurrency in such systems. This added ef£ciency
is gained by covering more reachable states within a given
bound using two techniques. Firstly, a non-standard execution
model, step executions, where multiple actions can take place
simultaneously is applied. Secondly, the number of execu-
tions the system can have is reduced by modeling the execu-
tion of the system components as if they were determinized.
This determinization technique also enables the removal of
the internal transitions of the components. Step executions
can be further restricted to a subclass called process execu-
tions without losing any reachable states.

The paper presents a translation scheme for bounded model
checking of reachability properties. The translation is from an
asynchronous system where the components are modeled as
labeled transition systems (LTSs) to a propositional formula.
The models of the formula correspond to the step executions
of the original system where each component is replaced with
its determinized counterpart. The formula for step executions
can be easily extended in such a way that its models corre-
spond to the process executions of the system. The translation
scheme has been implemented and some experimental com-
parisons performed. The results show that the bound needed
to detect a violation of a reachability property is for step and
process executions in most cases lower than in interleaving
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executions and that the running time of the model checker us-
ing process executions is smaller than using steps. Moreover,
the performance compares favorably to a state-of-the-art in-
terleaving BMC implementation in the NuSMV system.

1 Introduction

The purpose of the paper is to develop ef£cient bounded model
checking (BMC) techniques for asynchronous systems mod-
eled as labeled transition systems (LTSs). BMC is a veri£-
cation technique that considers only executions of bounded
length of the chosen formalism [1]. The general model check-
ing problem for properties speci£ed in linear temporal logic
(LTL) is known to be PSPACE-complete w.r.t. the system
description given, for instance, as an LTS system studied in
this paper. However, the bounded case is in NP (assuming
the used bound is given in unary encoding). The very idea
is to compile the system under veri£cation, the property to
be veri£ed and a bound k on the length of the execution to
a propositional formula having a model iff the system has an
execution of length k that violates the property. The method-
ology has been successfully applied in industrial setting [2,
3].

The aim of this work is to increase the ef£ciency of BMC
by exploiting the inherent concurrency in asynchronous sys-
tems. The standard approach to such systems is to use in-
terleaving executions, where exactly one action is occurring
at a time. For example, consider the system in Figure 1. It
presents 2n LTSs following the standard notation of present-
ing the states as circles and the transitions from a state to
another as arrows. The arrows are labeled with symbols like
a1 or τ .

The 2n components form a system whose global states
(denoted by s) are 2n-tuples of local states, one local state
from each component. The initial global state is the tuple
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Fig. 1. Example system

where each component is in its initial state (marked in the
picture with a wedge and labeled si or s′i where 1 ≤ i ≤ n).

The system can move from the global state s to the global
state s′ with label ai (denoted s

ai→ s′) iff every component
having ai among its labels can execute a transition labeled ai.
That means that before the transition each such component is
in a local state having an outgoing transition labeled ai. In
the next global state each of these components is in the target
state of that transition while each other component remains in
its original state. However, the label τ is an exception to the
rule. It denotes an internal transition and thus a single com-
ponent can execute its τ transitions in isolation. An interleav-
ing execution of the example system reaching the global state
〈u1, u

′
1, . . . , un, u

′
n〉 from the initial state 〈s1, s

′
1, . . . , sn, s

′
n〉

is as follows:

〈s1, s
′
1, . . . , sn, s

′
n〉

a1→ 〈t1, t
′
1, . . . , sn, s

′
n〉

a2→

· · ·
an→ 〈t1, t

′
1, . . . , tn, t

′
n〉

τ
→ 〈u1, t

′
1, . . . , tn, t

′
n〉

τ
→

· · ·
τ
→ 〈u1, u

′
1, . . . , un, u

′
n〉

Here the idea is to encode interleaving executions more
compactly by allowing multiple occurrences of actions in dif-
ferent components of the system simultaneously. For the ex-
ample in Figure 1 with the interleaving model the number of
steps needed to reach every state of the system is 3n. If simul-
taneous executions of independent actions are allowed only 2
steps are needed (independent of the value of n).

The approach of allowing independent actions to take place
simultaneously is further combined with an on-the-¤y deter-
minization construction where for each component a set of
states in which that component can be is maintained. The sit-
uation is illustrated in Figure 2. On the left hand side is a non-
deterministic LTS and on the right hand side its determinized
counterpart. The purpose of this construction is to (i) reduce
the number of executions of the system, and (ii) shorten their
length by removing internal transitions.

In this work, the concurrent execution of independent ac-
tions combined with on-the-¤y determinization of compo-
nents is referred to as step executions. The idea is illustrated
in the following example execution of the system from Fig-
ure 1:

〈{s1}, {s
′
1}, . . . , {sn}, {s

′
n}〉

{a1,...,an}
→ (1)

〈{t1, u1}, {t
′
1, u

′
1}, . . . , {tn, un}, {t

′
n, u

′
n}〉

τ τ

τ τ
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Fig. 2. On-the-¤y determinization

The execution is different from the interleaving model in that
the actions a1, . . . , an are executed simultaneously. Secondly,
due to on-the-¤y determinization component L1, for instance,
reaches the set of states {t1, u1}. Without compromising reach-
able states, step executions can be further restricted to process
executions satisfying an extra condition on visible actions.

Based on these ideas, a bounded model checking proce-
dure of reachability properties of an LTS system is developed
by devising a translation scheme from the LTSs to a proposi-
tional formula. The novelty point of the translation is that the
models of the formula are the step executions of the system,
i.e., in the models (interpreted as executions):

– several independent actions can be executed simultane-
ously and

– in each execution state each component can be in a set of
its local states, i.e., the formula models the executions of
the determinized version of the component.

Yet, the size of the formula remains linear both w.r.t. the
bound and the system description. In addition, the translation
can be done without constructing explicitly the determinized
versions of the components, i.e., handling determinization
on-the-¤y. A simple addition to the formula modeling step
executions results in a formula modeling process executions.

The approach has been applied to a set of deadlock check-
ing problems and the data obtained justify the following points.
Firstly, step and process executions need in most cases a lower
bound to detect a deadlock than the traditional interleaving
model. Secondly, the running times using process executions
are often smaller than using steps. Finally, the results com-
pare favorably to the running times of a state-of-the-art inter-
leaving BMC implementation [5].

The paper is organized as follows. Section 2 introduces
the formalism used as the modeling language and Section 3
presents the encoding schemes for both execution models.
Section 4 gives test results comparing step and process ex-
ecutions to NuSMV [4,5] and £nally Section 5 concludes.

2 System Modeling Formalism

This paper studies asynchronous concurrent systems speci-
£ed as labeled transition systems (LTS). Three execution mod-
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els for a system of LTSs are introduced. The £rst is the stan-
dard interleaving semantics. Thereafter, the step and process
models allowing independent actions to take place simulta-
neously are de£ned. The section ends with an analysis of the
relation between the different models.

De£nition 1. An LTS is a 4-tuple L = (S, I, Γ,∆) where

– S is a non-empty set of (local) states,
– I ⊆ S is a non-empty set of initial states,
– Γ is a non-empty set of visible actions, and
– ∆ ⊆ S× (Γ ∪{τ})×S, is the transition relation, the el-

ements of which are called (local) transitions of L, where
τ 6∈ Γ .

The transitions whose middle component is τ are called
internal or invisible to the environment. LTSs can interact
by forming a synchronizing system, denoted here by L =
〈L1, . . . , Ln〉. Its states are n-tuples of local states and se-
mantics is de£ned in terms of interleaving executions.

De£nition 2. Let L = 〈L1, . . . , Ln〉 be a system of synchro-
nizing LTSs, where Li = (Si, Ii, Γi,∆i), 1 ≤ i ≤ n. An
interleaving execution of L is a sequence

s1
a1→ s2

a2→ · · ·
ak→ sk+1 (2)

such that each global state si is an n-tuple 〈s1
i , . . . , s

n
i 〉 ∈

S1 × · · · × Sn, i.e., sji is a local state of LTS Lj and each
ai ∈ Γ1 ∪ · · · ∪ Γn ∪ {τ}. Furthermore, the following holds:

1. 〈s1
1, . . . , s

n
1 〉 ∈ I1 × · · · × In.

2. For all 1 ≤ i ≤ k, if ai 6= τ , then for the transition
〈s1

i , . . . , s
n
i 〉

ai→ 〈s1
i+1, . . . , s

n
i+1〉 it holds that for all Lj ,

if ai ∈ Γj , (sji , ai, s
j
i+1) ∈ ∆j otherwise s

j
i+1 = s

j
i .

3. For all 1 ≤ i ≤ k, if ai = τ , then for the transition
〈s1

i , . . . , s
n
i 〉

ai→ 〈s1
i+1, . . . , s

n
i+1〉 it holds that there is an

Lj such that (sji , τ, s
j
i+1) ∈ ∆j and ski+1 = ski for k 6= j.

When explicit presentation of intermediate states is not
of great importance, the notation si

ai,...,aj
→ sj+1 is used to

denote a part of an interleaving execution from si to sj+1

such that the executed actions are ai, . . . , aj in that order.
The de£nition above is usually given by £rst de£ning the

synchronized product of the components constituting the sys-
tem and then presenting the executions using that construc-
tion. De£nition 2 above is equivalent and better suited for
comparing the traditional model to the new contributions pre-
sented below (De£nitions 6 and 8). These de£nitions make
use of the following concepts.

De£nition 3. The concatenation of the visible actions in the
interleaving execution σI in the order mandated by σI is de-
noted vis(σI).

De£nition 4. A global state s′ is reachable in the LTS sys-
tem L = 〈L1, . . . , Ln〉 iff s′ is one of the global initial states
s′ ∈ I1 × · · · × In or there is an interleaving execution σI

from a global initial state s to s′ . A global state s′ is a dead-
lock state iff it is reachable and no execution reaching s′ can
be extended with some transition.

Any LTS can be seen as a labeled graph. Thus, a labeled
path in an LTS is just a labeled path in the LTS seen as a
graph.

De£nition 5. Let L = (S, I, Γ,∆) and S ′ ⊆ S. The τ -
closure of S′ is the maximal set of states S′′ ⊆ S such that
s ∈ S′′ iff s ∈ S′ or there is a path from some state in S ′ to s

labeled only with τ transitions.

The following de£nition presents the step executions of
a system of LTSs. The model is such that while operating on
possibly non-deterministic LTSs it determinizes them on-the-
¤y. Therefore, in each position in the execution each compo-
nent may be in a set of states instead of just one.

De£nition 6. Let L = 〈L1, . . . , Ln〉 be a system of synchro-
nizing LTSs, where Li = (Si, Ii, Γi,∆i), 1 ≤ i ≤ n. A £nite
step execution σS of L is a sequence

S1
A1→ S2

A2→ · · ·
Ak→ Sk+1 (3)

such that each Si, called a determinized global state, is an n-
tuple 〈S1

i , . . . , S
n
i 〉, S

j
i ⊆ Sj , 1 ≤ j ≤ n, i.e., each S

j
i is a

set of states of LTS Lj and each ∅ ⊂ Ai ⊆ Γ1 ∪ · · · ∪ Γn. In
addition all of the following conditions hold:

1. In S1 every S
j
1 is the τ -closure of Ij .

2. For each Ai and Lj , |Ai ∩ Γj | ≤ 1, i.e., in each step at
most one visible action is executed from each LTS.

3. For each Ai, if a ∈ Ai, then for each Lj such that a ∈ Γj

there is a transition (sj , a, s
′
j) ∈ ∆j such that sj ∈

S
j
i . Furthermore, Sj

i+1 is the τ -closure of the set of states
formed by all states s′′ such that (s′, a, s′′) ∈ ∆j and
s′ ∈ S

j
i .

4. For each Ai and Lj , if Ai ∩ Γj = ∅ then S
j
i+1 = S

j
i .

The length of σS, denoted by |σS|, is k. Let lin(σS) de-
note the set of all possible linearizations of σS, i.e., the set
of strings α1α2 . . . αk such that for each 1 ≤ i ≤ k, αi ∈
lin(Ai) where lin(Ai) is the set of strings obtained by con-
catenating the elements in Ai in all possible orders.

The above execution model based on on-the-¤y deter-
minization could be alternatively de£ned by requiring the com-
ponents of the LTS system to be deterministic or by deter-
minizing them using the standard subset construction [17].
However, the subset construction is potentially expensive since
the determinized version of a non-deterministic £nite automa-
ton of n states can have as many as 2n states. On-the-¤y de-
terminization avoids this without substantially increasing the
complexity of the BMC encoding.

De£nition 7. Given an LTS system L = 〈L1, . . . , Ln〉, its
global state s = 〈s1, . . . , sn〉 and its determinized global state
S = 〈S1, . . . , Sn〉, de£ne s < S to mean that for all 1 ≤ j ≤
n, sj ∈ Sj .

The following theorems characterize the relation between in-
terleaving and step executions. They assume a synchronizing
system L = 〈L1, . . . , Ln〉.
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Theorem 1. Let σI be an (interleaving) execution of L of the
form (2) and |σI| = k. Then there is a step execution σS

S1
{a′1}→ S2

{a′2}→ · · ·
{a′l−1}
→ Sl

{a′l}→ Sl+1 (4)

of L such that a′1a
′
2 . . . a′l = vis(σI), l ≤ k and sk+1 < Sl+1.

Proof. Any interleaving execution of length k can be repre-
sented in the following form:

s1,0
τ∗

→ s1,n1

a′1→ s2,0
τ∗

→ s2,n2
· · ·

a′l→ sl+1,0
τ∗

→ sl+1,nl+1

The notation τ∗ is a regular expression meaning zero or more
τ -actions. Each global state in the interleaving execution is
represented in the form si,j . Index i is incremented every time
a visible action is executed. Index j, on the other hand, is in-
cremented every time τ is executed and reset to zero every
time a visible action is executed. The idea is to match the
global states si,j to the determinized global state Si (com-
pressing the τ transitions between the different si,j , 0 ≤ j ≤
ni to Si containing the τ -closure).

The actions in the execution can be represented as the
string τ∗a′1τ

∗a′2 . . . a′lτ
∗. The corresponding step execution

is constructed by omitting all the τ transitions in the execu-
tion and for each visible transition executing the step consist-
ing of the singleton set {a′i}, where 1 ≤ i ≤ l. Thus, the
execution is of the form (4) above.

The proof proceeds by induction over the determinized
global states Si of the step execution establishing that the
step execution can be constructed and proving the following
stronger invariant for all the visited states si,j of the interleav-
ing execution:

for all i, 1 ≤ i ≤ l + 1, si,j < Si, 0 ≤ j ≤ ni.

1. Base Case. In any step execution S1 is the τ -closure of
the initial states of the system. For every interleaving ex-
ecution s1,j < S1, where 0 ≤ j ≤ n1, because s1,0 is
one of the system’s initial states and any subsequent state
is reached from it by executing only τ transitions.

2. Induction Hypothesis. Assume si,j < Si for some i and
for all 0 ≤ j ≤ ni.

3. Induction Step. Consider the case i + 1. By induction

hypothesis, si,ni
< Si. Thus, if si,ni

a′i→ si+1,0 is a valid

transition in σI , then Si

{a′i}→ Si+1 is a valid step in the
sense that in every component having a′i in their alphabet
at least one transition labeled a′i is enabled. By de£nition
of a step execution, Si+1 contains the τ -closure of all the
states reachable from the states in Si by executing transi-
tions labeled a′i. Thus, si+1,0 < Si+1. Every subsequent
si+1,j is reached by executing τ transitions. Thus, by def-
inition of a τ -closure si+1,j < Si+1, 0 ≤ j ≤ ni+1.

It should be easy to see that vis(σI) = a′1 . . . a′l and that
the length of the resulting step execution can only shrink
compared to σI. ut

Theorem 2. Let σS be a step execution of a system L reach-
ing Sk+1. Then for any global state s of the system L such
that s < Sk+1 there is an interleaving execution σI of L

reaching s such that vis(σI) ∈ lin(σS).

Proof. Consider a step execution σS of the form:

S1
A1→ S2

A2→ · · ·
Ak→ Sk+1,

where each Ai = {ai,1, . . . , ai,mi
}. It is shown that from σS

it is possible to construct an interleaving execution σI of the
form

s
τ∗

→ s1,0

a1,1···a1,m1
τ∗

→

s2,0

a2,1···a2,m2
τ∗

→ · · ·
ak,1···ak,mk

τ∗

→ sk+1,0

such that sk+1,0 is the state the interleaving should reach.
Similarly as in the proof of Theorem 1 the states of the inter-
leaving execution are represented in the form si,j . However,
since the proof constructs the interleaving backwards, the in-
dexing has been set to better adhere to the construction. In
this case, the index i is incremented and j reset when the in-
terleaving execution is in a state that is immediately followed
by the execution of the £rst action in the chosen linearization
of a particular step in the given step execution. Otherwise, the
index j is incremented.

It should be noted that compared to the proof of Theo-
rem 1 there may be several interleaving executions of the
form above (with the same actions). The construction pro-
ceeds inductively from the end of σS and proves that from
any si,0 (the suf£x of) σI can be constructed and the follow-
ing invariant holds:

for all i = k + 1, . . . , 1, si,0 < Si.

1. Base Case. Trivially, the interleaving execution from a
state to itself can be constructed. In addition, by de£nition
sk+1,0 < Sk+1.

2. Induction Hypothesis. Assume that (the suf£x of) σI can
be constructed from si,0 and that si,0 < Si.

3. Induction Step. Consider the case i− 1. Consider all the
states reachable by executing from si,0 action sequences
of the form τ∗ai,mi

. . . ai,1 backwards. Since the step ex-

ecution has a step Si−1

{ai,1,...,ai,mi
}

→ Si and by induction
hypothesis si,0 < Si, there is at least one state s′ (back-
wards) reachable from si,0 with such an action sequence
such that s′ < Si−1. It follows naturally that the con-
struction proceeds by letting si−1,0 = s′. The intermedi-
ate states si−1,1, . . . , si−1,ni−1

are assigned according to
the visited states during the backwards processing of the
sequence. This de£nes σI from si−1,0 to si,0 continuing
from there by the induction hypothesis. If there are sev-
eral possibilities for choosing s′, an arbitrary one can be
picked.

Thus, σI can be constructed from s1,0 and s1,0 < S1.
Since S1 is the τ -closure of the initial states, it is possible to
£nd a τ -path from the initial state s of the interleaving to s1,0
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and the construction is complete. It should be noted that the
several visible actions in each step in σS can be interleaved
in any order since they are independent. Changing the order
obviously changes the intermediate states in the interleaving
execution. However, vis(σI) ∈ lin(σS) as stated in the theo-
rem. ut

Corollary 1. A global state s of L = 〈L1, . . . , Ln〉 is reach-

able iff for some k there is a step execution S1
A1→ S2

A2→

· · ·
Ak→ Sk+1 such that s < Sk+1.

The set of step executions for a system contains in most
cases different executions intuitively corresponding to the same
concurrent behavior. The following addition to De£nition 6
limits the number without compromising reachable states.

De£nition 8. A process execution of system L is a step exe-
cution of L where every action a ful£lls the following process
condition:

1. a ∈ A1 or
2. i > 1, a ∈ Ai and L has a component Lj such that a ∈ Γj

and there is an action ak ∈ Ai−1 ∩ Γj .

A step execution that is not a process execution would
be characterized by the fact that in some global state every
component having action a in its alphabet would be in a state
where a could take place. It would not, though, be chosen for
immediate execution but the components would remain idle
in the same states for some steps and only then execute a. For
instance, the execution

〈{s1}, {s
′
1}, . . . , {sn}, {s

′
n}〉

{a1,...,an−1}
→

〈{t1, u1}, . . . , {t
′
n−1, u

′
n−1}{sn}, {s

′
n}〉

{an}
→

〈{t1, u1}, {t
′
1, u

′
1}, . . . , {tn, un}, {t

′
n, u

′
n}〉

of the system in Figure 1 is not a process execution since
nothing prevents an from occurring in the £rst step. The ex-
ecution in (1), on the other hand, is both a step and a process
execution.

Theorem 3. Let σS be a step execution reaching the deter-
minized global state S. Then there is a process execution σP

reaching S such that |σP| ≤ |σS|.

Proof. The construction of the corresponding process execu-
tion is as follows:

1. If the step execution is a process execution, then termi-
nate.

2. Take the smallest i such that Ai contains some action a

for which the process condition is not ful£lled.
3. Push action a one step earlier and modify the determinized

global state accordingly. If the remaining step Ai is empty,
then remove it from the step execution. Goto step 1.

By de£nition of the process condition, if action a violates
the process condition, then no component with a in its alpha-
bet executes a transition in Ai−1. However, this implies that

L1:
s0 ³d L2:

s4 ³d¶
¶
¶¶/

l1, a
S
S
SSw

l2, a

N

l3, a
?

l5, a

ds1 ds2 ds5

S
S
SSw

τ

¶
¶
¶¶/

τ

¼
l4, b

?

l6, b

ds3 ds6

Fig. 3. Running Example

every such component is in the same local state before and
after Ai−1. Thus, the execution obtained by moving a from
set Ai to set Ai−1 and possibly removing Ai is a valid step
execution.

The procedure above is bound to terminate. This due to
the fact that the violating action a is pushed one step ear-
lier. Thus, in the worst case it is pushed all the way back to
A1. However, in A1 every action ful£lls the process condi-
tion. Secondly, there is only a £nite number of actions to be
pushed.

Finally, in both executions all the components execute the
same transitions in the same order. Thus, they are bound to
reach the same state. ut

Corollary 2. A global state s of L = 〈L1, . . . , Ln〉 is reach-

able iff for some k there is a process execution S1
A1→ S2

A2→

· · ·
Ak→ Sk+1 such that s < Sk+1.

Intuitively, process executions are step executions which
are in a certain canonical normal form. In fact, this canoni-
cal normal form corresponds exactly to the so called Foata
normal form [7] from the theory of Mazurkiewicz traces, and
also to a partial order semantics for 1-safe Petri nets called
processes. For more on this connection, see [8] and further
references there.

Figure 3 gives two LTSs, both having the visible actions
Γ1 = Γ2 = {a, b}. They will be used as a running example
when the elements of the encoding are presented. The en-
coding assumes, without loss of generality, that each visible
transition is given a unique label li. In the £gure, that label is
given together with the action associated with the transition.

3 Encoding

This section presents the structure of the Boolean formula en-
coding the step and process executions of a system of LTSs.
For representational purposes the literals that appear are given
certain names collected in Table 1 for reference. An in-depth
description of them follows in subsequent sections.

The encoding assumes that the LTSs do not have loops
containing only τ transitions involving more than one state.
To guarantee that this is the case, each component can be pre-
processed in a way which ensures that the resulting LTS sim-
ulates all the executions of the original. The preprocessing
step computes the maximal strongly connected components
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Table 1. Translation Atoms

Atoms Description
ex(ac, t) Action ac is executed at time t.
in(s, t) Execution is in state s at time t.
sc(L, t) Component L scheduled at time t.
ex(l, t) Transition l is executed at time t.

en(ac, L, t) Action ac is enabled in component L at time t.

Ci of the LTS restricted to τ transitions and replaces each
such τ -component Ci with a single state s′i having as incom-
ing and outgoing transitions the union of those in the set of
states in Ci. Let repr() be a function from the set of local
states to the set of states representing τ -components such that
for each s ∈ Ci, repr(s) = s′i. Then, if the original system
has a global state s = 〈s1, . . . , sn〉, the modi£ed system sim-
ulates this with the global state s′ = 〈repr(s1), . . . , repr(sn)〉.

In addition, the presentation applies the following subfor-
mulas for reasons of compactness and readability. The for-
mulas

[0, 1]{a1, . . . , an}

[1, 1]{a1, . . . , an}

evaluate to true iff exactly zero or one (the former) or pre-
cisely one (the latter) of the literals in the set {a1, . . . , an}
are true. Note that they can be simulated using O(n) connec-
tives and new variables with traditional propositional logic.

The details of the encoding are presented in the rest of
the section. The formulas are given as propositional schemes
that have free variables. Those variables have to be instan-
tiated for particular elements of the system model, a proce-
dure described together with the formulas. However, due to
the fact that every scheme has to be instantiated for the same
time steps, from 1 to k, the unrolling depth, that description is
omitted for the free variable t. The presentation also follows
the convention of abbreviating certain conjunctions and dis-
junctions as universally and existentially quanti£ed formulas,
respectively.

3.1 Control Flow

For encoding the control ¤ow of the LTSs the idea is that
the in(s, t) literals serve to provide information regarding the
progress of the execution. For the (statically computed) τ -
closure of the initial states of an LTS the literal in(s, 1) is
asserted true. This is in accordance with the fact that in the
outset the execution in each component is in the τ -closure
of its initial states. In general, the execution may be in some
state at time t + 1 iff one of the following cases is true.

– The state was reached already at t and not left in step t.
– The state is reached due to it belonging to the τ -closure

of some state reached via actions in step t.
– The state is reached by executing some of its incoming

visible transitions in step t.

The resulting scheme is a disjunction encoding the three
cases above, the disjuncts below appearing in the same order
as in the list above.

in(s, t + 1) ↔ (in(s, t) ∧ ¬sc(L, t)) ∨

(∃s1in(s1, t + 1) ∧ sc(L, t)) ∨

∃s2(in(s2, t) ∧ ∃l ex(l, t)) (5)

where
• s varies over the states of the system,
• L refers to the component where s is in,
• s1 quanti£es over each state from which s is reachable

via a τ transition,
• s2 quanti£es over all the states from which there is a tran-

sition with a visible action to s, and
• l quanti£es over the visible transitions from s2 to s.

The de£nition makes use of the sc(L, t) and ex(l, t) liter-
als. The former captures the fact that a component L is sched-
uled iff a visible action in its alphabet is executed. Formally:

sc(L, t) ↔ ∃ac1ex(ac1, t) (6)

where
• L varies over the components of the system and
• ac1 quanti£es over the actions in L.

The reasoning behind the latter, the ex(l, t) literal, is as
follows. A transition is executed at time t iff the action it is
labeled with is executed and the control ¤ow is in its source
state. It should be noted that the de£nition is not circular but
the control ¤ow in position t together with the executed tran-
sitions de£ne the control ¤ow in position t + 1. Formally:

ex(l, t) ↔ ex(ac, t) ∧ in(sr, t) (7)

where
• l varies over the visible transitions of the system,
• ac refers to the action with which l is labeled, and
• sr refers to the source states of l.

Instantiating the schemes for the running examples yields
for instance the following formulas. Firstly, the formula en-
coding that local state s3 in component L1 is reached in global
state 2 is the following:

in(s3, 2) ↔ (in(s3, 1) ∧ ¬sc(L1, 1)) ∨

((in(s1, 2) ∨ in(s2, 2)) ∧ sc(L1, 1)) ∨

((in(s0, 1) ∧ ex(l3, 1)) ∨

(in(s2, 1) ∧ ex(l4, 1)))

The formula encoding the fact that component L1 is sched-
uled in the £rst step is as follows:

sc(L1, 1) ↔ ex(a, 1) ∨ ex(b, 1)

Finally, the execution of transition l3 translates to the follow-
ing instance:

ex(l3, 1) ↔ ex(a, 1) ∧ in(s0, 1)
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3.2 Executed Actions

So far, the subformulas presented have been de£nitions of the
elements used in the encoding. To achieve correspondence
with step and later process executions additional constraints
need to be imposed. A step execution has the property that
at most one single visible action is allowed to take place in
a single component in each step. The arrangement to handle
this is to use a cardinality constraint as follows:

[0, 1]{ex(ac1, t), . . . , ex(acn, t)} (8)

of which

• an instance is needed for all the components of the system
and

• ac1, . . . , acn refer to actions in a particular component.

The encoding may be further enhanced with a proposi-
tional scheme that disables idling i.e., steps where no visible
action is executed. The formula is the following:

∃ac ex(ac, t) (9)

where ac quanti£es over the visible actions of the system.
If the element above is not added, the resulting formula

encodes step executions up to k whereas with it the execu-
tions are of precisely length k. Thus, the formula limits the
search space. As a downside short deadlocks may be missed
if the veri£cation process is started with too large a bound.

3.3 Synchronization

The synchronization of LTSs mandates that a visible action
may be executed iff every LTS whose alphabet contains the
action participates. So far, this has not been re¤ected in the
subformulas containing the variables ex(ac, t). Therefore, ad-
ditional constraints are needed. The condition is implemented
by demanding that the executed action is enabled in each
component having that label in its alphabet. An action ac is
enabled in a component iff it is in some state with an outgoing
transition labeled ac. Formally:

en(ac, L, t) ↔ ∃s in(s, t) (10)

where
• L varies over the components of the system,
• ac varies over the visible actions of component L, and
• s quanti£es over the states in L having an outgoing tran-

sition labeled ac.

The variable denoting the execution of a single action is
then constrained as follows:

ex(ac, t) → ∀Len(ac, L, t) (11)

where
• ac varies over the visible actions of the system, and
• L quanti£es over the components having ac in their al-

phabet.

Taking instances from the running example, the fact that
action a is enabled in component L1 in the initial state is
encoded by the following instance:

en(a, L1, 1) ↔ in(s0, 1)

Furthermore, executing action b can only take place if it is
enabled in both the components:

ex(b, 1) → en(b, L1, 1) ∧ en(b, L2, 1)

Having thus presented all the propositional schemes, the
next subsection gathers them to a complete translation algo-
rithm.

3.4 Translation Algorithm for Step Executions

Assume L = 〈L1, . . . , Ln〉 with Li = (Si, Ii, Γi,∆i), 1 ≤
i ≤ n and a given bound k. Then the algorithm constructing
a Boolean formula encoding step executions of L of length k

is as follows:

1. To capture the requirement that each Li is in the τ -closure
of its initial states in S1 add for each Li the literal in(s, 1)
for all the states S forming the τ -closure of Ii and the
literal ¬in(s′, 1) for the rest of the states s′.

2. For all time steps 1 ≤ t ≤ k, instantiate the following
propositional schemes:
(a) For all states s ∈ S1∪· · ·∪Sn, instantiate proposition

scheme (5), the progress of control ¤ow.
(b) For all the components Lj , instantiate scheme (6) that

encodes scheduling.
(c) For all transitions with visible actions l ∈ ∆1 ∪ · · · ∪

∆n, instantiate scheme (7) encoding the execution of
single transitions.

(d) For each LTS Lj , limit the number of visible actions
by instantiating scheme (8).

(e) (Optionally) instantiate the scheme (9) ruling out idle
steps.

(f) For all visible actions ac, instantiate the scheme (10)
de£ning when an action is enabled.

(g) For all the visible actions require synchronization by
instantiating scheme (11) .

Let ST (L, k) be the (step) formula obtained by the trans-
lation algorithm. Given a satisfying truth valuation α for the

formula ST (L, k) call S1
A1→ · · ·

Ak→ Sk+1 an α-execution,
where Si = 〈S1

i , . . . S
n
i 〉, each S

j
i = {s | s ∈ Sj and α(in(s, i)) =

true} and Ai = {ac ∈ Ai | α(ex(ac, i)) = true}. The fol-
lowing theorem establishes that any α-execution is indeed a
valid step execution.

Theorem 4. If the formula ST (L, k) has a satisfying truth

valuation α, then the α-execution S1
A1→ · · ·

Ak→ Sk+1 is a
step execution.

Proof. The proof is by induction over the time steps. The goal
is to show that a valid step execution can be constructed from
α by mapping the elements as stated above.
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1. Base Case. The literal in(s, 1) is true for the τ -closure of
the initial states and false for the other states. This adheres
to condition (1) of the translation algorithm. Thus, S1 is
trivially correct.

2. Induction Hypothesis. Assume that the step execution is
valid up to the time step i.

3. Induction Step. By induction hypothesis, α is such that
for all t ≤ i, At = {ac | α(ex(ac, t)) = true} corre-
spond to executed actions and the result is a step execu-
tion. Consider Ai+1 = {ac | α(ex(ac, i+1)) = true}. By
condition (2d) in the translation algorithm, the actions for
which ex(ac, i + 1) is true have to be limited to at most
one in each component.
Secondly, if ex(ac, i + 1) is true, then by condition (2g)
the literals en(ac, L, i + 1) have to be true for all the
components L having ac in their alphabet. Due to con-
dition (2f), this can only be the case if for all such L,
in(s, i) is true for some state s having an outgoing tran-
sition labeled ac.
Since at least one in(s, i) has to be true, then the instances
of the scheme (2c) have to enforce at least one ex(l, i+1)
from all the components L to be true for some l corre-
sponding to a transition labeled ac. Indeed, the scheme
enforces that for all such transitions.
Thus, for the set of actions Ai+1 it holds that:

• At most one visible action can be executed from each
component.

• If action ac is executed, then every component L hav-
ing ac in its alphabet has to participate by executing a
non-empty set of transitions labeled ac.

• If action ac is executed, then each component having
it in its alphabet has to execute every enabled transi-
tion labeled ac.

Thus, the actions taken in Ai+1 are of the correct form.
It remains to show that the progress of the control ¤ow is
correct. Condition (2b) mandates that the literal sc(L, i+
1) is true for components with executed actions and false
for all the rest. Therefore, the proposition scheme (2a)
reduces to

in(s, i + 1) ↔ in(s, i) (12)

for components remaining idle and

in(s, i + 1) ↔ ∃s1in(s1, i + 1) ∨

∃s2(in(s2, i) ∧ ∃l ex(l, i + 1)) (13)

for components for which sc(L, i) is true. By (12), the
in(s, i + 1) literals have to be true for the same states
for which they are true in step i for the idle components.
The latter disjunct on the right-hand side of the equiva-
lence (13) requires the in(s, i + 1) literal to be true for
all the successor states of the executed transitions. The
£rst existentially quanti£ed disjunct mandates the same
for the τ -closure of the immediate successor. By the ar-
gument above (no τ -loops), the literal can be true for only
those states. Hence, the control ¤ow is correctly updated,
which completes the proof. ut

Theorem 5. If S1
A1→ · · ·

Ak→ Sk+1 is a step execution of
L, it is an α-execution for some satisfying valuation α of
ST (L, k).

Proof. The goal is to prove that given any step execution, a
truth assignment α satisfying ST (L, k) can be constructed
from it by starting from the reached states and executed ac-
tions i.e., taking the step execution to be the α-execution.

• The conditions for the initial states is satis£ed since S1 is
in any step execution the τ -closure of the system’s initial
states.

• In subsequent steps, to satisfy scheme (2f), the en(ac, L, i)
literal has to be true whenever action ac is executed in Ai

for all the components L such that ac is in their alphabet.
• Scheme (2g), on the other hand, de£nes the en(ac, L, t)

literal based on the reached states. This de£nition is not
violated by the step execution and the scheme above since
to be able to execute ac in Ai, each component has to be
in a state where a transition labeled ac is possible.

• The schemes (2d) and (2e) are satis£ed by de£nition of a
step execution.

• By scheme (2c), the step execution requires the ex(l, t)
literal be true for every transition leaving a reached state
when the action l it is labeled with is executed. For every
other transition the literal is false. Thus, ex(l, t) is true iff
only transition l is executed.

• The instances of scheme (2b) are equivalences and the
step execution mandates the sc(L, t) literal to be true iff
component L is scheduled, i.e., a visible action is exe-
cuted from its alphabet.

• By the schemes analyzed above, the step execution has
de£ned truth values for the literals ex(l, t) and sc(L, t)
used in scheme (2a). It remains to be shown that these
truth values are not in con¤ict with the control ¤ow scheme.
This is not the case since based on the step execution, the
sc(L, t) literal evaluates in such a way that the scheme
reduces to

in(s, t + 1) ↔ in(s, t)

for idle components and in any step execution idle com-
ponents remain in the same states. Furthermore, for non-
idle components the scheme reduces to

in(s, t + 1) ↔ ∃s1in(s1, t + 1) ∨

∃s2(in(s2, t) ∧ ∃l ex(l, t))

The second disjunct mandates in(s, t+1) literal to be true
for successor states for transitions l where the ex(l, t) lit-
eral is true. The £rst one extends this to their τ -closure.
Thus, the scheme and the step execution agree on the
reached state. ut

3.5 Process Executions

As can be seen from De£nitions 6 and 8 the difference be-
tween step and process executions is rather simple. Indeed,
the resulting formula needs only one additional propositional
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scheme. Namely, if an action is executed at t + 1, then some
participating component had to be scheduled in step t, i.e.

ex(ac, t + 1) → ∃Lsc(L, t) (14)

where
• ac varies over the visible actions of the system, and
• L quanti£es over the components having ac in their al-

phabet.

The encoding algorithm needs the following straightfor-
ward addition for all 1 ≤ t < k.

(h) For all the visible actions a ∈ Σ1∪· · · ∪Σn instantiate
the scheme (14).

The following theorem establish the soundness and com-
pleteness of the augmented encoding with respect to process
executions.

Theorem 6. If the formula PR(L, k) has a satisfying truth

valuation α, the α-execution S1
A1→ · · ·

Ak→ Sk+1 is a process
execution.

Proof. Every satisfying truth assignment α of PR(L, k) sat-
is£es also ST (L, k). Thus, by Theorem 4 every truth valu-
ation corresponds to a step execution. Therefore, it remains
to be proven that with the additional scheme the models are
limited to process executions. That is straightforward since
the scheme (14) is a verbatim translation of the additional
criterion given in De£nition 8.ut

Theorem 7. If S1
A1→ · · ·

Ak→ Sk+1 is a process execution
of L, it is an α-execution for some satisfying valuation α of
PR(L, k).

Proof. Similarly as in Theorem 6 above, process executions
adhere to condition (h) of the augmented translation algo-
rithm since the scheme is a verbatim translation of the process
criterion.ut

3.6 Reachability Properties

In this work, checking a reachability property equals answer-
ing the question whether an LTS system can reach a global
state in which some global state predicate holds. It follows
from Theorems 4 to 7 that the presented encodings for step
and process executions preserve reachable global states. Any
global state predicate can therefore be studied with the pre-
sented approach.

However, some care is needed when expressing a global
state predicate when the non-trivial τ -components are elim-
inated as described in the beginning of Section 3. Given a
preprocessed LTS system L, the reached determinized global
state inferred from a model of ST (L, k) and PR(L, k) is a
tuple of sets. Each set contains local states from a particu-
lar component of the preprocessed system. However, each lo-
cal state of the preprocessed system represents a set of local
states of the original system. For expressing a global state

predicate on the states of the original system, a new literal
fs(s, k + 1) is introduced for every local state s of the orig-
inal system. These literals capture reached £nal states. The
idea is to augment the formula ST (L, k) (or PR(L, k)) with
constraints on the new literal fs(s, k + 1) so that then the
global state predicates can be expressed in terms of the lo-
cal states s. These constraints guarantee that a global state
s = 〈s1, . . . , sn〉 of the original system is reached by a step
(process) execution of length k iff there is a model of the aug-
mented formula where fs(si, k + 1) is true for exactly those
si which form s. The added constraints are as follows:

fs(s, k + 1) → in(repr(s), k + 1) (15)

[1, 1]{fs(s1, k + 1), . . . , fs(sn, k + 1)} (16)

where
• s varies over the local states of the original system,
• repr(s) is the representative state of the τ -component the

state s belongs to, and
• s1, . . . , sn are the local states of a particular component

from the original system. Thus, an instance of the formula
is needed for all the components.

The former constraint requires that the τ -component that
s is an element of is reached. The latter, on the other hand, al-
lows exactly one state from each component. Any global state
predicate can now be evaluated in the global state encoded by
the new fs(s, k + 1) literals.

A deadlock state predicate which holds for exactly those
global states from which no execution can be extended is a
particularly interesting case among global state predicates.
A deadlock can be captured as a disjunction of conjunctions
where each conjunction is of the form (fs(s1, k + 1) ∧ · · · ∧
fs(sn, k + 1)) such that s1, . . . , sn are local states, one from
each component, and the global state that they form enables
no transition. However, the number of such global states is
potentially large and most of them are probably not even
reachable.

A more compact approach is to use additional literals
en(ac, Li, k + 1) and en(ac, k + 1) evaluated based on the
fs(s, k+1) literals. The former captures the fact that action ac

is enabled in component Li in state k + 1. The latter encodes
the condition that the action is globally enabled. Thereafter,
the deadlock state predicate is completed by requiring that in
the £nal state, no action is enabled. The formulas to encode
the deadlock state predicate are then:

∀s1¬fs(s1, k + 1) (17)

en(ac1, L1, k + 1) ↔ ∃s2 fs(s2, k + 1) (18)

en(ac2, k + 1) ↔ ∀L2 en(ac2, L2, k + 1) (19)

∀ac3¬en(ac3 , k + 1 ) (20)

where
• s1 quanti£es over the local states of the system having

outgoing τ -transitions,
• ac1 and ac2 vary over the visible actions of the system,
• L1 and L2 refer fo the components having ac, resp. ac2

in their alphabet,
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• s2 quanti£es over the states in L1 having an outgoing
transition labeled ac, and

• ac3 quanti£es over all the actions of the system.

The presented approach can be extended to reason about
reachability of sequences of global states. Even though step
and process executions may lose some of the intermediate
states, sequences can be analyzed provided that all state changes
of interest can be observed through the occurrences of visible
actions. The exact details of the following construction are
left for further work, here just the main ideas are sketched.
An additional component, called an observer automaton, can
be added to the system. It observes the visible actions taking
place by having all of them in its alphabet. Now any stuttering
invariant safety property (which can be expressed as a regular
language) can be reduced into the question of whether the ob-
server automaton can reach a particular state. For a syntactic
safety subset of LTL−X , the linear temporal logic LTL with-
out the next-time operator X , a £nite automaton construction
tool is available [14].

4 Test Results

4.1 Implementation

The approach has been implemented as a translator which
maps a given synchronizing system of LTSs into a CNF for-
mula in DIMACS format accepted by most propositional sat-
is£ability (SAT) solvers. The translation is based on the en-
coding presented in Section 3 but it is optimized in the fol-
lowing way. First, the resulting formula is represented as a
Boolean circuit (explained below). Second, the circuit is re-
duced by simpli£cation rules, substructure sharing and cone
of in¤uence reduction [12]. The reduced circuit is transformed
to CNF using a linear size translation introducing a new atom
for each gate in the circuit [12]. The circuit reduction and
mapping to CNF are done using a tool called BCZChaff [11],
which is integrated with the ZChaff SAT solver so that ZChaff
can be run directly on the generated CNF formula.

The Boolean circuit representation of an encoding for-
mula is straightforward: for each atom and connective in the
formula, a gate is introduced in the circuit. This is easy as the
tool used supports directly the extended set of Boolean func-
tions used in the translation including the cardinality con-
straints (see, e.g. (8)). For example, the subcircuit for an in-
stance of scheme (8) is shown in Figure 4 (right hand side).
The letter ’T’ marks a constraint (true) for the gate UV (L1, t).
So each instance of the propositional schemes in the encoding
is represented by this kind of a simple subcircuit constrained
to true.

However, this straightforward representation is optimized
when translating equivalences such as (6), for which no gate
for the atom on the left nor for the equivalence connective
are introduced. Rather, the atom on the left is identi£ed with
the gate for the main connective on the right hand side of the
equivalence. For example, the subcircuit for an instance of
the equivalence scheme (6) is shown in Figure 4 (left hand

m∨sc(L1, t)
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Fig. 4. Elements Illustrating Encoding from Running Example
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Fig. 5. Schematic Diagram of the Circuit

side). Notice that equivalence subcircuits are not constrained
to true.

The complete process of translating an LTS system to a
Boolean circuit results in a circuit whose schematic diagram
can be seen in Figure 5. The circuit is a faithful representation
of the encoding as a propositional formula because the satis-
fying truth valuations of the encoding formula and satisfy-
ing valuations of the circuit coincide. A satisfying valuation
of the circuit is a truth value assignment for the input gates
(gates with no incoming edges) of the circuit such that the
resulting value of each constrained gate matches its speci£ed
value (true).

4.2 Test Cases

To test the ef£ciency of the presented method it is compared
against the following state-of-the-art implementations:

– punroll [8], a BMC implementation translating 1-safe Petri
nets to Boolean circuits applying process semantics,

– NuSMV (version 2.1.2) BMC [5], a bounded model checker
for SMV speci£cations using interleaving semantics,

– NuSMV (version 2.1.2) BDD [4], a BDD-based symbolic
model checker for SMV speci£cations, and

– SPIN (version 4.0.7) [10], an explicit-state model checker
for PROMELA programs applying partial-order reduc-
tion methods.

A set of test cases has been adopted from [6] taking those
cases known to deadlock. The examples are provided as LTS
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(fsa), Promela and SMV speci£cations and therefore the com-
parison task is feasible. It should be noted that the Petri nets
are created from scratch using the fsa speci£cations. The re-
sults of the tests are given in Table 2 with the following columns:

– Problem instance,
– St. k, bound for step executions, i.e., the smallest number

of steps such that a deadlock is reached,
– St. s, running time for step executions as measured by
/usr/bin/time,

– Pr. k and Pr. s, similarly for process executions,
– punroll k and punroll s, similarly for the encoding in [8]

using 1-safe Petri Nets with process semantics,
– SMV k and SMV s, the bound and the time in seconds

for NuSMV BMC [5],
– SMV bdd, running time for NuSMV BDD [4], and
– SPIN, the results for SPIN [10].

The tests were carried out using an AMD Athlon machine
with a 1400 MHz CPU and 1 Gigabyte of memory running
the Linux operating system. In the £rst three BMC methods
(the presented encodings and the punroll tool), the running
time is the sum of the time needed to create the Boolean cir-
cuit and the time needed to obtain a satisfying truth assign-
ment for the bound given in the table using the SAT solver
zChaff version 2001.2.17 [16].

For NuSMV BMC, the running time is the execution time
of NuSMV using the solver above. If the number is of the
form > n, no deadlock could be found and n refers to the
greatest number of execution steps for which the unsatis£a-
bility could be established within a time limit of one hour.

For NuSMV BDD, the running time is the sum of the
time needed to solve the problem and to create a counterex-
ample. For SPIN, the running time is the execution time of
the veri£er compiled from the generated C-code. The time
needed to create the veri£er and to compile it are omitted.
The search is limited to invalid end states and in the attempt
to £nd short deadlocks, breadth £rst search is used (using the
switch -DBFS in the compilation process).

With the problem Dartes, no results could be obtained
within a reasonable time limit (1 hour) using either NuSMV
BMC or NuSMV BDD. Therefore, the entries are of the form
N/A. Similarly, SPIN ran out of memory with the examples
Dartes and DP(12).

Experiments indicate that with these examples it some-
times takes zChaff far longer to prove a formula unsatis£able
than to £nd a satisfying truth assignment with instances of
comparable sizes. The phenomenon is most apparent in the
example Key(4), where the time limit of one hour is exceeded
with an unsatis£able instance modeling process executions
of length 29. The test cases and the tool translating LTSs to
Boolean circuits are available for download at [13].

Even though the test cases contain relatively little non-
determinism, it can be seen that the non-standard execution
models compare favorably in terms of the bound and running
time to those of NuSMV BMC. With these examples, the re-
sults are comparable to those using punroll. However, one can

construct an in£nite family of LTS systems for which the pre-
sented encoding grows polynomially w.r.t. the size of the LTS
system whereas for the encoding using Petri nets the growth
is exponential. Compared to the BDD-based model checking
and SPIN, the results reiterate the fact that BMC is at its best
in £nding short deadlocks.

The test results suggest the following guidelines. The ver-
i£er should start the task by using an explicit-state model
checker like SPIN. If the state space and the memory require-
ments grow too large, the symbolic methods should be ap-
plied. If completeness is not required, BMC procedures can
be used to detect short counterexamples. The presented ap-
proach is at its best when the system model contains a lot of
non-determinism.

5 Conclusions and Related Work

The paper studies bounded model checking of reachability
properties of an asynchronous system represented as synchro-
nizing LTSs. Two nonstandard execution models, step and
process executions, are proposed to capture sets of interleav-
ing executions in a compact form.

The paper presents two translation schemes from LTSs to
propositional formulas. In the £rst case, the resulting formula
encodes precisely the step executions of the system model
and in the second the process executions. The encoding is
compact leading to a formula linear in the size of the system
description and the bound k, more precisely O((

∑
j(|Sj | +

|∆j | + |Γj |)) · k), where Sj , ∆j and Γj are the state space,
transition relation and visible actions of a component Lj ,
respectively. The encoding uses Boolean functions outside
traditional propositional logic namely cardinality constraints.
However, for the presented instances the bound holds were
the use of them disallowed. The used functions with i argu-
ments can namely be simulated using O(i) new ∨,∧ and ¬
operations and variables. The approach is backed by a set
of test cases showing that the run times compare favorably
to a state-of-the-art interleaving BMC implementation in the
NuSMV system.

The presented approach is considered only for models
where the LTSs are presented explicitly. Translations from
symbolical representations, like SMV models, is an interest-
ing research problem for future work.

The idea for the paper arose as a comparison to the work
done in [8]. The paper presents a BMC procedure to reach-
ability check 1-safe Petri nets with step and process seman-
tics. Apart from the different modeling formalism the main
difference to the current work is that Petri nets do not have a
component structure, which could be exploited in BMC en-
codings. In fact, the on-the-¤y determinization construction
presented in this work can not be ef£ciently employed in the
Petri net context. Thus, the bene£ts of determinization, in-
cluding the more ef£cient handling of τ transitions, is a new
technique to this work. The paper [8] considers some of the
same examples presented here. However, a direct comparison
using the Petri nets from [8] is omitted since the nets there do
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Table 2. Test Results (BCZChaff)

Problem St. k St. s Pr. k Pr.s punroll k punroll s SMV k SMV s SMV BDD s SPIN
Dartes 31 1.2 31 0.22 32 0.09 N/A N/A N/A N/A
DP(12) 1 0.008 1 0.02 1 0.004 > 8 830 0.12 N/A
Elev(3) 7 0.40 7 0.13 8 0.15 14 410 0.64 0.03
Elev(4) 9 1.8 9 0.40 10 2.2 17 120 2.7 0.04
Key(2) 35 370 35 230 36 230 > 30 2100 0.10 0.03
Key(3) 36 1100 36 > 1h 37 1900 > 21 2700 0.27 0.39
Key(4) 37 90 37 510 38 130 > 19 3200 0.73 5.79
Key(5) 38 > 1h 38 10 39 180 > 18 1900 3.2 75

Mmgt(3) 7 0.16 7 0.10 7 0.09 10 14 0.13 0.11
Mmgt(4) 8 1.5 8 0.21 8 0.42 12 73 0.25 1.0

Q(1) 9 0.10 9 0.09 9 0.06 > 11 1500 2.0 36
Hart(75) 150 5.6 150 3.3 150 5.5 151 990 1.9 0.03
Hart(100) 200 11 200 6.4 200 14 201 4800 5.5 0.04

Sentest(75) 83 2.1 83 2.4 83 3.1 88 220 1.5 0.06
Sentest(100) 108 3.6 108 4.1 108 6.0 113 980 4.6 0.07

Dac(15) 2 0.004 2 0.008 3 0.004 3 0.27 0.11 1.0
Speed(1) 4 0.014 4 0.008 4 0.008 7 0.13 0.07 0.20

not correspond to the fsa speci£cations. The cause of this in-
consistency could be traced to the fsa to 1-safe Petri net con-
version performed in [15]. Instead, the Petri nets used in the
presented comparison are created from scratch using the fsa
speci£cations.

So far, only the veri£cation of reachability properties has
been considered whereas model checking of more complex
temporal properties is left for future work. Some initial work
in that direction can be found in [9], where LTL BMC is pre-
sented for Petri nets using a logic programming approach.
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method for boolean circuit satis£ability testing. In Compu-
tational Logic - CL 2000; First Internatinal Conference, vol-
ume 1861 of LNAI, pages 553–567, London, UK, July 2000.
Springer, Berlin.

13. T. Jussila. A BMC tool translating LTSs to boolean circuits,
May 2003. http://www.tcs.hut.fi/˜tjussila/
otf.

14. T. Latvala. Ef£cient model checking of safety properties. In
Model Checking Software. 10th International SPIN Workshop,
volume 2648 of LNCS, pages 74–88. Springer, 2003.
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