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Validation Methods for Concurrent 
Systems 
There are many system validation approaches: 
•  Model based approaches: 

–  Model-based Testing: Automatically generating tests for an 
implementation from a model of a concurrent system 

–  Model Checking: Exhaustively exploring the behavior of a model 
of a concurrent system 

–  Theorem proving, Abstraction, … 

•  Source code analysis based approaches: 
–  Automated test generation tools 
–  Static analysis tools 
–  Software model checking, Theorem Proving for source code, … 



Model Based vs Source Code Based 
Approaches 
•  Model based approaches require building the verification 

model 
–  In hardware design the model is your design 
–  Usually not so for software: 

•  Often a significant time effort is needed for 
building the system model 

•  Making the cost-benefit argument is not easy for 
non-safety-critical software 

•  Source code analysis tools make model building cheap: 
The tools build the model from source code as they go 



The Automated Testing Problem 

•  How to automatically test the local state reachability in 
multithreaded programs that read input values 
–  E.g., find assertion violations, uncaught exceptions, etc. 

•  Our tools use a subset of Java as its input language 
•  The main challenge: path explosion and numerous 

interleavings of threads 
•  One popular testing approach: dynamic symbolic 

execution (DSE) + partial order reduction 
•  New approach: DSE + unfoldings 



Dynamic Symbolic Execution 

•  DSE aims to systematically explore different execution 
paths of the program under test  

Control flow graph 

x = input 
x = x + 5 
 
if (x > 10) { 
 ... 
} 
... 



Dynamic Symbolic Execution 

•  DSE typically starts with a random execution 
•  The program is executed concretely and symbolically 

Control flow graph 

x = input 
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Dynamic Symbolic Execution 

•  Symbolic execution generates constraints at branch 
points that define input values leading to true and false 
branches 

Control flow graph 

x = input 
x = x + 5 
 
if (x > 10) { 
 ... 
} 
... 

c1 c2 

c3 c4 

c1 = input1 + 5 > 10  

c2 = input1 + 5 ≤ 10  



Dynamic Symbolic Execution 

•  A conjunction of symbolic constraints along an execution 
path is called a path constraint 
–  Solved using SAT modulo theories (SMT)-solvers to obtain 

concrete test inputs for unexplored execution paths 
–  E.g., pc:    input1  +  5  >  10 ∧  input2  *  input1  =  50
–  Solution: input1  =  10  and  input2  =  5

c1 c2 

c3 c4 



What about Multithreaded Programs? 

•  We need to be able to reconstruct scheduling scenarios 
•  Take full control of the scheduler 
•  Execute threads one by one until a global operation 

(e.g., access of shared variable or lock) is reached 
•  Branch the execution tree for each enabled operation 

Scheduling decision 



What about Multithreaded Programs? 

•  We need to be able to reconstruct scheduling scenarios 
•  Take full control of the scheduler 
•  Execute threads one by one until a global operation 

(e.g., access of shared variable or lock) is reached 
•  Branch the execution tree for each enabled operation 

Problem: a large number of irrelevant interleavings 



One Solution: Partial-Order Reduction 

•  Ignore provably irrelevant parts of the symbolic 
execution tree 

 
 
•  Existing algorithms:  

–  dynamic partial-order reduction (DPOR) [FlaGod05] 
–  race detection and flipping [SenAgh06] 



Dynamic Partial-Order Reduction (DPOR)  

•  DPOR algorithm by Flanagan and Godefroid (2005) 
calculates what additional interleavings need to be 
explored based on the history of the current execution 

•  Once DPOR has fully explored the subtree from a state 
it will have explored a persistent set of operations from 
that state 
–  Will find all assertion violations and deadlocks 

•  As any persistent set approach, preserves one 
interleaving from each Mazurkiewicz trace 

 



Identifying Backtracking Points in DPOR  
  
•  When a race is identified during execution, DPOR adds 

a backtracking point is added to be explored later 
•  To do so, DPOR tracks the causal relationships of global 

operations in order to identify backtracking points 
•  In typical implementations the causal relationships are 

tracked by using vector clocks 
•  An optimized DPOR approach can be found from: 

•  Saarikivi, O., Kähkönen, K., and Heljanko, K.: Improving 
Dynamic Partial Order Reductions for Concolic Testing. In ACSD 
2012. 
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Another Solution? 

•  Can we create a symbolic representation of the 
executions that contain all the interleavings but 
in more compact form than with execution 
trees? 

•  Yes, with unfoldings 
•  When the executed tests cover the symbolic 

representation completely, the testing process 
can be stopped 

 



What Are Unfoldings? 

•  Unwinding of a control flow graph is an execution tree 
•  Unwinding of a Petri net (Java code) is an unfolding 
•  Can be exponentially more compact than exec. trees 

  Petri net Initial unfolding 
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What Are Unfoldings? 

•  Unwinding of a control flow graph is an execution tree 
•  Unwinding of a Petri net is an unfolding 
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  Petri net Unfolding 



Using Unfoldings with DSE 

•  When a test execution encounters a global operation, 
extend the unfolding with one of the following events: 

 

         read                      write                       lock                unlock 

•  Potential extensions for the added event are new test 
targets 



Shared Variables have Local Copies 

...
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From Java Source Code to Unfoldings 

•  The unfolding shows the control and data flows possible 
in all different ways to solve races in the Java code 

•  The underlying Petri net is never explicitly built, we 
compute possible extensions on the Java code level 

•  Our unfolding has no data in it – The unfolding is an 
over-approximation of the possible concurrent 
executions of the Java code 

•  Once a potential extension has been selected to extend 
the unfolding, the SMT solver is used to find data values 
that lead to that branch being executed, if possible 

•  Branches that are non-feasible are pruned when found 



Example 
Global variables: 
int x = 0; 

Thread 1: 
local int a = x; 
if (a > 0) 
  error(); 

Thread 2: 
local int b = x; 
if (b == 0) 
  x = input(); 

Initial unfolding 
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Example 
Global variables: 
int x = 0; 

Thread 1: 
local int a = x; 
if (a > 0) 
  error(); 

Thread 2: 
local int b = x; 
if (b == 0) 
  x = input(); 

R R R
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Computing Potential Extensions 

•  Finding potential extensions is the most computationally 
expensive part of unfolding (NP-complete [Heljanko’99]) 

•  It is possible to use existing potential extension 
algorithms with DSE 
–  Designed for arbitrary Petri nets 
–  Can be very expensive in practice 

•  Key observation: It is possible to limit the search space 
of potential extensions due to restricted form of 
unfoldings generated by the algorithm 
–  Same worst case behavior, but in practice very efficient 



NP-Hardness of Possible Extensions 

x1 x2 x3

tpx1 tnx1 tpx2 tnx2 tpx3 tnx3

m1

nx11 nx12px12

px11 px13 nx13

m2
m3

c3c2c1

t

s

ts11 ts13ts12 ts21 ts22 ts23 ts31 ts32 ts33

Consider the 3-SAT Formula below turned into a Petri net: 
 (x1 ∨ x2 ∨ v3) ∧ (!x1 ∨ !x2 ∨ !x3) ∧ (!x1 ∨ x2 ∨ x3) 



NP-Hardness of Possible Extensions 
•  The formula is satisfiable iff transition t is a possible 

extension of the following prefix of the unfolding: 
bx1 bx2 bx3

enx1 epx2 enx2 epx3 enx3

bnx13

bm2
bm3

es11 es13es12 es21 es22 es23 es31 es32 es33

epx1

bpx11 bpx13

bpx12 bnx11bnx12

bm1

bc11 bc12 bc13 bc21 bc22 bc23 bc31 bc32 bc33



Computing Potential Extensions 

•  In a Petri net representation of a program under test (not 
constructed explicitly in our algorithm) the places for 
shared variables are always marked 

•  This results in a tree like connection of the unfolded 
shared variable places and allows very efficient potential 
extension computations in practice 

Thread 1: 
local int a = x; (read) 
 
Thread 2: 
x = 5; (write) 

R W



Comparison with DPOR and Race 
Detection and Flipping 
•  The amount of reduction obtained by dynamic partial-

order approaches depend on the order events are 
added to the symbolic execution tree 
–  Unfolding approach always generates canonical 

representation regardless of the execution order 
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Comparison with DPOR and Race 
Detection and Flipping 
•  Unfolding approach is computationally more expensive 

per test run but requires less test runs 
–  The reduction to the number of test runs can be exponential 
–  Consider a system with 2n threads and n shared variables, 

which consist of a thread reading (ri) and writing (wi) variable i. 
–  It has an exponential number of Mazurkiewics traces but a linear 

size unfolding: 
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Additional Observations 

•  The unfolding approach is especially useful for programs 
whose control depends heavily on input values 
•  DPOR might have to explore large subtrees 

generated by DSE multiple times if it does not 
manage to ignore all irrelevant interleavings of 
threads 

•  One limitation of  ASE’12 algorithm is that it does not 
cleanly support dynamic thread creation 
•  Suggested solution to explore in ASE’12 paper: 

Contextual nets, i.e. Petri nets with read-arcs 
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New: Using Contextual Unfoldings 

•  Contextual nets (nets with read arcs) allow an even 
more compact representation of the control and data 
flow 

•  A more compact representation can potentially be 
covered with less test executions 

•  However, computing potential extensions becomes 
computationally more demanding in practice (not in 
theory) 

 



Recap: Example as Ordinary Petri net 
Global variables: 
int x = 0; 

Thread 1: 
local int a = x; 
if (a > 0) 
  error(); 

Thread 2: 
local int b = x; 
if (b == 0) 
  x = input(); 

R R R

W W



Example with Read Arcs 
Global variables: 
int x = 0; 

Thread 1: 
local int a = x; 
if (a > 0) 
  error(); 

Thread 2: 
local int b = x; 
if (b == 0) 
  x = input(); 

R R R

W



Another Example (Place Replication) 
Global variables: 
int x = 0; 

Thread 1: 
x = 5; 

Thread 2: 
local int a = x; 

W

Thread 3: 
local int b = x; 

R RR R RRWWW

Requires four test executions to cover, as all writes are in conflict! 
(most of the arcs and conditions are not shown to simplify the picture) 



Another Example (Read Arcs) 
Global variables: 
int x = 0; 

Thread 1: 
x = 5; 

Thread 2: 
local int a = x; 

W

Thread 3: 
local int b = x; 

R R R R

Contextual unfoldings can be subtantially more compact. 
Only requires two test to be covered! 



Experiments 

program paths time paths time 
Szymanski 65138 2m 3s 65138 0m 30s 
Filesystem 1 3 0m 0s 142 0m 4s 
Filesystem 2 3 0m 0s 2227 0m 46s 
Fib 1 19605 0m 17s 21102 0m 21s 
Fib 2 218243 4m 18s 232531 4m 2s 
Updater 1 33269 2m 22s 33463 2m 6s 
Updater 2 33497 2m 24s 34031 2m 13s 
Locking 2520 0m 8s 2520 0m 6s 
Synthetic 1 926 0m 3s 1661 0m 4s 
Synthetic 2 8205 0m 41s 22462 1m 20s 

Unfolding DPOR 



Experiments 

program paths time paths time 
Szymanski 65138 2m 3s 65138 2m 37s 
Fib 1 19605 0m 17s 4959 0m 6s 
Fib 2 218243 4m 18s 46918 0m 54s 
Updater 1 33269 2m 22s 33269 3m 24s 
Synthetic 1 926 0m 3s 773 0m 3s 
Synthetic 2 8205 0m 41s 3221 0m 18s 
Locking 2 22680 0m 55s 22680 1m 3s 

Unfolding Contextual unfolding 



Conclusions 

•  A new approach to test multithreaded programs  
•  The restricted form of the unfoldings allows efficient 

implementation of the algorithm, crucial for performance! 
•  Unfoldings are competitive with existing approaches and 

can be substantially faster in some cases 
•  Can be exponentially smaller than any persistent set 

algorithm – Only preserves local state reachability 
•  Ongoing work: 

•  Encoding the unfolding as SMT formulas in order to 
check global properties of the program under test 

•  Even more compact representations with read-arcs 
 
 


