
Using Unfoldings in Automated
Testing of Multithreaded Programs
Kari Kähkönen, Olli Saarikivi, Keijo Heljanko
(firstname.lastname@aalto.fi)
Department of Computer Science and Engineering,
Aalto University &
Helsinki Institute for Information Technology
Published in ASE’12

25th Nordic Workshop on Programming Theory, NWPT '13
Tallinn, Estonia, 20th November 2013

Validation Methods for Concurrent
Systems
There are many system validation approaches:
•  Model based approaches:

–  Model-based Testing: Automatically generating tests for an
implementation from a model of a concurrent system

–  Model Checking: Exhaustively exploring the behavior of a model
of a concurrent system

–  Theorem proving, Abstraction, …

•  Source code analysis based approaches:
–  Automated test generation tools
–  Static analysis tools
–  Software model checking, Theorem Proving for source code, …

Model Based vs Source Code Based
Approaches
•  Model based approaches require building the verification

model
–  In hardware design the model is your design
–  Usually not so for software:

•  Often a significant time effort is needed for
building the system model

•  Making the cost-benefit argument is not easy for
non-safety-critical software

•  Source code analysis tools make model building cheap:
The tools build the model from source code as they go

The Automated Testing Problem

•  How to automatically test the local state reachability in
multithreaded programs that read input values
–  E.g., find assertion violations, uncaught exceptions, etc.

•  Our tools use a subset of Java as its input language
•  The main challenge: path explosion and numerous

interleavings of threads
•  One popular testing approach: dynamic symbolic

execution (DSE) + partial order reduction
•  New approach: DSE + unfoldings

Dynamic Symbolic Execution

•  DSE aims to systematically explore different execution
paths of the program under test

Control flow graph

x = input
x = x + 5

if (x > 10) {
 ...
}
...

Dynamic Symbolic Execution

•  DSE typically starts with a random execution
•  The program is executed concretely and symbolically

Control flow graph

x = input
x = x + 5

if (x > 10) {
 ...
}
...

Dynamic Symbolic Execution

•  Symbolic execution generates constraints at branch
points that define input values leading to true and false
branches

Control flow graph

x = input
x = x + 5

if (x > 10) {
 ...
}
...

c1 c2

c3 c4

c1 = input1 + 5 > 10

c2 = input1 + 5 ≤ 10

Dynamic Symbolic Execution

•  A conjunction of symbolic constraints along an execution
path is called a path constraint
–  Solved using SAT modulo theories (SMT)-solvers to obtain

concrete test inputs for unexplored execution paths
–  E.g., pc: input1 + 5 > 10 ∧ input2 * input1 = 50
–  Solution: input1 = 10 and input2 = 5

c1 c2

c3 c4

What about Multithreaded Programs?

•  We need to be able to reconstruct scheduling scenarios
•  Take full control of the scheduler
•  Execute threads one by one until a global operation

(e.g., access of shared variable or lock) is reached
•  Branch the execution tree for each enabled operation

Scheduling decision

What about Multithreaded Programs?

•  We need to be able to reconstruct scheduling scenarios
•  Take full control of the scheduler
•  Execute threads one by one until a global operation

(e.g., access of shared variable or lock) is reached
•  Branch the execution tree for each enabled operation

Problem: a large number of irrelevant interleavings

One Solution: Partial-Order Reduction

•  Ignore provably irrelevant parts of the symbolic
execution tree

•  Existing algorithms:

–  dynamic partial-order reduction (DPOR) [FlaGod05]
–  race detection and flipping [SenAgh06]

Dynamic Partial-Order Reduction (DPOR)

•  DPOR algorithm by Flanagan and Godefroid (2005)
calculates what additional interleavings need to be
explored based on the history of the current execution

•  Once DPOR has fully explored the subtree from a state
it will have explored a persistent set of operations from
that state
–  Will find all assertion violations and deadlocks

•  As any persistent set approach, preserves one
interleaving from each Mazurkiewicz trace

Identifying Backtracking Points in DPOR

•  When a race is identified during execution, DPOR adds

a backtracking point is added to be explored later
•  To do so, DPOR tracks the causal relationships of global

operations in order to identify backtracking points
•  In typical implementations the causal relationships are

tracked by using vector clocks
•  An optimized DPOR approach can be found from:

•  Saarikivi, O., Kähkönen, K., and Heljanko, K.: Improving
Dynamic Partial Order Reductions for Concolic Testing. In ACSD
2012.

13

Another Solution?

•  Can we create a symbolic representation of the
executions that contain all the interleavings but
in more compact form than with execution
trees?

•  Yes, with unfoldings
•  When the executed tests cover the symbolic

representation completely, the testing process
can be stopped

What Are Unfoldings?

•  Unwinding of a control flow graph is an execution tree
•  Unwinding of a Petri net (Java code) is an unfolding
•  Can be exponentially more compact than exec. trees

 Petri net Initial unfolding

What Are Unfoldings?

•  Unwinding of a control flow graph is an execution tree
•  Unwinding of a Petri net is an unfolding
•  Can be exponentially more compact than exec. trees

 Petri net Unfolding

What Are Unfoldings?

•  Unwinding of a control flow graph is an execution tree
•  Unwinding of a Petri net is an unfolding
•  Can be exponentially more compact than exec. trees

 Petri net Unfolding

What Are Unfoldings?

•  Unwinding of a control flow graph is an execution tree
•  Unwinding of a Petri net is an unfolding
•  Can be exponentially more compact than exec. trees

 Petri net Unfolding

What Are Unfoldings?

•  Unwinding of a control flow graph is an execution tree
•  Unwinding of a Petri net is an unfolding
•  Can be exponentially more compact than exec. trees

 Petri net Unfolding

Using Unfoldings with DSE

•  When a test execution encounters a global operation,
extend the unfolding with one of the following events:

 read write lock unlock

•  Potential extensions for the added event are new test
targets

Shared Variables have Local Copies

...

...

read global variable write global variable

acquire lock lrelease lock l

symbolic branching

true false

X1,1

X
1,2

X1,1

X1,2

Xn,1

Xn,2

l
x

l
y

pc
k

pc
i

pc
i

pc
i

pc
i

pc
i

pc
j

pc
j

pc
j

pc
j

pc
j

21

From Java Source Code to Unfoldings

•  The unfolding shows the control and data flows possible
in all different ways to solve races in the Java code

•  The underlying Petri net is never explicitly built, we
compute possible extensions on the Java code level

•  Our unfolding has no data in it – The unfolding is an
over-approximation of the possible concurrent
executions of the Java code

•  Once a potential extension has been selected to extend
the unfolding, the SMT solver is used to find data values
that lead to that branch being executed, if possible

•  Branches that are non-feasible are pruned when found

Example
Global variables:
int x = 0;

Thread 1:
local int a = x;
if (a > 0)
 error();

Thread 2:
local int b = x;
if (b == 0)
 x = input();

Initial unfolding

Example
Global variables:
int x = 0;

Thread 1:
local int a = x;
if (a > 0)
 error();

Thread 2:
local int b = x;
if (b == 0)
 x = input();

R R

W
First test run

Example
Global variables:
int x = 0;

Thread 1:
local int a = x;
if (a > 0)
 error();

Thread 2:
local int b = x;
if (b == 0)
 x = input();

R R

W W
Find possible
extensions

Example
Global variables:
int x = 0;

Thread 1:
local int a = x;
if (a > 0)
 error();

Thread 2:
local int b = x;
if (b == 0)
 x = input();

R R R

W W

Computing Potential Extensions

•  Finding potential extensions is the most computationally
expensive part of unfolding (NP-complete [Heljanko’99])

•  It is possible to use existing potential extension
algorithms with DSE
–  Designed for arbitrary Petri nets
–  Can be very expensive in practice

•  Key observation: It is possible to limit the search space
of potential extensions due to restricted form of
unfoldings generated by the algorithm
–  Same worst case behavior, but in practice very efficient

NP-Hardness of Possible Extensions

x1 x2 x3

tpx1 tnx1 tpx2 tnx2 tpx3 tnx3

m1

nx11 nx12px12

px11 px13 nx13

m2
m3

c3c2c1

t

s

ts11 ts13ts12 ts21 ts22 ts23 ts31 ts32 ts33

Consider the 3-SAT Formula below turned into a Petri net:
 (x1 ∨ x2 ∨ v3) ∧ (!x1 ∨ !x2 ∨ !x3) ∧ (!x1 ∨ x2 ∨ x3)

NP-Hardness of Possible Extensions
•  The formula is satisfiable iff transition t is a possible

extension of the following prefix of the unfolding:
bx1 bx2 bx3

enx1 epx2 enx2 epx3 enx3

bnx13

bm2
bm3

es11 es13es12 es21 es22 es23 es31 es32 es33

epx1

bpx11 bpx13

bpx12 bnx11bnx12

bm1

bc11 bc12 bc13 bc21 bc22 bc23 bc31 bc32 bc33

Computing Potential Extensions

•  In a Petri net representation of a program under test (not
constructed explicitly in our algorithm) the places for
shared variables are always marked

•  This results in a tree like connection of the unfolded
shared variable places and allows very efficient potential
extension computations in practice

Thread 1:
local int a = x; (read)

Thread 2:
x = 5; (write)

R W

Comparison with DPOR and Race
Detection and Flipping
•  The amount of reduction obtained by dynamic partial-

order approaches depend on the order events are
added to the symbolic execution tree
–  Unfolding approach always generates canonical

representation regardless of the execution order
r1

r2

l2

l2
l1

l1

r1

r2

l2

l2

l1

l1

r2

l2

r1

l1

31

Comparison with DPOR and Race
Detection and Flipping
•  Unfolding approach is computationally more expensive

per test run but requires less test runs
–  The reduction to the number of test runs can be exponential
–  Consider a system with 2n threads and n shared variables,

which consist of a thread reading (ri) and writing (wi) variable i.
–  It has an exponential number of Mazurkiewics traces but a linear

size unfolding:

r1

w1

r2

w2

w2

r2

w1

r1

r2

w2

w2

r2

32

Additional Observations

•  The unfolding approach is especially useful for programs
whose control depends heavily on input values
•  DPOR might have to explore large subtrees

generated by DSE multiple times if it does not
manage to ignore all irrelevant interleavings of
threads

•  One limitation of ASE’12 algorithm is that it does not
cleanly support dynamic thread creation
•  Suggested solution to explore in ASE’12 paper:

Contextual nets, i.e. Petri nets with read-arcs

33

New: Using Contextual Unfoldings

•  Contextual nets (nets with read arcs) allow an even
more compact representation of the control and data
flow

•  A more compact representation can potentially be
covered with less test executions

•  However, computing potential extensions becomes
computationally more demanding in practice (not in
theory)

Recap: Example as Ordinary Petri net
Global variables:
int x = 0;

Thread 1:
local int a = x;
if (a > 0)
 error();

Thread 2:
local int b = x;
if (b == 0)
 x = input();

R R R

W W

Example with Read Arcs
Global variables:
int x = 0;

Thread 1:
local int a = x;
if (a > 0)
 error();

Thread 2:
local int b = x;
if (b == 0)
 x = input();

R R R

W

Another Example (Place Replication)
Global variables:
int x = 0;

Thread 1:
x = 5;

Thread 2:
local int a = x;

W

Thread 3:
local int b = x;

R RR R RRWWW

Requires four test executions to cover, as all writes are in conflict!
(most of the arcs and conditions are not shown to simplify the picture)

Another Example (Read Arcs)
Global variables:
int x = 0;

Thread 1:
x = 5;

Thread 2:
local int a = x;

W

Thread 3:
local int b = x;

R R R R

Contextual unfoldings can be subtantially more compact.
Only requires two test to be covered!

Experiments

program paths time paths time
Szymanski 65138 2m 3s 65138 0m 30s
Filesystem 1 3 0m 0s 142 0m 4s
Filesystem 2 3 0m 0s 2227 0m 46s
Fib 1 19605 0m 17s 21102 0m 21s
Fib 2 218243 4m 18s 232531 4m 2s
Updater 1 33269 2m 22s 33463 2m 6s
Updater 2 33497 2m 24s 34031 2m 13s
Locking 2520 0m 8s 2520 0m 6s
Synthetic 1 926 0m 3s 1661 0m 4s
Synthetic 2 8205 0m 41s 22462 1m 20s

Unfolding DPOR

Experiments

program paths time paths time
Szymanski 65138 2m 3s 65138 2m 37s
Fib 1 19605 0m 17s 4959 0m 6s
Fib 2 218243 4m 18s 46918 0m 54s
Updater 1 33269 2m 22s 33269 3m 24s
Synthetic 1 926 0m 3s 773 0m 3s
Synthetic 2 8205 0m 41s 3221 0m 18s
Locking 2 22680 0m 55s 22680 1m 3s

Unfolding Contextual unfolding

Conclusions

•  A new approach to test multithreaded programs
•  The restricted form of the unfoldings allows efficient

implementation of the algorithm, crucial for performance!
•  Unfoldings are competitive with existing approaches and

can be substantially faster in some cases
•  Can be exponentially smaller than any persistent set

algorithm – Only preserves local state reachability
•  Ongoing work:

•  Encoding the unfolding as SMT formulas in order to
check global properties of the program under test

•  Even more compact representations with read-arcs

