
Complexity Results for Checking Distributed Implementability

Keijo Heljanko
Laboratory for Theoretical Computer Science

Helsinki University of Technology
P.O. Box 5400, FI-02015 TKK, Finland

Keijo.Heljanko@tkk.fi
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Abstract

We consider the distributed implementability problem:
Given a labeled transition system TS together with a dis-
tribution ∆ of its actions over a set of processes, does there
exist a distributed system over ∆ such that its global tran-
sition system is ‘equivalent’ to TS? We work with the dis-
tributed system models of synchronous products of transi-
tion systems [1] and asynchronous automata [18]. In this
paper we provide complexity bounds for the above problem
with three interpretations of ‘equivalent’: as transition sys-
tem isomorphism, as language equivalence, and as bisimi-
larity. In particular, we solve problems left open in [4, 10].

1. Introduction

In this paper we study the computational complexity of
the distributed synthesis problem. The problem has differ-
ent versions, which share the following abstract formula-
tion: Given a labeled transition system together with a dis-
tribution (as a relation telling which actions can be executed
by which local agents), does there exist a distributed system
over the given distribution that is behaviourally equivalent
to the transition system?

The distributed synthesis problem has been studied for a
number of abstract models of distributed systems (elemen-
tary net systems, place/transition Petri nets, synchronous
products of transition systems [1], and Zielonka’s asynchro-
nous automata [18]) using various behavioural equivalences
between the implementation and the specification (isomor-
phism, language equivalence, and bisimilarity). For nearly
all these variants, axiomatic or language theoretic charac-
terizations of the transition systems that can be distributed
have been provided [5, 12, 9, 4, 17, 11]. Moreover, the com-
putational complexity of the variants concerning elementary
net systems and place/transition Petri nets is well under-
stood [2, 3]. However, the complexity of many variants con-

cerning synchronous products and asynchronous automata
were still open. In this paper we fill many of these gaps, and
in particular solve some problems left open in [4, 10].

Mukund [11] surveys (structural, behavioural) charac-
terizations for synchronous products and asynchronous au-
tomata. In this paper we provide (the missing) lower and
upper bounds for all the implementability tests presented
in [11]. Tables 1,2 present a summary of the known and
the new results. Note that, due to slightly different existing
characterizations, the two models consider one, respectively
multiple initial states. Also, we consider special cases in
which the input transition system is assumed to be determi-
nistic or acyclic (column 1).

In [9], Morin proved that the distributed implementabil-
ity modulo isomorphism (column 2) can be solved in poly-
nomial time when the input transition system is determi-
nistic (the result holds for both synchronous products and
asynchronous automata). In the nondeterministic case, re-
sults from [4, 10] show that the problem is in NP, but precise
lower bounds were explicitly left open1. We show that the
problem is NP-complete, even for acyclic specifications.

In [11], Mukund characterized the transition systems that
can be implemented as a synchronous product modulo lan-
guage equivalence. It is not difficult to see that this char-
acterization leads to a PSPACE algorithm. We show that
the problem is PSPACE-complete, even if the input tran-
sition system is deterministic, and coNP-complete if it is
acyclic (Table 1, column 3). From the above we easily ob-
tain the same results for the implementability problem mod-
ulo bisimulation when the implementation is required to be
deterministic2 (Table 1, column 4).

In [19], Zielonka characterized the transition systems
that can be implemented as asynchronous automata modulo
language equivalence. Combining this result with several
others from the literature, we show that the implementabil-

1In [4, Sect. 5], the authors conjecture that “the synthesis problem
for deterministic systems is much less expensive computationally than the
synthesis problem in the general case”.

2This is a natural constraint in many areas of hardware design.



Table 1. Implementability of synchronous products with one initial state

Specification (TS ) Isomorphism Language Equivalence Bisim. (determ. impl.)

Nondeterministic NP-complete
Deterministic P [9]

PSPACE-complete PSPACE-complete

Acyclic & Nondet. NP-complete
Acyclic & Determ. P [9]

coNP-complete coNP-complete

Table 2. Implementability of asynchronous automata with multiple initial states

Specification (TS ) Isomorphism Language Equivalence Bisim. (determ. impl.)

Nondeterministic NP-complete PSPACE-complete
Deterministic P [9] P

P

Acyclic & Nondet. NP-complete coNP-complete
Acyclic & Determ. P [9] P

P

ity problem has the same complexity as for synchronous
products in the nondeterministic case, but can be solved
in polynomial time in the deterministic case (Table 2, col-
umn 3). Maybe surprisingly, a simple trick allows us to
extend this result to the implementability problem modulo
bisimulation, again when the implementation is required to
be deterministic (Table 2, column 4).

The paper is organized as follows. We start defining the
distributed systems and their associated synthesis problem
(Section 2). Sections 3,4,5 present the complexity bounds
for the implementability problem, while last section is re-
served for conclusions. Some of the easy proofs and techni-
cal details can be found in the full version of this paper [7]
(available online).

2. The implementability problem for dis-
tributed systems

We begin with the general notion of a transition system.
A (labeled) transition system is a tuple TS = (Q,Σ,→, I),
where Q denotes the set of states, Σ the nonempty, finite
alphabet of actions,→⊆ Q×Σ×Q the transition relation,
and I ⊆ Q the nonempty set of initial states. We write
q

a−→ q′ to denote (q, a, q′) ∈→. A transition system is
called: deterministic if |I| = 1 and if q

a−→ q′ and q
a−→ q′′

implies q′ = q′′; reachable if ∀q ∈ Q∃qin ∈ I, w ∈ Σ∗ :
qin w−→ q; and finite if Q is finite. We assume that all the
transition systems in this paper are finite and reachable.

To model synchronization, we need as ingredient the no-
tion of distributed alphabet or (shorter) distribution: A dis-
tribution is a tuple (Σ,Proc,∆), where Σ is a nonempty,
finite set of actions, Proc is a nonempty, finite set of pro-
cess labels, and ∆ ⊆ Σ × Proc is a relation between ac-
tions and processes such that each action is in relation with

at least one process and vice versa. ∆ provides for each
action the (nonempty) set of processes that are able to ex-
ecute that action through the function dom : Σ → 2Proc

defined as dom(a) := {p ∈ Proc | (a, p) ∈ ∆}. Dually, ∆
provides for each process the (nonempty) set of actions that
may be executed by that process through the function Σloc :
Proc → 2Σ defined as Σloc(p) := {a ∈ Σ | (a, p) ∈ ∆}.
We will sometimes use ∆ to denote (Σ,Proc,∆).

The two models of distributed transition systems con-
sidered in this paper are based on synchronization on com-
mon actions for a family of (local) transition systems: We
study the (well known) synchronous products of transition
systems [1] and a generalization of them, asynchronous au-
tomata [18].

Let (Σ,Proc,∆) be a distribution. In the first synchro-
nization model, we associate a local transition system with
each process in Proc. A synchronization on a common ac-
tion a ∈ Σ occurs only when all the local states of the pro-
cesses in dom(a) enable a and execute it (i.e., update their
local states). In the second synchronization model, we as-
sociate a transition relation with each action a ∈ Σ. A syn-
chronization on a occurs only when the tuple of the local
states of the processes in dom(a) enable a in the ‘hand-
shake’ relation associated with a (the local states are then
updated according to this ‘hand-shake’). In both cases, the
execution of a only changes the local states of the processes
in dom(a).

Definition 2.1 A synchronous product of transition systems
SP over a distribution (Σ,Proc,∆) is a transition system
(Q,Σ,→, I) for which there exist a family of local state
sets (Qp)p∈Proc and a family of local transition relations
(→p)p∈Proc with→p⊆ Qp × Σloc(p)×Qp such that:

Q ⊆ ∏

p∈Proc
Qp and Q consists of all the states reach-

able from I by
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(qp)p∈Proc

a−→ (q′p)p∈Proc ⇔
{

qp
a−→p q′p for all p ∈ dom(a) and

qp = q′p for all p 6∈ dom(a).

Definition 2.2 An asynchronous automaton AA over a
distribution (Σ,Proc,∆) is a transition system (Q,Σ,→
, I) for which there exist a family of local state sets
(Qp)p∈Proc and a transition relation→a⊆

∏

p∈dom(a) Qp×
∏

p∈dom(a) Qp for each a ∈ Σ, such that:
Q ⊆ ∏

p∈Proc
Qp and Q consists of all the states reach-

able from I by
(qp)p∈Proc

a−→ (q′p)p∈Proc ⇔
{

(qp)p∈dom(a) →a (q′p)p∈dom(a) and
qp = q′p for all p 6∈ dom(a).

The asynchronous automata are more powerful than the
synchronous products of transition systems: Any synchro-
nous product can be described as an asynchronous automa-
ton, but there exist asynchronous automata that cannot be
simulated by synchronous products [18, 11]).

The problem whose computational complexity we will
study in this paper is:

Problem 2.3 (Distributed Implementability)
Given a distribution (Σ,Proc,∆) and a finite transition
system TS , does there exist a distributed transition system
over ∆ equivalent to TS?

Mukund [11] surveyed solutions for the above prob-
lem where the ‘distributed transition system’ is one of
{synchronous product of transition systems, asynchronous
automaton} and ‘equivalent’ is one of {isomorphic, lan-
guage equivalent, bisimilar3}. Mukund presents characteri-
zations results without a computational complexity analysis
viewpoint. Since we are interested to know which cases are
tractable in practice, in this paper we study the complex-
ity of the implementability problem (in many cases, solv-
ing this problem also provides an implementation). We fol-
low the presentation of [11] and in addition we study the
special cases when the input transition system is supposed
to be deterministic and/or acyclic, for which the complex-
ity results turn out to be usually more favorable. Also, we
go a bit more general, allowing the (nondeterministic) dis-
tributed systems (Def. 2.1, 2.2) to have a set of initial states
as opposed to only one initial state in [11].

3. Implementability modulo isomorphism

This section presents the complexity of checking
whether an input transition system is isomorphic to the
global state space of a distributed transition system.

3This case was only solved for deterministic distributed implementa-
tions [4].

We mention that, although in practice the initial spec-
ification is usually not isomorphic to a distributed transi-
tion system, the synthesis modulo isomorphism is still of
relevance because it can be used to guide heuristics of con-
structing a distributed system exhibiting the same behaviour
with the specification (see for instance the approach of [16]
for the synthesis of asynchronous automata).

3.1. Synchronous products of transition systems

The theory of regions [5] proposed an approach of solv-
ing the synthesis modulo isomorphism for Petri nets. Along
the same lines goes Theorem 3.1 below that characterizes
the transition systems for which there exists an isomorphic
synchronous product of transition systems. If such synchro-
nous product exists, each of its local states Qp (cf. Def. 2.1)
is constructed as the quotient of the input state space under
a local equivalence relation ≡p. These equivalences must
be chosen such that the following hold: (SP1) an a-labeled
transition does not affect the local states of the processes
not contained in dom(a); (SP2) the global state space is
no more than the cartesian product of the Qp’s; and (SP3)
for an action a ∈ Σ, if the local states of the processes in
dom(a) are able to perform an a-labeled transition, then a
global synchronization must also be possible.

To simplify the notation, we use the following conven-
tion: For two given sets I and J such that J ⊆ I and a given
indexed family of binary relations (≡i)i∈I , the expression
(q1 ≡J q2) abbreviates (∀j ∈ J : q1 ≡j q2).

Theorem 3.1 [4, 11] Let (Σ,Proc,∆) be a distribution
and TS = (Q,Σ,→, I)4 be a transition system. Then, TS

is isomorphic to a synchronous product of transition sys-
tems over ∆ if and only if for each p ∈ Proc there exists an
equivalence relation ≡p⊆ Q × Q such that the following
conditions hold:

SP1 : If q1
a−→ q2, then q1 ≡Proc\dom(a) q2.

SP2 : If q1 ≡Proc q2, then q1 = q2.

SP3 : Let a ∈ Σ and q ∈ Q. If for each p ∈ dom(a), there
exist qp, q

′
p ∈ Q such that qp

a−→ q′p and q ≡p qp,
then for each choice of such qp’s and q′p’s, there exists
q′ ∈ Q such that q

a−→ q′ and q′ ≡p q′p for each
p ∈ dom(a).

Theorem 3.2 The implementability problem for synchro-
nous products modulo isomorphism is NP-complete, even
for acyclic specifications.

4In [4, 11], Th. 3.1 is restricted to the case when |I| = 1. By inspect-
ing the proof of [4], it is easy to see that the theorem holds in fact for an
arbitrary I .

3



Proof. First, it is easy to see that the problem is in NP:
Given a distribution (Σ,Proc,∆) and a transition system
TS , a nondeterministic machine can ‘guess’ a family of
equivalences (≡p)p∈Proc and then verify in polynomial
time (in the size of the distribution and of the transition sys-
tem), whether the properties SP1–SP3 from Theorem 3.1
are satisfied or not.

For the NP-hardness part, we use a polynomial reduc-
tion from the classical SAT problem. Before going into de-
tails, we present an overview of the construction: Given a
formula in conjunctive normal form, we associate to each
variable and each clause, a group of three states and two
transitions (as in Fig. 1). The nondeterminism is used to im-
plement a choice gadget between the Boolean values True
and False for each variable. We connect then the triples
according to the occurrence of variables as literals in the
clauses (these edges will be the wires that will transmit the
information from variables to clauses). The distribution is
chosen such that a clause will evaluate to False if and only
if the condition SP3 will be violated for the triple associated
to the given clause. The application of Theorem 3.1 finishes
the job.

Let φ be a formula in conjunctive normal form with vari-
ables x1, . . . , xn appearing in the clauses c1, . . . , cm. For
technical reasons and w.l.o.g., we assume that no clause
contains some variable both as a positive and as a negative
literal.

We will construct a distribution (Σφ,Procφ,∆φ) and a
(nondeterministic) transition system TSφ = (Qφ,Σφ,→φ

, Iφ) such that: φ is satisfiable if and only if TSφ is isomor-
phic to a synchronous product of transition systems over
∆φ. To relieve a bit the notation, we will drop all φ indices.

First, the set of processes Proc consists of two processes
for each variable and one process for each clause:

Proc := {pxi
, pxi

| i ∈ [1..n]} ∪ {pcj
| j ∈ [1..m]}.

Then, the set Σ of actions and their domains (which deter-
mine ∆) consist of:

• one action for each variable:
{axi

| i ∈ [1..n]} with dom(axi
) := {pxi

, pxi
}.

• two actions for each positive literal from each clause:
{axicj

, a′
xicj
|j ∈ [1..m], xi ∈ cj}with dom(axicj

) =
dom(a′

xicj
) := Proc \ {pxi

}.

• two actions for each negative literal from each clause:
{axicj

, a′
xicj
|j ∈ [1..m], xi ∈ cj}with dom(axicj

) =

dom(a′
xicj

) := Proc \ {pxi
}.

• two actions for each clause:
{acj

, a′
cj
| j ∈ [1..m]} with dom(acj

) := {pcj
} ∪

{pxi
| xi ∈ cj} ∪ {pxi

| xi ∈ cj}
(the domain of acj

consists of the process associated

to cj and the processes associated to the literals of cj)
and dom(a′

cj
) := Proc \ {pcj

}.

Last, we construct the transition system TS . The state space
Q consists of:

• three states for each variable:
{q0

xi
, qxi

, q′xi
| i ∈ [1..n]} and

• three states for each clause:
{qcj

, q′cj
, q0

cj
| j ∈ [1..m]}.

The transition relation→⊆ Q×Σ×Q is defined as follows:

• for each i ∈ [1..n]: q0
xi

axi−→ qxi
and q0

xi

axi−→ q′xi

(nondeterminism is allowed).

• for each j ∈ [1..m]: qcj

axicj−→ qxi
for xi ∈ cj ,

qcj

axicj−→ qxi
for xi ∈ cj , and qcj

acj−→ q0
cj

.

• for each j ∈ [1..m]: q′cj

a′

xicj−→ q′xi
for xi ∈ cj ,

q′cj

a′

xicj−→ q′xi
for xi ∈ cj , and q′cj

a′

cj−→ qcj
.

The set of initial states I is chosen such that all states of
Q are reachable from I . For instance, I := {q0

xi
| i ∈

[1..n]} ∪ {q′cj
| j ∈ [1..m]}. 5

An example is provided in Fig. 1 (the initial states are
not marked).

The ‘choice gadget’ is provided by the three states for
each variable xi and their associated transitions. The
Boolean ‘value’ of each choice (this will correspond to a
local equivalence relation: either qxi

≡pxi
q′xi

or qxi
≡pxi

q′xi
) is then propagated further to the clauses using the tran-

sitions labeled axicj
and axicj

, respectively. More pre-
cisely, to each clause we forward only the information that
a variable was set to False in such a way that the clause cj

is not satisfied iff qcj
and q′cj

are equivalent on all processes
of the domain of acj

. This will imply that a clause cj has
all the literals evaluated to False if and only if the condi-
tion SP3 is violated for a := acj

, q := q′cj
, and qp := qcj

,
q′p := q0

cj
.

The above construction is polynomial in the size of the
initial formula φ and we claim that φ is satisfiable if and
only if TS is isomorphic to a synchronous product of tran-
sition systems over ∆ (given by dom).

First Implication. We prove the easier part: φ is not satis-
fiable implies TS is not isomorphic to a synchronous prod-
uct of transition systems over ∆. If φ is not satisfiable, then
for any assignment of the variables x1, . . . , xn there exists a

5It is easy to modify the construction such that there is only one initial
state and the proof still works.
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q0
x1

qx1 q′x1

ax1
ax1

Variable x2

Variable x2

q0
x2

qx2 q′x2

ax2
ax2

q0
x3

qx3 q′x3

ax3
ax3

qc1 q′c1

q0
c1

ax1c1
ax2c1

a′
x1c1

a′
x2c1

ac1

a′
c1

Clause c2

Clause c2

qc2 q′c2

q0
c2

ax2c2
ax3c2

a′
x2c2

a′
x3c2

ac2

a′
c2

Figure 1. The transition system TS associated to φ = (x1 ∨ x2) ∧ (x2 ∨ x3)

clause that is evaluated to False. We must show that in this
case, there are no (≡p)p∈Proc satisfying all SP1–SP3.

By contradiction, assume that there exist (≡p)p∈Proc sat-
isfying all SP1–SP3. For each i ∈ [1..n], we use first the
condition SP3 which we have assumed to hold. Let a := axi

and q := q0
xi

. We choose qp
a−→ q′p from SP3 for each

p ∈ dom(axi
) = {pxi

, pxi
} as follows: q0

xi

axi−→ qxi
for

p = pxi
and q0

xi

axi−→ q′xi
for p = pxi

. Since q ≡pxi
q0
xi

and
q ≡pxi

q0
xi

(recall that q = q0
xi

), the hypothesis of SP3 is

satisfied, so there must exist a state q′ such that q0
xi

axi−→ q′,
and also q′ ≡pxi

qxi
and q′ ≡pxi

q′xi
.

There are only two possible cases:

1. q′ = qxi
. In this case, we have qxi

≡pxi
qxi

and
qxi
≡pxi

q′xi
.

2. q′ = q′xi
. In this case, we have q′xi

≡pxi
qxi

and
q′xi
≡pxi

q′xi
.

So, we have that either qxi
≡pxi

q′xi
(case 1) or qxi

≡pxi

q′xi
(case 2), but not both at the same time (otherwise, on

one hand we have that qxi
≡dom(axi

) q′xi
and on the other

hand, by SP1 applied to the transitions qxi

axi←− q0
xi

axi−→ q′xi
,

we have qxi
≡Proc\dom(axi

) q′xi
, so qxi

≡Proc q′xi
which

contradicts SP2).
Let us choose an assignment of the variables given by

the above equivalences in the following way: For each i ∈
[1..n],

xi is evaluated to False if and only if qxi
≡pxi

q′xi
. (*)

Since φ is not satisfiable, there exists a clause, say ck,
that has all its literals evaluated to False. Let xi be a
positive literal in ck (if any). Since the literal xi is eval-
uated to False, we have that the variable xi is False, so
qxi
≡pxi

q′xi
. In addition, we have qck

axick−→ qxi
and

q′ck

a′

xick−→ q′xi
(see the construction of TS ) and, using SP1,

we deduce that qck
≡pxi

qxi
and q′ck

≡pxi
q′xi

. By the
transitivity of ≡pxi

, we obtain that qck
≡pxi

q′ck
. A similar

argument for the negative literals xi in ck (if any) proves
that qck

≡pxi
q′ck

(qxi
≡pxi

q′xi
is used). Moreover, using

SP1 for q′ck

a′

ck−→ qck
, we have that qck

≡pck
q′ck

.
Summing up, we proved that q′ck

≡p qck
, for each

p ∈ dom(ack
) (recall the definition of dom(ack

)). But this

contradicts SP3, because qck

ack−→ q0
ck

and there is no state

q′ such that q′ck

ack−→ q′.

Second Implication. The proof of this part is a bit tech-
nical and can be found in the full paper [7]. (Idea: For an
assignment validating the satisfiable formula φ, we directly
construct using (*) a set of equivalences (≡p)p∈Proc that
satisfy all the SP1–SP3 conditions.) �

Going into the proof details of Theorem 3.1 given in
[4], we can show that if there exists a set of equivalences
(≡p)p∈Proc satisfying only conditions SP1 and SP3 (but
not necessarily SP2), then we can synthesize a synchronous
product of transition systems accepting the same language
as the initial transition system.6 This trick widens the class
of ‘implementable’ transition systems, while preserving the
behavior. Yet, the problem is as hard as the implementabil-
ity modulo isomorphism (from which we do the reduction
– see the proof in [7]):

Corollary 3.3 Let (Σ,Proc,∆) be a distribution and TS

a transition system. The problem of finding a set of equiv-
alences (≡p)p∈Proc satisfying only the conditions SP1 and
SP3 of Theorem 3.1, is NP-complete.

6In fact, the synthesized synchronous product is even bisimilar (in the
sense of Milner) to the initial transition system.
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Proposition 3.4 [9] The implementability problem for syn-
chronous products modulo isomorphism becomes decidable
in polynomial time, if the input transition system is determi-
nistic.

3.2. Asynchronous automata

Complexity results similar to those for synchronous
products of transition systems apply to asynchronous au-
tomata. The proofs have a similar structure and can be
found in the full paper [7].

4. Implementability modulo language equiva-
lence

This section presents the complexity of checking
whether an input transition system admits the same se-
quences of actions as a distributed transition system.

A run of a transition system TS is a sequence of labels
a1 . . . an ∈ Σ∗ such that: ∃qin ∈ I, q ∈ Q : qin a1−→
. . .

an−→ q (also written as qin a1...an−→ q). The language of
TS is the set of all its runs,

L(TS ) := {w ∈ Σ∗ | ∃qin ∈ I, q ∈ Q, qin w−→ q}.

Note that the language of a transition system is prefix-
closed, i.e., ∀u,w ∈ Σ∗ : uw ∈ L⇒ u ∈ L. In fact:

Lemma 4.1 A language L ⊆ Σ∗ is accepted by a finite
transition system if and only if L is a prefix-closed regular
language.

The language of a distributed transition system is defined
as the language of its underlying global transition system.

4.1. Synchronous products of transition systems

The synthesis modulo language equivalence for synchro-
nous products is based on projections onto the local alpha-
bets of the distribution. The solution provided in [11] works
only for the class of synchronous products with just one ini-
tial state (i.e., |I| = 1 in Def. 2.1). In this section we discuss
only the complexity of this problem and we will touch upon
the general case at the end of the next section.

Problem 4.2 Given a distribution (Σ,Proc,∆) and a finite
transition system TS , does there exist a synchronous prod-
uct of transition systems over ∆ with only one initial state
that is language equivalent to TS?

We present, following [11], the algorithm of deciding
Problem 4.2: Let (Σ,Proc,∆) be a distribution and TS a
transition system.

1. W.l.o.g. we suppose that TS has only one initial state.

2. Let TS = (Q,Σ,→, {qin}). For each process
p ∈ Proc, we construct the projection TS p :=
(Q,Σloc(p),→p, {qin}) obtained from a copy of TS

in which the labels from Σ \Σloc(p) are replaced by ε
and→p is the ε-closure of→ (a polynomial algorithm
for ε-closure can be found in [8, Chap. 2.4]).

3. Problem 4.2 has a positive answer iff TS is language
equivalent to the synchronous product over ∆ of the
transition systems (TS p)p∈Proc with one global initial
state (qin , . . . , qin).

We introduce now the reachability problem used in a
subsequent reduction:

Problem 4.3 (Reachability in synchronous products)
Given (Σ,Proc,∆) a distribution, a set of local transition
systems (TS p)p∈Proc with TSp = (Qp,Σloc(p),→p

, {qin
p }), and a global state q ∈ ∏

p∈Proc
Qp, is the state q

reachable from the global initial state (qin
p )p∈Proc via the

global synchronization of the→p’s as in Def. 2.1?

Lemma 4.4 The non-reachability problem (i.e., the com-
plement of Problem 4.3) for synchronous products can be in
polynomial time reduced to Problem 4.2.

Proof. Given a distribution (Σ,Proc,∆), we suppose
Proc := {1, . . . , n}. Also, we are given a local tran-
sition system TS p = (Qp,Σloc(p),→p, {qin

p }) for each
p ∈ [1..n] and a global state q ∈ ∏

p∈Proc
Qp.

We construct a distribution (Σ′,Proc
′,∆′) and a transi-

tion system R such that: Problem 4.2 has a solution for ∆′

and R if and only if the global state q := (q1, . . . , qn) is not
reachable from the global initial state (qin

1 , . . . , qin
n ).

The new distribution (Σ′,Proc
′,∆′) is chosen as fol-

lows:

• Σ′ := Σ ∪ {ap | p ∈ [1..n]} ∪ {√}.
(Note that Σ =

⋃

p∈[1..n] Σloc(p).)

• Proc
′ := Proc ∪ {p0}, and

• ∆′ ⊆ Σ′ × Proc
′ is given by the local alphabets

Σ ′
loc

(p) as follows:

– Σ ′
loc

(p) := Σloc(p) ∪ {ap′ | p′ ∈ [1..n] ∧ p′ 6=
p} ∪ {√} for every p ∈ [1..n] and

– Σ ′
loc

(p0) := Σ′ \ {√}.

This gives the following domains dom
′ for the actions

of Σ′:

– dom
′(a) = dom(a) ∪ {p0}, for all a ∈ Σ

(where dom(a) is given by ∆),

– dom
′(ap) = Proc

′ \ {p}, for all p ∈ [1..n], and

– dom
′(
√

) = Proc
′ \ {p0} = Proc.

6
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Figure 2. A schematic representation of the
reduction in Lemma 4.4

The transition system R := (Q′,Σ′,→, {q0}) is sketched
in Fig. 2 and defined as:

• Q′ := {q0, q
′
0} ∪

⋃

p∈[1..n] Qp ∪ {q′p | p ∈ [1..n]}
(we assume Qp ∩Qp′ = ∅ for all p 6= p′),

• → := {q0
a−→ q′0 | a ∈ Σ} ∪ {q′0

a−→ q′0 | a ∈ Σ} ∪
⋃

p∈[1..n]

(

{q0
ap−→ qin

p } ∪ →p ∪ {qp

√
−→ q′p}

)

.

Remark 4.5 According to Step 2 in the decision algorithm
for Problem 4.2, we construct the projections Rp of R onto
the local alphabets Σ ′

loc
(p) as follows: For p ∈ [1..n], Rp

is obtained from R replacing the labels from Σ′ \ Σ ′
loc

(p)
by ε and applying an ε-closure. Since ap 6∈ Σ ′

loc
(p) and

Σloc(p) ∪ {√} ⊆ Σ ′
loc

(p), we have that all the states
reachable by a run v from qin

p in TSp can also be reached
by the same run v from q0 in Rp. For p := p0, since
Σ ′

loc
(p0) = Σ′ \ {√}, the projection Rp0

is just R with-
out the

√
-labeled transitions.

First Implication. We assume that R is implementable
over ∆′ and we prove that the global state q := (q1, . . . , qn)
is not reachable from qin := (qin

1 , . . . , qin
n ) in the synchro-

nous product of the TS p’s over ∆.
By contradiction, suppose that there exists a run w ∈ Σ∗

such that q is reachable from qin after executing the se-
quence w of actions. We show that R is not language equiv-
alent to the synchronous product over ∆′ of its projections
Rp as described in the decision algorithm for Problem 4.2:

On one hand, the run w
√ 6∈ L(R) because all the runs

of R containing
√

start with an ap action and ap 6∈ Σ, for
any p ∈ [1..n].

On the other hand, we can show that w
√

is a run of the
synchronization of the Rp’s. Informally, we will simulate
the synchronizations of TS p’s on w ∈ Σ∗ by synchroniza-
tions of Rp’s and at the end we will also have a synchro-

nization of the local transitions qp

√
−→ q′p:

In the synchronous product of the TS p’s, we can execute
w from qin and we reach q. According to Def. 2.1, the

synchronization on each a ∈ Σ involves only the processes
of dom(a). When synchronizing the projections Rp on a ∈
Σ, we must observe dom

′(a) = dom(a) ∪ {p0}. For p :=

p0, we can always execute a ∈ Σ from q0
a−→ q′0

a−→
q′0 which is part of Rp0

. For p ∈ dom(a), we can move
in Rp (starting in q0) similar to the synchronization of the
TSp (starting in qin

0 ) according to Remark 4.5. In this way,
we are able to execute w in the synchronous product of the
Rp starting from the global state (q0, . . . , q0) and to reach
the state qp in Rp for each p ∈ [1..n]. Since dom

′(
√

) =

Proc = [1..n] and we have qp

√
−→ q′p in each p ∈ [1..n],

we can finally have a
√

-synchronization. Therefore, the run
w
√

belongs to the synchronization of the Rp’s over ∆′.

Second Implication. We assume that q is not reachable
from qin in the synchronization of the TS p’s, and we prove
that R is language equivalent to the synchronization of its
projections over ∆′. Since it is easy to show that in gen-
eral the language of a transition system is included in the
language of the synchronization of its projections, we only
have to prove the reverse inclusion.

Let v ∈ Σ′ be a run of the synchronization of the Rp’s.
We will show that v ∈ L(R). It is easy to see that v can
only have two forms:

v ∈ (Σ′ \ {√})∗ : From Σ ′
loc

(p0) = Σ′ \ {√}, we neces-
sarily have that v ∈ L(Rp0

). Then, with the help of
Remark 4.5, L(Rp0

) ⊆ L(R), so v ∈ L(R).

v = w
√

with w ∈ (Σ′ \ {√})∗ : Again, from Σ ′
loc

(p0) =
Σ′\{√}, we necessarily have that w ∈ L(Rp0

). Look-
ing at Rp0

, w can only have two forms:

w ∈ Σ∗ : We show that this is not possible, given the
fact that w

√
is a run of the synchronization of

the Rp’s. The action
√

will be executed only if
all Rp’s with p ∈ dom

′(
√

) = [1..n] will exe-
cute a

√
-labeled transition and this implies that

no Rp with p ∈ [1..n] will ever synchronize on a
q0

a−→ q′0 transition for a ∈ Σ, because no run
from q′0 can contain

√
. That means that the syn-

chronization of the Rp’s on w ∈ Σ∗ simulates a
synchronization of the TS p’s on w. From the hy-
pothesis, q = (q1, . . . , qn) is not reachable, so no√

-synchronization will be possible.

w = aiu with i ∈ [1..n] and u ∈ L(TS i) : Since the
first action of w (and v) is ai and dom

′(ai) =
Proc

′ \{i}, all Rp’s except Ri must execute their
local q0

ai−→ qin
p transition (this transition be-

longs to Rp for p 6= i, because in this case ai ∈
Σ ′

loc
(p)). Then, the Rp’s must synchronize on

u such that at the end also a
√

-synchronization
is possible. Since u ∈ L(TS i), we have that
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u ∈ (Σ ′
loc

(i))∗ and also u
√ ∈ (Σ ′

loc
(i))∗. That

means that Ri will take part in all synchroniza-
tions on u

√
starting from q0 and the only pos-

sibility for Ri to do this is by q0
u−→ qi

√
−→ q′i.

This necessarily implies a run qin
i

u−→i qi in TS i

(because Σloc(i) ⊆ Σ ′
loc

(i)), which further im-

plies a run q0
ai−→ qin

i

u−→ qi

√
−→ q′i in R, so

v ∈ L(R). �

Based on Lemma 4.4, the next results make also use of com-
plexity results for checking non-reachability and language
equivalence of synchronous products from [14]:

Theorem 4.6 The implementability problem for synchro-
nous products with |I| = 1 modulo language equivalence
is PSPACE-complete.

Proof. In Lemma 4.4 we have shown how the non-
reachability problem for synchronous products can be in
polynomial time reduced to the problem of deciding the im-
plementability of a single transition system as a language
equivalent synchronous product of transition systems. Thus
by the PSPACE-hardness of the non-reachability problem
for synchronous products proved in [14, Th. 3.10] we are
able to deduce the PSPACE-hardness of our problem.

According to Step 3 of the decision algorithm of our
problem, it is enough to check whether TS is language
equivalent to the synchronization of its projections TS p.
But this test can be done in PSPACE as proved by [14, Th.
3.12], so our problem is in PSPACE. �

Proposition 4.7 The implementability problem for syn-
chronous products with |I| = 1 modulo language equiva-
lence remains PSPACE-complete, when the input transition
system TS is deterministic. For acyclic specifications the
problem is coNP-complete, and it remains so even for de-
terministic ones.

Proof. The PSPACE-hardness proof of [14, Th. 3.10]
works in fact for deterministic TS p’s. The reduction of
Lemma 4.4 constructs a deterministic input transition sys-
tem R if the components TS p’s are all deterministic (see
Fig. 2).

When TS is supposed to be acyclic, the coNP-hardness
follows from the coNP-hardness of the non-reachability
problem for synchronous products of acyclic and determi-
nistic transition systems [14, Th. 3.16] and from Lemma
4.4 in which we modify the construction of R by replacing
the loops {q′0

a−→ q′0 | a ∈ Σ} by a set of new transi-
tions

⋃

j∈[0..M ]{sj
a−→ sj+1 | a ∈ Σ}, where s0 = q′0

and M = max{|w| | w ∈ L(TS p), p ∈ [1..n]} (this max-
imum exists if all the TS p’s are acyclic). In this way R
is acyclic if all the TS p’s are acyclic and the reduction is
still correct. The coNP-completeness follows from [14, Th.

3.17], which easily proves that checking language equiva-
lence of synchronous products of acyclic transition systems
is in coNP. �

4.2. Asynchronous automata

The ‘engine’ of the synthesis modulo language equiv-
alence for asynchronous automata is a classical result by
Zielonka [18] which constructs a (deterministic) asynchro-
nous automaton accepting a regular trace language.

We go now a bit more into details. Each distribution
(Σ,Proc,∆) generates an independence relation between
the actions of Σ: a‖b iff dom(a) ∩ dom(b) = ∅. Then, we
say T ⊆ Σ∗ is a trace language if T is closed under the
independence relation: ∀w,w′ ∈ Σ∗, a, b ∈ Σ : wabw′ ∈
T ∧ a‖b⇒ wbaw′ ∈ T . According to [18], for any regular
trace language T there exists an asynchronous automaton
equipped with a set of global accepting states recognizing
T . Zielonka devoted a subsequent paper [19] to obtain the
same result for the restricted class of safe asynchronous au-
tomata which have the property that any run from an initial
state can be extended to an accepted run.7 Global accept-
ing states are not really suitable for a distributed setting and
for this reason we defined in this paper the language of an
asynchronous automaton as the set of all possible runs from
an initial state. Using [19] we easily get the following char-
acterization:

Proposition 4.8 For a language T ⊆ Σ∗ and a distribution
∆, T is the language of an asynchronous automaton over ∆
if and only if T is a prefix-closed regular trace language.

For the results in this section we only give the proof idea
and refer the curious reader to the full paper [7] for details.

Theorem 4.9 The implementability problem for asynchro-
nous automata modulo language equivalence is PSPACE-
complete.

Proof. Our implementability problem is in PSPACE, due to
Proposition 4.8 and [13, Th. 8 with Cor. 10] which proved
that checking whether the language of a finite automaton
is a trace language can be decided in PSPACE. (Checking
trace-closure is enough, for the input of the implementabil-
ity problem is a transition system, whose language is always
prefix-closed and regular.)

For the PSPACE-hardness part, we use a simple reduc-
tion from the totality problem ‘= Σ∗?’ for nondetermi-
nistic finite automata, which is known to be PSPACE-hard
[6]. For each nondeterministic finite automaton A over Σ,
which we can suppose w.l.o.g. that has only one initial qin ,

7However, we mention that for a regular trace language, there exists a
deterministic asynchronous automaton accepting it [18], but not necessar-
ily a deterministic safe one [19].
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Figure 3. Schematic representations of the re-
ductions in Th. 4.9 (left) and Prop. 4.10 (right)

respectively only one accepting state qacc , we build a tran-
sition system TS over Σ ∪ {a, b, c} as in Fig. 3 (left) and
a distribution such that b‖c is the only independence. It is
easy to prove that L(A, {qacc}) = Σ∗ iff L(TS ) is a trace
language (this is enough according to Proposition 4.8). �

Proposition 4.10 The implementability problem for asyn-
chronous automata modulo language equivalence for de-
terministic specifications is decidable in polynomial time.
For nondeterministic acyclic specifications, the problem is
coNP-complete.

Proof. The first part follows directly from Proposition 4.8
and [13, Th. 7] proving that it is decidable in polynomial
time whether the language of a deterministic finite automa-
ton is a trace language.

For the second part, we use a simple reduction sketched
in Fig. 3 (right) from the NP-complete problem if two
acyclic nondeterministic automataA1 andA2 accept differ-
ent languages [6]. (The language of the transition system on
the right of Fig. 3 is a trace language iff L(A1) = L(A2).)�

Based on the observation that the language accepted by a
synchronous product is necessarily a trace language, we can
recycle the constructions in Fig. 3 to derive (lower) com-
plexity bounds for synchronous products with multiple ini-
tial states:

Theorem 4.11 The implementability problem for synchro-
nous products of transition systems (with |I| ≥ 1) modulo
language equivalence is PSPACE-hard. For nondetermi-
nistic acyclic specifications, the problem is coNP-complete,
whereas for the deterministic acyclic ones is in P.

However, we suspect that the above general problem (i.e.,
the implementability problem for synchronous products
with |I| ≥ 1 modulo language equivalence) is much harder
than PSPACE. Moreover, we do not know anything about
its complexity when the specification is deterministic.

For the synthesis modulo language equivalence we can
give the specification as a regular expression. It is easy to
show that the results of Theorems 4.9 and 4.6 are preserved
(we use the fact that checking the prefix-closure of the lan-
guage of a regular expression E can be done in PSPACE8):

Proposition 4.12 The implementability problem modulo
language equivalence for asynchronous automata (respec-
tively, for synchronous products with |I| = 1) with regular
expressions as specifications is PSPACE-complete.

4.2.1 Non-regular specifications

The following result suggests that there is no hope to test
the implementability once we move higher in Chomsky’s
hierarchy:

Proposition 4.13 Checking that a context-free language is
a trace language is undecidable.

The proof uses the fact that the set of invalid compu-
tations of a Turing machine is a context-free language [8,
Lemma 8.7], together with the trick of making the first two
letters of an accepting computation independent (see the
proof technique of [13, Th. 11]).

5. Deterministic implementability modulo
bisimulation

Based on the observation that bisimilarity and language
equivalence coincide for deterministic transition systems,
[11] provides characterizations for the synthesis modulo
bisimulation with the restriction that the distributed imple-
mentation is deterministic (the specification may still be
nondeterministic). More precisely, the deterministic imple-
mentability problem modulo bisimulation for a given input
TS reduces to checking whether the quotient TS/∼TS

(with
∼TS the largest bisimulation on TS ) is deterministic and
then checking deterministic implementability modulo lan-
guage equivalence. As a consequence, we can infer basi-
cally the same complexity results as for implementability
with deterministic specifications from Propositions 4.7 and
4.10. The full paper [7] gives more details.

However, the synthesis problem modulo bisimulation is
still open in the case of nondeterministic implementations
for both synchronous products and asynchronous automata.

6. Conclusions

We discover that the models of synchronous products of
transition systems and asynchronous automata have similar

8Idea: For E, construct in polynomial time a nondeterm. finite au-
tomaton A = (Q, Σ,→, I, F ) s.t. L(A, F ) = L(E). Then, L(E) is
prefix-closed iff L(A, F ) = L(A, F ′), where F ′ consists of all the states
that are on a path from an initial state in I to an accepting one in F .
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complexities for the implementability test. For both models,
deciding the implementability modulo isomorphism pro-
vides a distributed implementation for free. For imple-
mentability modulo language equivalence, this bonus is still
available for synchronous products (recall the algorithm
of deciding Problem 4.2). This is not the case for asyn-
chronous automata for which the computationally expen-
sive construction of Zielonka is the best known approach to
be used after we have decided that the specification is im-
plementable. However, there is a balance. The complexity
results suggest that starting with a deterministic specifica-
tion is an advantage for asynchronous automata. Also, the
asynchronous automata are strictly more expressive than the
synchronous products (for the case studies in [16], solutions
for the synthesis problem were obtained only for asynchro-
nous automata, but not for synchronous products, due to the
expressiveness of the former).

Our motivation for exploring the complexity issues sur-
rounding synthesis is based on the need to select the most
appropriate implementation methods for synthesis tools.
When we know the exact complexity of the subproblems
of synthesis at hand we can use general rules of thumb for
selecting suitable implementation techniques. For exam-
ple, in the full version of this paper [7], we map the syn-
thesis problem modulo isomorphism for asynchronous au-
tomata (shown to be NP-complete) to the problem of find-
ing a stable model of a logic program (another NP-complete
problem) by using the SMODELS logic programming sys-
tem [15]. This implementation [7] complements the pro-
totype tool for synthesis of asynchronous automata from
[16]. Furthermore, the PSPACE-hardness result of syn-
thesis modulo language equivalence for synchronous prod-
ucts combined with the construction used for solving Prob-
lem 4.2 suggests that using model checking algorithms to
solve Problem 4.2 can be fully appropriate. Work on this
topic is left for further study.
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