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Abstract has been successful, there are difficulties in applying BDD-
_ _ based techniques, in particular, in areas outside hardware
In this paper bounded model checking of asynchronous con-  ygrification. The key problem is that some Boolean func-
current systems is introduced as a promising applicatiea ar tions do not have a compact representation as BDDs and
for answer set programming. ' This is an extension of ear- the size of the BDD representation of a Boolean function

lier work where bounded model checking has been used for h . h bl deri df
verification of sequential digital circuits. As the model of IS very sensitive to the variable ordering used for consiruc

asynchronous systems a generalization of communicatingau  iNg the BDD. Bounded model checking (Biezeal. 1999)
tomata, 1-safe Petri nets, are used. A mapping from bounded ~has been proposed as a technique for overcoming the space
reachability and deadlock detection problems of 1-safe Pet problem by replacing BDDs with SAT checking techniques
nets to stable model computation is devised. Some experi-  because typical SAT checkers use only polynomial amount
mental results on solving deadlock detection problemsgusin of memory. The idea is roughly the following. Given a se-
the mapping and th&nodel s system are presented. They quential digital circuit, a (temporal) property to be vesii
indicate that the approach is quite competitive when search and a bound:, the behavior of a sequential circuit is un-
ing for short executions of the system leading to deadlock. folded up ton steps as a Boolean formufaand the nega-
tion of the property to be verified is represented as a Boolean
Introduction formuIaR.. The .trenslatlion to Boolean formulae ie done S0
thatS A R is satisfiable iff the system has a behavior violat-
In this paper we put forward verification and, in particular, ing the property of length at most Hence, bounded model
symbolic model checking (Buraét al. 1992; Clarke, Grum-  checking provides directly interesting and practicalliere
berg, & Peled 1999) as a promising application area for an- vant benchmarks for any answer set programming system
swer set programming systems. In particular, we demon- capable of handling propositional satisfiability probleras
strate how bounded model checking problems of asyn- main advantage of the bounded model checking approach is
chronous concurrent systems can be reduced to computingthat it can find fast counterexamples, i.e., behaviors tiftga
stable models of logic programs. the correctness requirements. When searching for the coun-
Verification of asynchronous systems is typically done by terexamples by increasing gradually the boundne finds
enumerating the set of reachable states of the system for those of minimal length. This helps the user to understand
all possible interleavings of atomic actions. Tools based 0  the counterexamples more easily.

this approach (with various enhancements) include, dg., t Until now bounded model checking has been applied to
SPIN system (Holzmann 1997), which supports extended synchronous hardware verification. In this work we extend
state machines communicating through FIFO queues, and the approach to handle asynchronous concurrent systems. In
the PROD tool (Varpaaniemi, Heljanko, & Lilius 1997)  qrqer to illustrate the approach we use a simple basic model
based_ on high-level Petri nets. The main problem with enu- ¢ asynchronous systems. We employ Petri nets and, in par-
merative model checkers is the amount of memory needed ticular, focus on 1-safe Place/Transition nets (P/T-regs)n
to store the set of reachable states. _ _ . interesting generalization of communicating automata-(De
Symbolic model checking is widely applied especially in  se| & Reisig 1998). It turns out that bounded model check-
hardware verification. The main analysis technique is based ing for 1-safe P/T-nets is closely related to planning and
on (ordered) binary decision diagrams (BDDs). In many techniques used in, e.g., SAT planning could be employed.
cases the set of reachable states can be represented veryere we show how to map bounded model checking prob-
compactly using a BDD encoding. Although the approach |ems to the problem of finding stable models of logic pro-

_ rams by employing ideas used in reducing planning to sta-
*The financial support of Helsinki Graduate School in Com- g y ploying gp 9
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puter Science and Engineering, Academy of Finland (Preject . .
43963 and 47754), Foundation for Financial Aid at Helsinki-U The structure of the rest of the paper is the following. In
versity of Technology, and Emil Aaltonen Foundation aretgra  the next section we introduce Petri nets and the bounded
fully acknowledged. model checking problem. Then we present an extension of



Figure 1: Running Example: A 1-safe P/T-net

the stable model semantics which we employ in the follow-

A marking is 1-safe iffp € P : M(p) < 1. A P/T-net
¥ is 1-safe if all its reachable markings are 1-safe. Notice
that 1-safeness is a semantic property. However, it can be
guaranteed by construction, as is usually done in modeling.
In this work we will restrict ourselves to P/T-nets which are
1-safe, have a finite number of places and transitions, and in
which each transition has both nonempty pre- and postsets.
Given a 1-safe P/T-net, we say that a set of transi-
tions S C T is concurrently enabledn the marking)/,
if (i) all transitionst € S are enabled i/, and (i) for all
pairs of transitiong, ¢’ € S, such that # ¢, it holds that
*tN*t' = . If a setS is concurrently enabled in the mark-

ing M, we can fire it in astep(denotedM 5 M"), where
M’ is the marking reached after firing all of the transitions
in the stepS in arbitrary order. (It is easy to prove by us-
ing the 1-safeness of the P/T-netthat all possible orders

ing section to achieve a compact encoding of bounded model of transitions in a step are enabled i/, and that they all
checking using logic programs. We discuss mappings to al- lead to the same final marking'.) In our running example

ternative ASP formalism, present some experimental rgsult
and end with some concluding remarks.

Petri nets and bounded model checking

We will now introduce P/T-nets. They are one of the sim-
plest forms of Petri nets. We will use as a running example
the P/T-net represented in Figure 1.

A triple (P, T,F) is anetif PNT = ) andF C
(PxT)JU(T x P). The elements aP are callechlaces and
the elements df’ transitions Places and transitions are also
callednodes The places are represented in graphical nota-
tion by circles, transitions by squares, and tlogv relation
F with arcs.

We identify F' with its characteristic function on the set
(P xT)U (T x P). Thepresetof a nodez, denoted by
*z,isthe sef{y € PUT|F(y,z) = 1}. In our running
example, e.g.rt2 = {pl,p2}. The postsetof a nodez,
denoted by:*, isthe se{fy € PUT | F(z,y) = 1}. Again
in our running example2® = {¢2,¢3,t5}.

A marking of a net(P, T, F) is a mappingP — IN.

A marking M is identified with the multi-set which con-
tains M (p) copies ofp for everyp € P. A 4-tuple

Y = (P, T, F, M,) is anet systenfalso called &/T-ne})

if (P,T,F) is a net and\, is a marking of(P,T,F). A
marking is graphically denoted by a distribution of tokens
on the places of the net. In our running example in Figure 1
the net has the initial markindy/y, = {p1, p2}.

A marking M enables a transition € T if Vp € P :
F(p,t) < M(p). If tis enabled, it caroccur leading to
a new marking (denoted/ 5N M"), where M’ is defined
byVp € P: M'(p) = M(p) — F(p,t) + F(t,p). Inthe
running example the transitiof2 is enabled in the initial
marking My, and thusi, B M, whereM' = {p3, p4}.

A marking M, is reachablein X if there is anexecution
i.e. a (possibly empty) sequence of transitiong., . . . , t,
and markings\/,, Ms, ... , M,_4 such that:M, 5oan 3

oM, In M,. A marking M is reachable within a
boundn, if there is an execution witkl n transitions, with
which M is reachable from the initial state.

in the markingM’ = {p3, p4} the step{t1,t4} is enabled,
and will lead back to the initial markingZ,. This is de-

noted byM’ {tl—”i4} Mj. Notice also that for any enabled

transition, the singleton set containing only that traasits
always (trivially) a step.

We say that a markingM,, is reachable in step
semanticsin a 1l-safe P/T-netX if there is an step
execution i.e. a (possibly empty) sequence of steps
S1,82,...,S, and markingsM;, M,,... ,M, 1 such

that: M, 5 M, % oM, Sy M,. A marking
M is reachable within a bound in the step semantics, if
there is a step execution with at massteps, with which\/
is reachable from the initial state.

We will often refer to the “normal semantics” ederleav-
ing semanticso more clearly distinguish it from the step
semantics. Note that if a marking is reachablesitransi-
tions in the interleaving semantics, it is also reachable in
steps in the step semantics. However, the converse does not
necessarily hold. We have, however, the following theorem:

Theorem 1 For 1-safe P/T-nets the set of reachable mark-
ings in the interleaving semantics and the set of reachable
markings in the step semantics coincide.

Reachability and deadlock detection are among the most
important problems in the analysis of Petri net models.

Definition 1 (Reachability) Given a 1-safe P/T-net and
a 1-safe marking//, is M a reachable marking o£?

Definition 2 (Deadlock)Given a 1-safe P/T-nét, is there
a reachable marking/ which does not enable any transi-
tion of £?

The reachability and deadlock problems for 1-safe Pets net
are PSPACE-complete (Jones, Landweber, & Lien 1977,
Esparza 1998).

In the bounded case there are now two problems and two
different semantics to consider. We will define only one of
them, the others are defined in a similar fashion.

Definition 3 (Bounded deadlock, step semanticsiven a
1-safe P/T-net: and an integer bound. > 0, is there a



markingM reachable within the bounalin the step seman-
tics such that\/ does not enable any transition Bf?

It is straightforward to prove that the bounded versions of
the problems are NP-complete when the bourislgiven in
unary encoding. We can think about the bounded versions
of the problems as approximations of the original problem
which become increasingly better as the bouridcreases.

The main motivation for using the bounded version is that
if we find a solution, then the original problem has also that

same solution. If not, we can increase the bound, and our ap-

proximation becomes better. Notice that if we set the bound
to ben = (2/7! — 1), the bounded and non-bounded ver-
sions are guaranteed to be equivalent for both problems an
semantics. This is easy to see, 28! is the upper bound

on the number of 1-safe markings. Using such a bound is,
however, not practical for most systems having hundreds or

wherel andu are two integers giving thiswer andupper
boundof the constraint, respectively. For a cardinality con-
straintC (2), we denote byit(C') the corresponding set of
literals {a,,...,an,n0t by,...,not b,,}. The idea is that
such a constraint is satisfied by a model for which the car-
dinality of the subset of the literals satisfied by the model i
between the integefsandu inclusive. Either of the bounds
can be omitted in which case a missing lower bound is be
taken a®) and upper bound as.

Cardinality constraint rulesare of the formCy <+

1,--.,Cr Where eacl; is a cardinality constraint. They
are a generalization of normal rules, i.e., a litgsalan be

gseen as a shorthand for a cardinality constraint}. For

instance, arule

{al,ag,ag} +«—1 {notbl,notb2} ,1 {01,02,03} 2,d

thousands of places. For most net systems a smaller boundsays that if at least one @f, b is missing from a stable

suffices for completeness.

model, at least 1 but at most 2 frofa,, ca, c3} are included,

The concurrency between transitions in the step semantics andd is included, then some subset{of;, a;, as} is con-
often makes it possible to reach states using a smaller boundtained the model. Note that the empty set is also a possible

than for the interleaving semantics. The choice of semsntic

can have quite significant effects on the performance of the

bounded model checking in practice (see Experiments).
We will now define the notion of aeachability diame-

ter for both semantics, which is the semantic version of the

“sufficient bound”:

Definition 4 (Reachability diameter) Given a 1-safe P/T-
nety, the reachability diametef for the step (interleaving)
semantics is the smallest integér> 0 such that the set of
reachable markings and the set of reachable markings in the
step (interleaving) semantics within bousdoincide.

See (Biereet al. 1999) for discussion on how to obtain a
reachability diameter using a QBF formula (using a slightly
different definition of the diameter, however, the discossi
still applies here). In practice the currently used toolsidb
support the calculation of the diameter for examples ofinte
esting size. Therefore the bounded model checking results
are usually not conclusive if a solution is not found. There-
fore, bounded model checking is at its best in “bug hunting”,
and not as easily applicable in verifying systems to be cor-
rect.

Stable model semantics

In this section we introduce logic programs and the stable
model semantics originally presented in (Gelfond & Lifs-
chitz 1988) for normal logic programs of the form

a4 by,...,by,Nn0tcy, ... note, .

(1)

Recently, this approach has been extended to handle new

kinds of constructs such as cardinality and weight con-
straints (Niemela, Simons, & Soininen 1999; Niemela & Si-
mons 2000). In this work we employ rules with cardinality
constraints in order to obtain a succinct and simple engpdin
of model checking problems. The rest of the section reviews
the stable model semantics for such rules.

A cardinality constraints an expression of the form

)

[ {ay,...,an,n0thy,...,n0th,,} u

choice for the subset.

The semantics for cardinality constraint rules is a gener-
alization of the stable model semantics for normal logic pro
grams and is given in terms of models that are sets of atoms.
Given a modeFk (a set of atoms) we use the notatii=
iff a € SandS Enotaiffa g S.

Definition 5 A set of atomsS satisfiesa cardinality con-
straint C' of the form (2) § = C)iff | < W(C,S) < u
where

W(C,S) = {p € 1it(C) : S | p}|

is the number of literals i€’ satisfied byS.

Arule Cy + C4,...,C, is satisfied byS (S E Cy +
C,...,Cy) iff S satisfiesCy whenever it satisfies each of
cy,...,C

n-

We also allowintegrity constraintsi.e., rules without the
headconstraintCy, which are satisfied if at least one of the
bodyconstraints’, ..., C, is not.

The idea is to define a stable model of a set of rules as a set
of atoms that satisfies the rules and is justified by them. Jus-
tifiability is captured by generalizing the concept otduct
used for normal rules (Gelfond & Lifschitz 1988).

The reductC® of a constrainC' of the form (2) w.r.t. a
set of atomsS is the constraint

ll {ala"',an} (3)

wherel’ = [ — |{notb € lit(C) : S |= not b}|. Hence,

in the reduct all negative literals and the upper bound are
removed and the lower bound is decreased by the number of
negative literals satisfied lyyto account for the contribution

of the negative literals towards satisfying the lower baund
For example, for a sef = {¢q} and a constrainf’

3 {notg, notr,p} 4

the reducC® is 2 {p} .
The reductlI® for a progranil w.r.t. a set of atoms is
a set of rules which contains a rutewith an atomp as the



From bounded model checking to answer set
programming
In this section we develop a method for translating bounded
model checking problems of 1-safe P/T-nets to tasks of find-
ing stable models of cardinality constraint rules. We ered th
section by discussing how a similar mapping could be done
using normal programs or propositional logic.
Consider a netV = (P, T, F) and a step bound. We

construct a logic prograniis (N, n), which captures the
possible executions d¥f up ton steps, as follows.

e For each place € P, include a choice rule
{p(0)} « (6)

e For each transitioh € T, and forall; = 0,1, . ..
include arule

head ifp € S and there is arule € II such thap appears in

the head and the upper bounds of the constraints in the body
of r are satisfied bys. The body of is obtained by taking

the reduct of the constraints in the bodyrofFormally the
reduct is defined as follows.

Definition 6 Let IT be a ground program and a set of
ground atoms. The redutt® of IT w.r.t. S is defined by

M° = {p«C7,....,C5:Ch«Cy,...,Cpell,

p€elit(Co)NnSandforalli =1,...n,
for the constrainC; of the form
[ {ay,...,notb,} u,W(C;,S) <u}

The role of the reduct is to provide the possible justifi-
cations for the atoms i§. Each atom in a stable model is
justified by the program in the sense that it is in the closure
of the reduct. The reduct is a set of rules of the form

h(—C’l,...,C’n (4)

whereh is a ground atom and each constraiftcontains
only positive literals and has only a lower bound condition.

7n_11

{t(@)} < p1(d), ..., (i) (7)

where{p:,...,p} is the preset of. Hence, a stable

The closurecl(IT) of a reductll is defined as the unique
smallest set of atoms satisfyid@. The uniqueness is im-
plied by the monotonicity of reduct rules, i.e., if the body o
a rule is satisfied by a modél, then it is satisfied by any
superset of.

Definition 7 A set of ground atomS is a stable modebf a
programIl iff S = I and S = cl(I1¥).
Example 1 Consider a progranl
1 {al,ag,ag} 1+
Observe that a stable model of a progréhmust be a subset
of the atoms appearing in the heads of the ruleH ibecause
other atoms cannot appear in the closure of a reduct.
The empty set is not a stable model becallse%
1 {a1,a2,a3} 1 and similarly for every subset having more
than one of the atoms. Howevét, } is a stable model dff
because it satisfies the rule and the rediiét'} = {a; «}
has{a.} as its closure. In factlI has three stable models
{a1}, {a2}, and{as} as one would expect.
A program
fa} « (6)
has two stable models and{a} demonstrating that stable
models are not necessarily subset minimal.

model can contain a transition instance in stegnly if
its preset holds at step

e For each place € P and foralli = 0,1,...
include arule
p(i+1) « H{t1(4),... ,tx(0)} (8)

where{t,... ,t} is the preset op. This says thap
holds in the next step if at least one of its preset transition
is in the current step.

e For each place € P, and for alli = 0,1, ...
include arule

7n_11

7n_11

« 2{t1(i),... ,t:(4)} 9)

where{t;,... ,#} is the set of transitions having eagh
in their preset and > 2. This rule states that at most one
of the transitions that are in conflict w.ritcan occur.

e Foreach place, and foralli =0,1,... ,n —1,

p(i + 1) < p(i),notty (i),... ,nott; (i)  (10)

where {t1,... ,t} is the set of transitions having in
their preset. This is thétame axiomfor p stating that
p holds if no transition using it occurs.

For the model checking applications in this paper two Consider the ne in Figure 1. The prograria (N, n) is
features of cardinality constraints are important. One is givenin Figure 2. In the prograiiis (N, n) the initial mark-
their ability to encode choices over subsets with rules ef th  ing is not constrained but additional conditions on marking
type (5). These kinds of choices can be encoded using nor- can be stated using rules. For example, stable models not
mal rules only by introducing new extra atoms. The second Satisfying a markind/ at stepi can be eliminate with rules

feature involves a conflict with two atoms out of a large set ) .

of atoms, i.e., a rule of the form ’ (M, i) = {enotp(i) |p € P, M(p) =1}U
—2ar,... an} {<p(i) |pe P,M(p) =0} .

which disallows any stable model contain at least two Example 2 For the initial marking M, of our running ex-

atoms from{ay,...,a,}. There seems to be no sim- ample, the sefly (Mo, 0) is

ple compact encoding of such a condition using normal « p3(0)

rules. TheSnodel s system fittp://ww. t cs. hut. « p4(0)

fi/ Sof t war e/ smodel s/ ), which provides an imple-

mentation for cardinality constraint rules, includes pfim

tives supporting directly such constraints.

< notpl(0)
+ notp2(0)

+ p5(0)

Now the stable models of the prografby;(M,,0) U
ITA (N, n) capture the markings reachable insteps from



{t1(2)} « p3(i) {p1(0)} For our running example, the rul&, (N, n) are
{12(i) } < p1(i), p2(i) {p2(0)} «
{t3(i)} < p2(i) {p3(0)} + < p3(n) < p2(n)
{t4(i)} « pa(i) {pa(0)} < pl(n), p2(n) < p4(n).
{t‘r’(.l)} N pQ(Z). {p5(0)} « Theorem 3 Let N = (P, T, F) be a 1-safe P/T-net for all
p;(l. + i) < ti(l.) initial markings satisfying a conditiofl,. NetN has an ini-
pB(Z. + 1) < t2(z.) tial marking satisfying”, such that a deadlock is reachable
p4(l. + 1)« 12(i) ) ) in at mostn steps ifflly (Co, 0) U I (N,n) U IIp(N,n)
pA(i+ 1) 1 {£2(i), £3(i)} has a stable model.
p5(i + 1) + t5(4)
— 2{t2(i), t3(i), t5(i)} So far in this section we have considered only the transla-
pl(i + 1) < pl(i),nott2(i) tions of the step semantics versions of the problems. We can
p2(i + 1) < p2(i), nott2(i), create the interleaving semantics versions of all the prob-
nott3(i), not5(i) lems by adding a set of rulék (IV, n) to the step version of
p3(i 4+ 1) < p3(i), nott1(i) the problem. TheI sdil;(V, n) includes for each time step
pA(i + 1) < pa(i), nott4(i) 0<i<n-—1larule
S I 2t b)) 12)
where{ty, ... ,t,} is the set of all transitions. These rules
Figure 2: Progranhl, (N, n) eliminate all stable models having more than one transition

firing in a step.

Corollary 1 Let IIs(N,n) be a translation solving a
bounded model checking problem in the step semantics us-
ing a translation given above. Then the progriig( NV, n)U

My. For the boundn = 1, the program has four stable
models corresponding to the four possible steps:

{p1(0), p2(0), p1(1),p2(1)} IT; (N, n) solves the same problem in the interleaving se-

{p1(0),p2(0),#2(0),p3(1), p4(1)} mantics.

{p1(0),2(0),23(0), p1(1), p4(1)} In (Biere et al. 1999) it is shown how bounded model

{p1(0),2(0),#5(0), p1(1), p5(1)} checking can be done also for linear time temporal logic
For example, the first one corresponds to the empty step and LTL. An interesting area of further work is to extend
the second to a step where transitithoccurs. bounded model checking of LTL formulae to the asyn-

chronous case. One of the main challenges is to allow as
much concurrency as possible, to obtain as small as possi-
ble diameter for the LTL model checking translation. Also
the safety property subset of LTL is interesting in this con-
text (Kupferman & Vardi 1999), as a simpler translation for
that LTL subset is possible.

Any Boolean combinatio’ of marking conditions can
be captured using a similar set of rulég; (C, 7). For exam-
ple, for eliminating stable models not satisfying a coriti
C at stepi requiring thatM (p;) = 1 and (/(p2) = 0 or
M (ps) = 1), itis sufficient to use ruleHy; (C, i):

+ notc(7) Cpyvps (1) <= NOtpa(7) . )

c(i) < p1(i), Cmvps (1) Cpovps (1) 4 p3 (i) Mappings to other ASP formalisms

Normal programs The mappings described above could
be done to normal logic programs. In fact, only rules (6),
(7), (8), (9), and (12) are not normal ones. The first three are
simple to handle. For example, (7) can be replaced by two

Now given a conditionCy capturing initial markings for
which a netN is 1-safe, the stable models Bf;(Cy, 0) U
ITA (N, n) correspond to all executions of up ton steps
from any initial marking satisfying’y. Hence, our approach

. - ) normal rules
can solve a reachability problem for a set of initial marking
given by a conditiorCl, where the markings to be reached t(i) < nott' (i), p1 (i), ... ,pi(i) (13)
are specified by another conditiéh t'(7) < nott(i)

Theorem 2 Let N = (P, T, F) be a 1-safe P/T-netfor all - \yhere a new atort (i) is introduced and (8) with rules
initial markings satisfying a conditiof,. Net N has an

initial marking satisfyingCy such that a marking satisfying p(i + 1) « t1(7)
a conditionC' is reachable in at most steps iffily; (Cp, 0)U .
ITA (N,n) U\ (C,n) has a stable model. p(i + 1) « (7).

This approach can be adapted easily to handle deadlock However, the case of (9) and (12) is more challenging and
checking by adding rulelip (V, ) eliminating stable mod-  there seems to be no simple way of encoding such condi-
els where some transition is enabled. Progidg(NV,n) tions using only a linear number of normal rules. Hence,
includes for each transitione 7', a rule the mappings can be done using normal rules but because of

“pn),...,mn) (11) conditions such as (9), the number of rules for each step in

the resulting program is not linear in the size of the net as is
where{pi,... ,p} is the preset of. the case for the mapping to cardinality constraint rules.



Propositional satisfiability The mapping from P/T-nets
to propositional satisfiability is also fairly straightfeard

to construct. For example, one can use the mapping to
normal programs discussed above as the basis. The pro-
gram is acyclic except for rules (13). Hence, one can em-
ploy Clark's completion and an extension of Fages’ theo-
rem (Fages 1994) discussed in (Babovich, Erdem, & Lifs-
chitz 2000). However, the size of the set of the resulting
propositional formulae for each step is not linear w.r.e th
size of the -net because of the difficulties in encoding eardi
nality conditions of the form (9) compactly using proposi-
tional formulae.

A further complication is caused by the fact that most ef-
ficient satisfiability checkers require that the input formu
lae are transformed to conjunctive normal form (CNF). It
is non-trivial to tune the CNF transformation such that the

checkers have a reasonable performance. The basic prob
lem is that an equivalent CNF formula can be exponentially
bigger than the original formula. This explosion is typlgal
avoided by introducing new atoms corresponding to subfor-
mulae but the new atoms can increase the search space o
the checker exponentially.

Experiments

We have implemented the translation of Theorem 2 from the
bounded model checking problem to the problem of finding
a stable model. Also the deadlock checking g&st( N, n)

and the interleaving semantics pHst( NV, n) can be option-
ally added. The translation was implemented in C++ in quite
a straightforward manner with only two simple optimiza-
tions included:

e Place and transition atoms are added only from the time
step they can first appear on. Only atoms for plag@3

in the initial marking are created for time= 0. Then for
each) < i < n—1: (i) Add transition atoms for all transi-
tionst(i) such that all the place atoms in the presetof
exist. (ii) Add place atoms for all place$: + 1) such that
either the place atom(i) exists or some transition atom

in the preset op(i + 1) exists.

Duplicate rules are removed. (Duplicates can appear in
the conflict (9) and liveness (11) rules.)

As benchmarks we use a set of deadlock checking bench-
marks collected by Corbett (1995), where more detailed in-
formation about them can be found. They have been con-
verted from communicating state machines to 1-safe P/T-
nets by Melzer and Romer (1997). The models were picked
from those which have a deadlock. For each model and both
semantics we incremented the used bound until a deadlock
was found. We report the time famnodel s to find the first
stable model using this bound. In some cases a model could
not be found within a reasonable time in which case we re-
port the time used to prove that there is no deadlock within
the reported bound.

The experimental results can be found in Fig. 3. The
columns of the table are the following:

e Problem: The problem name with the size of the instance
in parenthesis.

Problem | |P| |IT] | St.n St.s | Int.n Int. s States
DARTES(1) 331 257 32 0.5 32 0.5 | >250000
DP(6) 36 24 1 0.0 6 0.1 728
DP(8) 48 32 1 0.0 8 0.3 6554
DP(10) 60 40 1 0.0 10 3.3 48896
DP(12) 72 48 1 0.0 12 | 617.4 | >350000
ELEV(1) 63 99 4 0.0 9 0.4 137
ELEV(2) 146 299 6 0.5 12 3.9 1061
ELEV(3) | 327 | 783 8 5.6 15 | 139.0 7120
ELEV(4) 736 | 1939 10 157.2 >13 | 1215.2 43439
HART(25) | 127 ' 1 0.0 >5 1.0 52
HART(50) | 252 152 1 0.0 >5 5.7 102
HART(75) | 377 227 1 0.0 >5 15.5 152
HART(100)] 502 | 302 1 0.0 >5 35.9 202
KEY(2) 94 92 | >25 | 1937.9| >26 56.1 536
MMGT(3) | 122 172 7 11.1 10 87.2 7702
MMGT(@4) | 158 232 8 687.3 >11 | 1874.1 66308
Q(1) 163 194 9 0.1 >17 | 2733.7 | 123596
SENT(25) | 104 55 2 0.0 3 0.0 231
SENT(50) | 179 80 2 0.0 3 0.0 281
SENT(75) | 254 105 2 0.0 3 0.0 331
SENT(100)| 329 130 2 0.0 3 0.0 381
SPD(1) 33 39 1 0.0 4 0.0 8689

Figure 3: Experiments

¢ |P|: Number of places in the original net.
e |T|: Number of transitions in the original net.

e St. n: The smallest integet such that a deadlock could
be found using the step semantics / in case-ofi the
largest integen for which we could prove that there is no

deadlock within that bound using the step semantics.

St. s: The time in seconds to find the first stable model /
to prove that there is no stable model. (SeenSibove.)

Int. » and Int.s: defined as Stn and St.s but for the
interleaving semantics.

e States: Number of reachable states of the P/T-net (if

known).

The times reported are the average of 5 runs of the time
forsnodel s 2. 26 as reported by theusr/ bin/ ti me
command on a 450Mhz Pentium 11l PC running Linux. (The
time needed for creating the smodels input was quite small,
and therefore omitted.)

In many of the experiments the step semantics version had
a much smaller bound than the interleaving one. Also, when
the bound needed to find the deadlock was fairly small, the
bounded model checker was performing well.

The DP(x) problems are dining philosophers problems,
where in the step semantics the counterexample could al-
ways be found with a bound of 1, while in the interleaving
semantics the bound grew at the same speed as the number
of philosophers. In the examples ELEV(4), HART(x) and
Q(1) we were able to find the counterexample only when
using step semantics.

In the KEY(2) example we were no able to find a coun-
terexample with either semantics, even though the problem
is known to have only a small number of reachable states. In



contrast, the DARTES(1) problem has a large state-space,
and despite of it a counterexample of length 32 was ob-
tained. Thus it seems that the size of the state space is not
always decisive in the bounded model checker running time.

This is the first set of experiments we have tried with asyn-
chronous system benchmarks, and no major work has gone
into obtaining the best possible performance. Overall, the
results are promising, in particular, for small bounds ded t
step semantics. However, we need to get a better understand-
ing of the behavior of the bounded model checking approach
by doing more experiments.

Conclusions

We introduce bounded model checking of asynchronous
concurrent systems modeled by 1-safe P/T-nets as an in-
teresting application area for answer set programming. We
present a mapping from bounded reachability and deadlock
detection problems of 1-safe P/T-nets to stable model com-
putation. The first experimental results indicate that sta-
ble model computation is a quite competitive approach to
searching for short executions of the system leading to-dead
lock and worth further study.

In our approach it is possible to do model checking for
a set of initial markings at once. This is usually difficult
to achieve in current enumerative model checkers and often
leads to state space explosion. All our benchmark exper-
iments used only a single initial state, as they were origi-
nally designed for a tool which does not support this fea-
ture. Thus more experimental work is needed on this aspect
of the translation. The bounded model checking translation
can also be seen more goal directed than the explicit state
version, as the constraints based on the final state of the sys
tem can guide the search.

The net unfolding method (see (Heljanko 1999; Melzer &
Romer 1997) and further references there) is another sym-
bolic model checking approach for asynchronous systems,
where answer set programming has been employed. Re-
lating this approach to bounded model checking would be
interesting. As further work the LTL model checking and
the safety LTL model checking problems look interesting.
There are also alternative semantics to the two presented in
this work. Experiments are needed to determine whether
they are useful for bounded model checking.
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