
Bounded Reahability Cheking withProess Semantis ⋆Keijo HeljankoHelsinki University of TehnologyLaboratory for Theoretial Computer SieneP.O. Box 5400, FIN-02015 HUT, FinlandKeijo.Heljanko�hut.fiAbstrat Bounded model heking has been reently introdued as ane�ient veri�ation method for reative systems. In this work we ap-ply bounded model heking to asynhronous systems. More spei�ally,we translate the bounded reahability problem for 1-safe Petri nets intoonstrained Boolean iruit satis�ability. We onsider three semantis:proess, step, and interleaving semantis. We show that proess seman-tis has often the best performane for bounded reahability heking.1 IntrodutionBounded model heking [3℄ has been proposed as a veri�ation method forreative systems. The main idea is to look for ounterexamples whih are shorterthan some �xed length for a given property. If a ounterexample an be found,then the property does not hold for the system. If no ounterexample an befound using this bound, usually the result is inonlusive.The deision proedure most often used in bounded model heking is propo-sitional satis�ability. Given the transition relation of the reative system to bemodel heked, the property, and the bound n, the transition relation and prop-erty are �unrolled� n times to obtain a propositional formula whih is satis�ablei� there is a ounterexample with bound n. The implementation ideas are quitesimilar to proedures used in AI planning [11,15℄.In this work we apply bounded model heking to asynhronous systems.More spei�ally, we translate the bounded reahability problem for 1-safe Petrinets into onstrained Boolean iruit satis�ability. This work an be seen asa ontinuation of the work done in [9℄. There we disuss using the step andinterleaving semantis for bounded reahability, while the formalism into whihthe problem is translated being logi programs with stable model semantis.The main ontribution of this paper is that we show that the so alled proesssemantis of Petri nets [1,2℄ an be used to improve the e�ieny of boundedmodel heking. Namely, also the proess semantis an be e�iently enodedinto onstrained Boolean iruits.
⋆ The �nanial support of the Aademy of Finland (Projets 43963 and 47754), andTekniikan Edistämissäätiö foundation are gratefully aknowledged.

As an additional ontribution we report on an implementation alled punroll,whih uses the BCSat onstrained Boolean iruit satis�ability heker to hekwhether the generated onstrained iruit is satis�able, thus solving the boundedreahability problem.The struture of the rest of the paper is the following. First we introduePetri nets and the three di�erent semantis in Set. 2. Then we shortly introdueonstrained Boolean iruits in Set. 3, and in Set. 4 show how the boundedreahability problem an be translated into them. After that we disuss ourimplementation and experiments in Set. 5, and �nish with onlusions in Set. 6.2 Petri netsWe will now introdue Petri nets. A net is a triple (P, T, F), where P and Tare disjoint sets of plaes and transitions, respetively, and F is a funtion (P ×
T) ∪ (T × P) → {0, 1}. Plaes and transitions are generially alled nodes. If
F (x, y) = 1 then we say that there is an ar from x to y. The preset of a node
x, denoted by •x, is the set {y ∈ P ∪ T | F (y, x) = 1}. The postset of x, denotedby x•, is the set {y ∈ P ∪ T | F (x, y) = 1}. In this paper we onsider only �nitenets in whih every transition has a nonempty preset and a nonempty postset.A marking of a net (P, T, F) is a mapping P → IN (where IN denotes thenatural numbers inluding 0). We identify a marking M with the multiset on-taining M(p) opies of p for every p ∈ P . For instane, if P = {p1, p2} and
M(p1) = 1, M(p2) = 2, we write M = {p1, p2, p2}. A 4-tuple Σ = (P, T, F, M0)is a net system if (P, T, F) is a net and M0 is a marking of (P, T, F) (alled theinitial marking of Σ). We will use as a running example the net system in Fig. 1.2.1 Step SemantisTo save some spae, we de�ne the behavior of a net system through step seman-tis. The (usual) interleaving semantis will then be de�ned later based on thismore general onept.A step is a non-empty set of transitions S ⊆ T . 1 We denote a step by [S〉.A marking M enables a step S if for all p ∈ P it holds that M(p) ≥

∑
t∈S F (p, t).If the step S is enabled at M , then it an �re or our, and its ourrene leadsto a new marking M ′ de�ned as M ′(p) = M(p) +

∑
t∈S(F (t, p) − F (p, t)) forevery plae p ∈ P . We denote this �ring of a step by M [S〉M ′.A (possibly empty) sequene of steps σ = [S0〉[S1〉 · · · [Sn−1〉 is a step exeu-tion of the net system Σ = (P, T, F, M0) if there exist markings M1, M2, . . . ,

Mn suh that M0[S0〉M1[S1〉 · · ·Mn−1[Sn−1〉Mn. The marking reahed by theourrene of σ is Mn. A marking M is a reahable marking if there exists a stepexeution σ suh M is reahed by the ourrene of σ. A marking M is reahable1 We only onsider a lass of nets where the transitions annot be self-onurrent.Therefore a set su�es and multisets, i.e., bags are not needed.

p1 p2

p3

p4

p5

p6

t1 t2

t3

t4 t5

t6Figure 1. Running Examplewith bound n if there exists a step exeution σ onsisting of (exatly) n stepssuh M is reahed by the ourrene σ. Correspondingly we say that a marking
M is reahable within bound n if there exists an integer 0 ≤ i ≤ n suh that Mis reahable with bound i.In our running example the step [t1, t2〉 is enabled in the initial marking andthus {p1, p2}[t1, t2〉{p3, p4}. The marking {p3, p6} is reahable with bound 3, as
{p1, p2}[t2〉{p1, p4}[t1, t3〉{p3, p5}[t6〉{p3, p6} is a step exeution.A marking M of a net is n-safe if M(p) ≤ n for every plae p. A net system Σis n-safe if all its reahable markings are n-safe. In this work we restrit ourselvesto net systems whih are 1-safe. They are quite an interesting lass, as e.g., netsystems arising from synhronization of state mahines are 1-safe. Note thatfor 1-safe net systems all reahable markings are reahable within bound n =
(2|P |−1). Thus the set �marking reahable within bound n� an be seen as a lowerapproximation of the set of reahable markings whih improves as the bound ninreases. See disussion in [3℄ on how to hek whether a bound is su�ientfor ompleteness. Quite often a muh smaller bound than the one disussedabove su�es for ompleteness. For a general disussion of the omputationalomplexity of veri�ation problems for 1-safe Petri nets, see e.g., [6℄.2.2 Interleaving SemantisAn interleaving exeution is a step exeution M0[S0〉M1[S1〉 · · ·Mn−1[Sn−1〉Mnsuh that for all 0 ≤ i ≤ n − 1 it holds that |Si| = 1. A marking is reahable in

the interleaving semantis if there exists an interleaving exeution σ suh that
M is reahed by the ourrene of σ. The bounded versions of reahability arede�ned similarly to the step ase.Again in our example the marking {p3, p6} is reahable in the interleaving se-mantis with a bound 4, as {p1, p2}[t1〉{p2, p3}[t2〉{p3, p4}[t3〉{p3, p5}[t6〉{p3, p6}is an interleaving exeution. Notie however, that the marking {p3, p6} is notreahable in the interleaving semantis with bound 3.It is well known, see e.g., [1℄ that for the net lass used here the set ofreahable markings in the step and interleaving semantis oinide. However,in bounded model heking using step semantis might be useful, as in manyases markings an be reahed with a smaller bound than in the interleavingsemantis.2.3 Proess SemantisHowever, there is a problem with steps. Namely, there an be several step exe-utions whih intuitively represent the same �onurrent behavior�. These an inbounded model heking introdue searh spae whih an adversely e�et therunning time of the solver used. To avoid this we will use a well known semantisfrom the literature alled the proess semantis, see [1,2℄.We will now reall from the literature a onstrution whih onstruts aproess from a �nite step exeution. The following is a modi�ed version (simplerbeause of 1-safeness) of the Constrution 4.9 in [1℄.For this de�nition we need some additional notation. For a net N = (P, T, F)the funtion Max (N) = {x ∈ P | x• = ∅}. Let L be a �nite set. A labelled net isa 4-tuple (P, T, F, l), where (P, T, F) is a net and l : P ∪ T → L is a labelling.De�nition 1. (Derivation of proess from step exeution.) Let Σ = (P, T, F, M0)be a net system and let σ = [S0〉[S1〉 · · · [Sn−1〉 be a sequene of steps suh that
M0[S0〉M1[S1〉 · · · [Sn−1〉Mn is a step exeution of Σ. We assoiate with σ a la-belled net Π(σ) by reating a sequene of labelled nets Ni = (Bi, Ei, Gi, li) withlabelling li : Bi ∪ Ei → P ∪ T by indution on i, where 0 ≤ i ≤ n.(i = 0): E0 = ∅, G0 = ∅, and B0 ontains for eah p ∈ P suh that M0(p) = 1a plae b with l0(b) = p.(i = i + 1): Suppose that Ni has been onstruted.First we require that everything in Ni is also in Ni+1. For all x, y ∈ Bi ∪Ei:

x ∈ Bi ⇒ x ∈ Bi+1, x ∈ Ei ⇒ x ∈ Ei+1, (x, y) ∈ Gi ⇒ (x, y) ∈ Gi+1 and
li+1(x) = li(x).Then for eah t ∈ Si do the following:
• for eah p ∈ •t �nd the plae b(p) ∈ Max (Ni) suh that li(b(p)) = p,
• add a new transition e to Ei+1 with li+1(e) = t and add (b(p), e) to Gi+1for all p ∈ •t,
• for eah p ∈ t• add a new plae b′(p) to Bi+1 with li+i(b

′(p)) = p and
(e, b′(p)) ∈ Gi+1.Finally take Π(σ) = Nn = (Bn, En, Gn, ln).

The onstrution above is fully deterministi (as this version is for 1-safe netsonly) and thus the result is unique up to isomorphism. This fat is well known,see e.g., the disussion of a similar de�nition, Def. 3 in [12℄. For simpliity, fromnow on we will identify all isomorphi proesses as being equivalent.Consider now our running example in Figure 1. It has a step exeution
{p1, p2}[t2〉{p1, p4}[t1, t3〉{p3, p5}[t6〉{p3, p6}. Now given σ = [t2〉[t1, t3〉[t6〉 wean onstrut the proess Π(σ) given in Figure 2, where the labelling l of nodesis given in parenthesis.

b1(p2)

b2(p1)

b3(p4)

b4(p3)

b5(p5) b6(p6)e1(t2)

e2(t1)

e3(t3) e4(t6)

Figure 2. A proess π = (B, E, G, l)It is easy to see that for example also the sequenes of steps σ′ = [t1, t2〉[t3〉[t6〉,
σ′′ = [t2〉[t3〉[t1, t6〉, and σ′′′ = [t1〉[t2〉[t3〉[t6〉 will yield the same proess, i.e.,
Π(σ′) = Π(σ′′) = Π(σ′′′) = Π(σ). All of these step exeutions �solve the arisingon�its� in the same way and lead to the same �nal marking of the proess π,i.e., l(Max (π)) = {p3, p6}. Thus if we are only interested in the �nal marking itshould intuitively be su�ient to only generate one of them. We will now showhow this an be done in bounded reahability heking.We present an algorithm whih given a proess π gives a sequene of steps
FNF (π) (for Foata normal form of π) whih together with Σ fully haraterizesthe proess π. The Algorithm 1 omputes the Foata normal form of a proess. Itis the algorithm presented on page 47 of [16℄ (with small notational hanges). Wede�ne some notation for the algorithm. Given a set of transitions C ⊆ E of theproess π = (B, E, G, l), let G∗ be the transitive losure of the �ow relation G,and de�ne MinE (C) = {e ∈ C | for all e′ ∈ (C \ {e}) it holds that (e′, e) 6∈ G∗}.Assume that we are given a Foata normal form FNF (π) = [S0〉[S1〉 · · · [Sn−1〉for a proess π of a 1-safe net system Σ. It is easy to prove that there are mark-ings M1, M2, . . . , Mn suh that in the initial state M0 of Σ the step exeution
M0[S0〉M1[S1〉M2 · · ·Mn−1[Sn−1〉Mn an our.This normal form is atually the Foata normal form from the theory ofMazurkiewiz traes, see e.g., [5℄. It is only (quite trivially) adapted to pro-esses of 1-safe net systems. To our knowledge it was �rst applied to proesses of1-safe net systems in the veri�ation algorithm setting in [7℄. (The fat that thetehnique used is a Foata normal form is disussed in more detail in an extendedversion [8℄, as well as in [16℄.)

Algorithm 1 The Foata normal form of a proessinput: A proess π = (B, E, G, l) of a 1-safe net.output: Foata normal form of π: A sequene of steps FNF = [S0〉[S1〉 · · · [Sn−1〉.1 begin2 C := E;3 FNF := ǫ;4 while C 6= ∅ do5 S := l(MinE(C));6 FNF := FNF · [S〉;7 C := C \ MinE (C);8 endwhile9 return FNF ;10 endWhen run on the proess π of Figure 2, we will get the result FNF (π) =[t1, t2〉[t3〉[t6〉. This intuitively orresponds to a step exeution whih is �greedy�,i.e., it always �res transitions at the earliest possible time moment, while stillrespeting the struture of the proess π. Thus the step exeution in Foatanormal form is always among the shortest whih yield the proess π.The Algorithm 1 gives an easy way of generating a Foata normal form ofa proess. We will in our implementation use a di�erent de�nition, whih isequivalent but more suitable for the implementation tehniques we use. (We havenot found this version in the literature. However, it is just a simple adaptationof the version for traes, see e.g., [5℄.)De�nition 2. The sequene of steps σ = [S0〉[S1〉 · · · [Sn−1〉 is a step exeutionof a 1-safe net system Σ in Foata normal form if:(a) σ = ǫ (i.e., σ is the empty step sequene), or(b) There are markings M1, M2, . . . , Mn suh that in the initial state M0 of Σthe step exeution M0[S0〉M1[S1〉M2 · · ·Mn−1[Sn−1〉Mn an our, and:
• For eah 1 ≤ i ≤ n − 1 and for eah t ∈ Si there exists a transition t′ in

Si−1 suh that t′• ∩ •t 6= ∅. (Eah transition t in step i with i ≥ 1 hassome transition t′ in step i− 1 whih generates some part of its preset.)Now there is a bijetion between proesses and step exeutions in Foatanormal form. Given a step exeution σ one an onstrut the orrespondingproess π = Π(σ), and given the proess π we an onstrut the step exeution
σ′ = FNF (π) and in fat σ′ = σ i� σ was in Foata normal form (aording toDef. 2). Thus they both desribe the same onurrent behavior. It is thereforeonly a matter of taste whether one talks about proesses or step exeutionsin Foata normal form. We have hosen to talk about proesses and proesssemantis, as that is the terminology most often used in Petri net literature [1,2℄.Our atual implementation is, however, based on the de�nition of the Foatanormal form for step exeutions, namely Def. 2.We thus de�ne the proess semantis as follows. A marking M is a reah-able in the proess semantis if there exists a step exeution σ in Foata normal

form, suh that M is reahed by the ourrene of σ. The bounded versions ofreahability are again de�ned similarly to the step ase.To rephrase our disussion, here is the (not surprising) main result used inbounded model heking with proess semantis.Theorem 1. Let Σ be a 1-safe net system. A marking M is reahable withinbound n in Σ i� in the proess semantis M is reahable within bound n in Σ. 23 Boolean CiruitsThis setion is largely based on the presentation of [10℄. A Boolean iruit isan direted ayli graph where the nodes are alled gates. The gates with nooutgoing edges are output gates and input gates are those gates whih do nothave inoming edges nor an assoiated Boolean funtion. Eah non-input gatehas a Boolean funtion assoiated with it and it �alulates� the output valuefrom the values of its hildren.Boolean iruits an be expressed with Boolean expression systems. Givena �nite set V of Boolean variables, a Boolean equation system S over V is aset of equations of the form v = f(v1, . . . , vk), where v, v1, . . . , vk ∈ V and fis an arbitrary Boolean funtion. Boolean iruits an now be seen as Booleanequation systems with the following two properties. (i) Eah variable has at mostone equation. (ii) The equations are not reursive. (In the sense that the variabledependeny graph [10℄ is ayli.)A truth valuation for S is a funtion τ : V → {true, false}. A valuation isonsistent if τ(v) = f(τ(v1), . . . , τ(vk)) for eah equation in S. The onstrainedsatis�ability problem for Boolean iruits is the following: given that variables
c+ ⊆ V must be true and variables in c− ⊆ V must be false, is there a onsistentvaluation that respets these onstraints? We all suh a truth assignment a sat-isfying truth assignment. The onstrained Boolean iruit satis�ability problemis obviously an NP-omplete problem under the plausible assumption that eahBoolean funtion in the system an be evaluated in polynomial time.In the rest of this paper we use Boolean iruits where the following Booleanfuntions are used as gates:� ⊤ is always true.� ⊥ is always false.� not(v) = true i� v is not true.� or(v1, . . . , vk) = true i� at least one of vi, 1 ≤ i ≤ k is true.� and(v1, . . . , vk) = true i� all of vi, 1 ≤ i ≤ k are true.� cardU

L (v1, . . . , vk) = true i� for the ardinality c of the set of variables viwhih are true it holds that L ≤ c ≤ U . (Where L and U are �xed onstants
0 ≤ L ≤ U .)2 Note the use of within instead of with. A marking may be reahable with a bound nand only reahable with bound i in the proess semantis, where i < n.

The funtion cardU
L (v1, . . . , vk) is atually a family of funtions. We use in thiswork only the speial form card1

0(v1, . . . , vk), whih is true if less than two of thevariables in the set {v1, . . . , vk} are true. We will show that this funtion is quiteuseful for ompatly enoding whih transitions an not be �red onurrently.4 Translating Bounded Reahability into BooleanCiruitsWe will now present how to translate the bounded reahability problem for 1-safenets into onstrained satis�ability problem for Boolean iruits. The Figures 3-5give parts of the translation for our running example of Figure 1. We suggestthe reader to onsult them while reading the de�nition of the translation.Consider a 1-safe net system Σ = (P, T, F, M0) and a �xed bound n. We �rstonstrut (in (a)-(b) below) a onstrained Boolean iruit whih aptures thepossible step exeutions of Σ of length ≤ n, where n ≥ 0.(a) To apture the initial marking, for eah plae pj ∈ P we reate a gate pj(0)and assoiate ⊤ as the funtion if M0(pj) = 1, and ⊥ otherwise.(b) For eah step 0 ≤ i ≤ n − 1 we add the following gates:1. For eah transition tj ∈ T we reate an input gate tj(i). If this gate istrue, it intuitively means that the transition tj �res in step i.2. For eah plae pj ∈ P we reate an or gate gpj(i + 1) with the hildren
{t1(i), . . . , tk(i)}, where {t1, . . . , tk} is the preset of pj . The gate gpj(i+1)will be true if some transition in step i generates a token to the plae pj .3. For eah plae pj ∈ P we reate an or gate rpj(i + 1) with the hildren
{t1(i), . . . , tk(i)}, where {t1, . . . , tk} is the postset of pj . The gate rpj(i+
1) will be true if some transition in step i removes a token from pj.4. For eah plae pj ∈ P we reate a not gate nrpj(i + 1) with the hild
rpj(i + 1).5. For eah plae pj ∈ P we reate an and gate fpj(i + 1) with the hildren
pj(i) and nrpj(i + 1). The gate fpj(i + 1) is true when a plae pj ontainsa token before step i, and no transition removing tokens from it appearsin step i.6. For eah plae pj ∈ P we reate an or gate pj(i + 1) with the hildren
gpj(i + 1) and fpj(i + 1). The gate pj(i + 1) is true when after step i theplae pj ontains a token. (Either a token was generated in step i or atoken residing on the plae pj before step i still remains on the plae pjafter the step i.)7. For eah transition tj ∈ T we reate an and gate ptj(i) with the hildren
{p1(i), . . . , pk(i)}, where {p1, . . . , pk} is the preset of tj . The gate ptj(i)will be true if all the preset plaes of transition tj in step i ontain atoken.8. For eah transition tj ∈ T we reate a not gate ntj(i) with the hild tj(i).9. For eah transition tj ∈ T we reate an or gate ttj(i) and onstrain itto be true. It has two hildren ntj(i) and ptj(i). The onstrained gate
ttj(i) ensures that either the transition tj is not �red in step i or all ofits preset tokens are available.

or

or

or notgp5(i + 1)

and

p5(i)t3(i) t4(i) t5(i) t6(i)

rp5(i + 1)

fp5(i + 1)

nrp5(i + 1)

p5(i + 1)

Figure 3. Example: translation for the plae p5

and

p3(i) p5(i)

pt4(i)

or

notnt4(i)

tt4(i)

⊤

t4(i)Figure 4. Example: translation for the transition t4

t4(i) t5(i) t6(i)

card1

0ncp5(i)

⊤

Figure 5. Example: translation of the on�its with respet to plae p5

10. For eah plae pj ∈ P suh that |p•| ≥ 2 we reate a card1

0 gate ncpj(i) andonstrain it to true. It has hildren {t1(i), . . . , tk(i)}, where {t1, . . . , tk}is the postset of pj . The onstrained gate ncpj(i) ensures that at mostone of the transitions whih have the plae pj in preset an appear instep i. We say that this set of transitions is in on�it with respet tothe plae pj .The translation (a)-(b) as given above allows for �idle steps� in whih notransition ours. Thus the program enodes all the step exeutions of length nor less. We have hosen to remove the possibility of idling steps in our imple-mentation.3 Thus we always add the following gates to the system:() For eah step 0 ≤ i ≤ n− 1 add an or gate ni(i) (for non-idle) and onstrainit to true. It has the hildren {t1(i), . . . , tk(i)}, where {t1, . . . , tk} = T . Thusthe gate ni(i) will be true if at least one transition �res in step i.We denote by SC (Σ, n) (for step iruit) the translation given by (a)-().Given a valuation τ of the iruit SC (Σ, n), we an obtain the orrespond-ing sequene of markings and steps M0, [S0〉, M1, [S1〉, . . . , Mn−1, [Sn−1〉, Mn byhaving transition tj ∈ Si i� tj(i) is true, and pj ∈ Mi i� pj(i) is true. Beausegates of form tj(i) are the only input gates, the mapping from sequenes of stepsto onsistent truth valuations is in fat a bijetion.Lemma 1. The onstrained Boolean iruit SC (Σ, n) has a satisfying truth as-signment τ i� M0[S0〉M1[S1〉 · · ·Mn−1[Sn−1〉Mn is a step exeution of Σ, where
M0, [S0〉, M1, [S1〉, . . . , Mn−1, [Sn−1〉, Mn is the sequene of markings and stepsorresponding to τ .Thus we get our main result.Theorem 2. The onstrained Boolean iruit SC (Σ, n) enodes step exeutionsof length n.4.1 The Interleaving SemantisSometimes we would also like to onsider the interleaving semantis. It is easy toadd a set of onstrained gates to the iruit whih disallow non-singleton steps.(i) For eah step 0 ≤ i ≤ n−1 add an card1

0 gate nc(i) (for non-onurrent) andonstrain it to true. It has the hildren {t1(i), . . . , tk(i)}, where {t1, . . . , tk} =
T . Thus the gate nc(i) will be true if at most one transition �res in step i.We all the translation given by (a)-(),(i) the interleaving iruit IC (Σ, n).Theorem 3. The onstrained Boolean iruit IC (Σ, n) enodes interleaving ex-eutions of length n.3 Here the semantis of the translation di�ers from the one presented in [9℄.

4.2 The Proess SemantisThe translation for the proess semantis is the main ontribution of this paper.The main idea behind it is to modify the translation for step semantis in suh away that all step exeutions whih are not in Foata normal form are disallowed.If one looks at Def. 2 it is easy to see that eah transition t in step Si (notinluding the initial step S0) has to have at least one transition t′ in step Si−1whih generates at least one token to the preset of t. It is now straightforwardto enfore this in a loal way.We hange the preset of a transition in the following way. The part (b) of thetranslation is replaed by (b'), whih is idential to (b) exept that 7 is replaedby the 7' and 7� (see Figure 6 for an example):(b') For eah step 0 ≤ i ≤ n − 1 we add the following gates (1-6,8-10 omitted):7'. For eah transition tj ∈ T we reate an or gate dptj(i) (for disjuntivepreset) with the hildren {gp1(i), . . . , gpk(i)}, where {p1, . . . , pk} is thepreset of tj . The gate dptj(i) will be true if a token was generated tosome preset plae of transition tj in step i − 1. (The previous step!)7�. For eah transition tj ∈ T we reate an and gate ptj(i) with the hildren
{p1(i), . . . , pk(i), dptj(i)}, where {p1, . . . , pk} is the preset of tj . The gate
ptj(i) will be true if all the preset plaes of transition tj in step i ontaina token and the transition is loally in Foata normal form.Note that the hild gates of gates added by 7' already existed in the step trans-lation as they are generated by 2. The 7� is almost idential to 7 exept thatthe gate reated in 7' has been added to the list of hildren. The gate generatedby 7� now assures that both the preset of the transition is available and thetransition is loally in Foata normal form. These loal onstraints on transitionenabledness together imply that the step exeution will as a whole be in Foatanormal form (again aording to Def. 2).

or

or

pt4(i) and

notnt4(i)

tt4(i)

⊤

t4(i) p5(i)p3(i) gp3(i) gp5(i)

dpt4(i)

Figure 6. Example: proess semantis translation of t4

As in Def. 2, the initial step is speial.(p) For eah plae pj ∈ P we reate a gate gpj(0) and assoiate ⊤ with it.We all the translation given by (a),(p),(b'),() the proess iruit PC (Σ, n).We say that a proess π has depth n if the orresponding Foata normal formstep exeution FNF (π) has length n. We have the following result.Theorem 4. The onstrained Boolean iruit PC (Σ, n) enodes proesses ofdepth n.4.3 Cheking ReahabilityWe have presented three translations whih enode exeutions with bound nin di�erent semantis. We an now add any Boolean onstraint on the �nalmarking M , as given by the syntax f ::= p ∈ P | ¬f1 | f1 ∨ f2 | f1 ∧ f2. Givena parse tree of the formula f , we onvert it to a Boolean iruit FC(f, n) ofsame size by replaing eah atomi proposition p ∈ P by the gate p(n), and allother formula types with the orresponding gates having the same hildren asin the parse tree. Finally the top-level gate f is onstrained to true.Theorem 5. Let C (Σ, n) be one of PC (Σ, n), SC (Σ, n), IC (Σ, n). The on-strained Boolean iruit RC(Σ, f, n) = C (Σ, n) ∪ FC (f, n) has a satisfying truthassignment i� there exists a marking M whih satis�es f and is reahable in Σwith bound n in (proess, step, interleaving) semantis.The size of eah translation RC(Σ, f, n) as the sum of number of gates andonnetions between them is linear, i.e., O((n · (|P | + |T | + |F |)) + |f |).45 Experimental ResultsWe have implemented the reahability translations desribed in the previoussetion in a tool alled punroll (for proess unroller). We have implemented thefollowing optimization whih simpli�es away plaes (transitions) whih an neverhave a token (an never �re). For eah step 0 ≤ i ≤ n − 1:(i) For eah transition tj ∈ T : If for some plae p ∈ •tj the gate p(i) has funtion
⊥ assoiated with it (or alternatively in the proess semantis: for all plaes
p ∈ •tj the gate gp(i) has funtion ⊥ assoiated with it), then assoiate gate
tj(i) with funtion ⊥.(ii) For eah plae pj ∈ T : If for all transitions t ∈ •pj the gate t(i) is assoiatedwith ⊥, then assoiate the gate gpj(i + 1) with ⊥.(iii) For eah plae pj ∈ T : If both gates pj(i) and gpj(i + 1) are assoiated with
⊥, then assoiate pj(i + 1) with ⊥.4 This bound also holds if we restrit ourselves to Boolean iruits without card1

0 gates,beause in priniple eah card1

0 gate with k hildren an be simulated with (a simpleripple-arry adder style) iruit of size O(k) whih ontains only and and or gates.

(iv) Simplify the iruits of step i by substituting ⊥ when assoiated by (i)-(iii).The punroll tool an also add a onstraint whih requires that the markingreahed is a deadlok, as given by the property f = dead = ¬
∨

t∈T

∧
p∈•t p.As a onstrained satis�ability heker for Boolean iruits we use BCSat [10℄.It operates internally on Boolean iruits, and also diretly supports card1

0 gates.
BCSat is available from: <http://www.ts.hut.fi/�tjunttil/bsat/>.We use a set of deadlok heking benhmarks olleted by Corbett [4℄. Theyhave been onverted from ommuniating state mahines to nets by Melzer andRömer [13℄. The BYZA4_2A example is an exeption to this rule, it is from [14℄.The models were piked by hoosing the nontrivial ones whih have a deadlok.For eah model and all three semantis we inremented the used bound n untila deadlok was found. After that we stored the translation using that bound,and report the time for BCSat 0.3 to �nd the �rst satisfying truth assignment. Insome ases a satisfying truth assignment ould not be found within a reasonabletime in whih ase we report the time used to prove that there are no satisfyingtruth assignments for the iruit with bound n.The experimental results an be found in Fig. 7. The olumns are:� Problem: The problem name with the size of the instane in parenthesis.� |P |: Number of plaes in the net.� |T |: Number of transitions in the net.� Pr. n: The smallest integer n suh that a deadlok ould be found using theproess semantis / in ase of > n the largest integer n for whih we ouldprove that there is no deadlok with that bound using the proess semantis.� Pr. s: The time in seonds to �nd the �rst satisfying truth assignment / toprove that there is no satisfying truth assignment. (See Pr. n above.)� St. n and St. s: same as Pr. n and Pr. s but for the step semantis.� Int. n and Int. s: same as Pr. n and Pr. s but for the interleaving semantis.� States: Number of reahable states of the net system, or a lower bound > n.5The times reported are the average of 5 runs as reported by the /usr/bin/timeommand on a Linux PC with an AMD Athlon 1GHz proessor, 512MB RAM.The set of experiments we used is too small to say anything onlusive aboutthe performane of the method. There are, however, still some interesting ob-servations to be made. In the experiments the proess and step semantis oftenallow to use a smaller bound to �nd a deadlok. This partly explains their betterperformane when ompared to the interleaving semantis. The proess seman-tis has better performane than step semantis on e.g., BYZA4_2A, KEY(2),and MMGT(4). Several of the benhmarks (14 out of the 54 iruits used) weresolved �with preproessing� by BCSat, for example DARTES(1) in all semantis.The KEY(x) examples do not have a large number of reahable states, but seemto be still hard for bounded model heking, the results also indiate the reverseto be sometimes true, see e.g., BYZA4_2A with proess semantis.The punroll tool, the net systems, and the iruits used are available from:<http://www.ts.hut.fi/�kepa/experiments/Conur2001/>.5 These di�er from the ones reported in [9℄, where there unfortunately are some errors.

Problem |P | |T | Pr. n Pr. s St. n St. s Int. n Int. s StatesBYZA4_2A 579 473 8 5.6 8 179.8 >7 6.8 >2500000DARTES(1) 331 257 32 0.1 32 1.5 32 1.5 >1500000DP(12) 72 48 1 0.0 1 0.0 12 1.5 531440ELEV(1) 63 99 4 0.0 4 0.0 9 0.6 163ELEV(2) 146 299 6 0.0 6 0.2 12 12.7 1092ELEV(3) 327 783 8 0.4 8 2.7 15 126.5 7276ELEV(4) 736 1939 10 5.4 10 67.7 >13 560.5 48217HART(25) 127 77 1 0.0 1 0.0 >5 0.3 >1000000HART(50) 252 152 1 0.0 1 0.0 >5 1.3 >1000000HART(75) 377 227 1 0.0 1 0.0 >5 3.2 >1000000HART(100) 502 302 1 0.0 1 0.0 >5 5.9 >1000000KEY(2) 94 92 36 22.7 >27 76.0 >27 30.1 536KEY(3) 129 133 >30 179.0 >27 198.6 >27 47.3 4923KEY(4) 164 174 >27 32.9 >27 221.0 >27 58.7 44819MMGT(2) 86 114 6 0.1 6 0.2 8 1.3 816MMGT(3) 122 172 7 0.4 7 1.0 10 40.4 7702MMGT(4) 158 232 8 2.9 8 253.6 >11 476.0 66308Q(1) 163 194 9 0.1 9 0.2 >17 660.5 123596Figure 7. Experiments6 ConlusionsWe have presented how bounded reahability heking for 1-safe Petri nets anbe done using onstrained Boolean iruits. For step and interleaving semantisthese translations an be seen as iruit versions of the logi program translationsin [9℄. The proess semantis translation is new and is based on the notion ofFoata normal form for step exeutions.We have reated on an implementation alled punroll. We report on a setof benhmarks, where the BCSat tool is used to �nd whether the onstrainediruit is satis�able or not. The experiments seem to indiate that the proesssemantis translation is often the most ompetitive one.It should be quite straightforward to also use other forms of onurrenythan 1-safe net systems with proess semantis. The ruial point is to be ableto enode the onstraints needed for a step exeution to be in a Foata normalform in a loal manner.The lose onnetion of bounded reahability heking to AI planning teh-niques [11,15℄ needs to be investigated further. It might be useful to use stohastimethods [11℄ in the veri�ation setting. Also applying proess semantis for AIplanning needs to be investigated. (Step semantis has been used in [15℄.)There are interesting topis for further researh. We would like to extend thetool to handle bounded LTL model heking [3℄. For interleaving semantis thisis quite straightforward, but there are some subtle issues with step and proesssemantis whih need to be solved.Aknowledgements The author would like to warmly thank T. A. Junttilaand I. Niemelä for reating BCSat, and for fruitful disussions.

Referenes1. E. Best and R. Devillers. Sequential and onurrent behaviour in Petri net theory.Theoretial Computer Siene, 55(1):87�136, 1987.2. E. Best and C. Fernández. Nonsequential Proesses: A Petri Net View, volume 13of EATCS monographs on Theoretial Computer Siene. Springer-Verlag, 1988.3. A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symboli model heking withoutBDDs. In Tools and Algorithms for the Constrution and Analysis of Systems(TACAS'99), pages 193�207. Springer, 1999. LNCS 1579.4. J. C. Corbett. Evaluating deadlok detetion methods for onurrent software.Tehnial report, Department of Information and Computer Siene, University ofHawaii at Manoa, 1995.5. V. Diekert and Y. Métivier. Partial ommutation and traes. In Handbook offormal languages, Vol. 3, pages 457�534. Springer, Berlin, 1997.6. J. Esparza. Deidability and omplexity of Petri net problems � An introdution.In Letures on Petri Nets I: Basi Models, pages 374�428. Springer-Verlag, 1998.LNCS 1491.7. J. Esparza, S. Römer, and W. Vogler. An improvement of MMillan's unfoldingalgorithm. In Proeedings of 2nd International Workshop on Tools and Algorithmsfor the Constrution and Analysis of Systems (TACAS'96), pages 87�106, 1996.LNCS 1055.8. J. Esparza, S. Römer, and W. Vogler. An improvement of MMillan's unfoldingalgorithm, 2001. Aepted for publiation in Formal Methods for System Design.9. K. Heljanko and I. Niemelä. Answer set programming and bounded model heking.In Proeedings of the AAAI Spring 2001 Symposium on Answer Set Programming:Towards E�ient and Salable Knowledge Representation and Reasoning, pages90�96, Stanford, USA, Marh 2001. AAAI Press, Tehnial Report SS-01-01.10. T. A. Junttila and I. Niemelä. Towards an e�ient tableau method for Boolean ir-uit satis�ability heking. In Computational Logi � CL 2000; First InternationalConferene, pages 553�567, London, UK, 2000. LNCS 1861.11. H. Kautz and B. Selman. Pushing the envelope: Planning, propositional logi andstohasti searh. In Proeedings of the Thirteenth National Conferene on Arti-�ial Intelligene and the Eighth Innovative Appliations of Arti�ial IntelligeneConferene, pages 1194�1201. AAAI Press / MIT Press, 1996.12. H. C. M. Kleijn and M. Koutny. Proess semantis of P/T-nets with inhibitor ars.In Proeedings of the 21st International Conferene on Appliation and Theory ofPetri Nets, pages 261�281, 2000. LNCS 1825.13. S. Melzer and S. Römer. Deadlok heking using net unfoldings. In Proeedingsof 9th International Conferene on Computer-Aided Veri�ation (CAV '97), pages352�363, 1997. LNCS 1254.14. S. Merkel. Veri�ation of fault tolerant algorithms using PEP. Tehnial Re-port TUM-19734, SFB-Beriht Nr. 342/23/97 A, Tehnishe Universität Münhen,Münhen, Germany, 1997.15. I. Niemelä. Logi programming with stable model semantis as a onstraintprogramming paradigm. Annals of Mathematis and Arti�ial Intelligene,25(3,4):241�273, 1999.16. S. Römer. Theorie und Praxis der Netzentfaltungen als Basis für die Veri�kationnebenläu�ger Systeme. PhD thesis, Tehnishe Universität Münhen, Fakultät fürInformatik, Münhen, Germany, 2000.

