
Implementing LTL Model Cheking withNet Unfoldings ⋆Javier Esparza1 and Keijo Heljanko2

1 Institut für Informatik, Tehnishe Universität Münhen, Germanye-mail: esparza�in.tum.de
2 Lab. for Theoretial Computer Siene, Helsinki University of Tehnology, Finlande-mail: Keijo.Heljanko�hut.fiAbstrat We report on an implementation of the unfolding approahto model-heking LTL-X reently presented by the authors. Contrary tothat work, we onsider an state-based version of LTL-X, whih is moreused in pratie. We improve on the heking algorithm; the new versionallows to reuse ode muh more e�iently. We present results on a setof ase studies.1 IntrodutionUnfoldings [14,6,5℄ are a partial-order approah to the automati veri�ation ofonurrent and distributed systems, in whih partial-order semantis is used togenerate a ompat representation of the state spae. For systems exhibitinga high degree of onurreny, this representation an be exponentially moresuint than the expliit enumeration of all states or the symboli representationin terms of a BDD, thus providing a very good solution to the state-explosionproblem.Unfolding-based model-heking tehniques for LTL without the next opera-tor (alled LTL-X in the sequel) were �rst proposed in [22℄. A new algorithm withbetter omplexity bounds was introdued in [3℄, in the shape of a tableau system.The approah is based on the automata-theoreti approah to model-heking(see for instane [20℄), onsisting of the following well-known three steps: (1)translate the negation of the formula to be heked into a Bühi automaton; (2)synhronize the system and the Bühi automaton in an adequate way to yielda omposed system, and (3) hek emptiness of the language of the omposedsystem, where language is again de�ned in a suitable way.In [3℄ we used an ation-based version of LTL-X having an operator φ1Uaφ2for eah ation a; φ1Uaφ2 holds if φ1 holds until ation a ours, and immedi-ately after φ2 holds. Step (2) is very simple for this logi, whih allowed us toonentrate on step (3), the most novel ontribution of [3℄. However, the state-based version of LTL-X is more used in pratie. The �rst ontribution of thispaper is a solution to step (2) for this ase, whih turns out to be quite deliate.
⋆ Work partially supported by the Teilprojekt A3 SAM of the Sonderforshungsbereih342 �Werkzeuge und Methoden für die Nutzung paralleler Rehnerarhitekturen�, theAademy of Finland (Projets 47754 and 43963), and the Emil Aaltonen Foundation.

The seond ontribution of this paper onerns step (3). In [3℄ we presenteda two-phase solution; the �rst phase requires to onstrut one tableau, while theseond phase requires to onstrut a possibly large set of tableaux. We proposehere a more elegant solution whih, loosely speaking, allows to merge all thetableaux of [3℄ into one while keeping the rules for the tableau onstrutionsimple and easy to implement.The third ontribution is an implementation using the smodels NP-solver[18℄, and a report on a set of ase studies.The paper is strutured as follows. Setion 2 ontains basi de�nitions onPetri nets, whih we use as system model. Setion 3 desribes step (2) abovefor the state-based version of LTL-X. Readers wishing to skip this setion needonly read (and believe the proof of) Theorem 1. Setion 4 presents some baside�nitions about the unfolding method. Setion 5 desribes the new tableau sys-tem for (3), and shows its orretness. Setion 6 disusses the tableau generationtogether with some optimizations. Setion 7 reports on the implementation andase studies, and Setion 8 ontains onlusions.2 Petri netsA net is a triple (P, T, F), where P and T are disjoint sets of plaes and tran-sitions, respetively, and F is a funtion (P × T) ∪ (T × P) → {0, 1}. Plaesand transitions are generially alled nodes. If F (x, y) = 1 then we say thatthere is an ar from x to y. The preset of a node x, denoted by •x, is theset {y ∈ P ∪ T | F (y, x) = 1}. The postset of x, denoted by x•, is the set
{y ∈ P ∪ T | F (x, y) = 1}. In this paper we onsider only nets in whih everytransition has a nonempty preset and a nonempty postset.A marking of a net (P, T, F) is a mapping P → IN (where IN denotes thenatural numbers inluding 0). We identify a marking M with the multiset on-taining M(p) opies of p for every p ∈ P . For instane, if P = {p1, p2} and
M(p1) = 1, M(p2) = 2, we write M = {p1, p2, p2}.A marking M enables a transition t if it marks eah plae p ∈ •t with atoken, i.e. if M(p) > 0 for eah p ∈ •t. If t is enabled at M , then it an �re orour, and its ourrene leads to a new marking M ′, obtained by removing atoken from eah plae in the preset of t, and adding a token to eah plae in itspostset; formally, M ′(p) = M(p) − F (p, t) + F (t, p) for every plae p. For eahtransition t the relation t

−−−→ is de�ned as follows: M
t

−−−→M ′ if t is enabled at
M and its ourrene leads to M ′.A 4-tuple Σ = (P, T, F, M0) is a net system if (P, T, F) is a net and M0 is amarking of (P, T, F) (alled the initial marking of Σ). A sequene of transitions
σ = t1t2 . . . tn is an ourrene sequene if there exist markings M1, M2, . . . ,
Mn suh that

M0
t1−−−−→M1

t2−−−−→ . . .Mn−1
tn−−−−→Mn

Mn is the marking reahed by the ourrene of σ, whih is also denoted by
M0

σ
−−−→Mn. A marking M is a reahable marking if there exists an ourrene

sequene σ suh that M0
σ

−−−→M . An exeution is an in�nite ourrene se-quene starting from the initial marking. The reahability graph of a net system
Σ is the labelled graph having the reahable markings of Σ as nodes, and the

t
−−−→ relations (more preisely, their restrition to the set of reahable mark-ings) as edges. In this work we only onsider net systems with �nite reahabilitygraphs.A marking M of a net is n-safe if M(p) ≤ n for every plae p. A net system
Σ is n-safe if all its reahable markings are n-safe. Fig. 1 shows a 1-safe netsystem.

p1 p2

p3 p4 p5

p6

t1 t2 t3

t4 t5

t6

p7

t7Figure 1. The net system ΣLabelled nets. Let L be an alphabet. A labelled net is a pair (N, l) (also repre-sented as a 4-tuple (P, T, F, l)), where N is a net and l : P ∪ T → L is a labellingfuntion. Notie that di�erent nodes of the net an arry the same label. Weextend l to multisets of P ∪ T in the obvious way.For eah label a ∈ L we de�ne the relation a
−−−→ between markings as follows:

M
a

−−−→M ′ if M t
−−−→M ′ for some transition t suh that l(t) = a. For a �nite se-quene w = a1a2 . . . an ∈ L∗, M w

−−−→M ′ denotes that for some reahable mark-ings M1, M2, . . . , Mn−1 the relation M
a1−−−−→M1

a2−−−−→M2 . . . Mn−1
an−−−−→M ′holds. For an in�nite sequene w = a1a2 . . . ∈ Lω, M

w
−−−→ denotes that

M
a1−−−−→M1

a2−−−−→ M2 . . . holds for some reahable markings M1, M2,The reahability graph of a labelled net system (N, l, M0) is obtained byapplying l to the reahability graph of (N, M0). In other words, its nodes arethe set
{l(M) | M is a reahable marking}and its edges are the set

{l(M1)
l(t)

−−−−→ l(M2) | M1 is reahable and M1
t

−−−→M2} .

3 Automata Theoreti Approah to Model Cheking LTLWe show how to modify the automata theoreti approah to model hekingLTL [20℄ to best suit the net unfolding method.We restrit the logi LTL by removing the next time operator X . We all thisstuttering invariant fragment LTL-X. Given a �nite set Π of atomi propositions,the abstrat syntax of LTL-X is given by:
ϕ ::= π ∈ Π | ¬ϕ1 | ϕ1 ∧ ϕ2 | ϕ1 U ϕ2The semantis is a set of ω-words over the alphabet 2Π , de�ned as usual.Given a 1-safe net system Σ with initial marking M0, we identify the atomipropositions Π with a subset Obs ⊆ P of observable plaes of the net system,while the rest of the plaes are alled hidden. Eah marking M determines avaluation of Π = Obs in the following way: p ∈ Obs is true at M if M putsa token in p. Now, an exeution M0

t1−−−−→M1
t2−−−−→ . . . of Σ satis�es ϕ i� the

ω-word M0M1 . . . satis�es ϕ. The net system Σ satis�es ϕ, denoted Σ |= ϕ, ifevery exeution of Σ satis�es ϕ.The approah. Let ϕ be a formula of LTL-X. Using well-known algorithms (seee.g. [8℄) we onstrut a Bühi automaton A¬ϕ over the alphabet 2Π = 2Obswhih aepts a word w iff w 6|= ϕ.We de�ne a 1-safe produt net system Σ¬ϕ from Σ and A¬ϕ. Σ¬ϕ an beseen as the result of plaing Σ in a suitable environment, i.e., Σ¬ϕ is onstrutedby onneting Σ to an environment net system through new ars.It is easy to onstrut a produt net system with a distinguished set oftransitions I suh that Σ violates ϕ iff some exeution of the produt �ressome transition of I in�nitely often. We all suh an exeution an illegal ω-trae. However, this produt synhronizes A¬ϕ with Σ on all transitions, whihe�etively disables all onurreny present in Σ. Sine the unfolding approahexploits the onurreny of Σ in order to generate a ompat representation ofthe state spae, this produt is not suitable, and so we propose a new one.We de�ne the set V of visible transitions of Σ as the set of transitions whihhange the marking of some observable plae of Σ. Only these transitions willsynhronize with the automaton. So, for instane, in order to hek a propertyof the form 2(p → 3q), where p and q are plaes, we will only synhronize withthe transitions removing or adding tokens to p and q. This approah is similarbut not idential to Valmari's tester approah desribed in [19℄. (In fat, a subtlepoint in Valmari's onstrution makes its diret implementation unsuitable forheking state based LTL-X.)The prie to pay for this nier synhronization is the need to hek notonly for illegal ω-traes, but also for so-alled illegal liveloks. The new produtontains a new distinguished set of transitions L (for livelok). An illegal livelokis an exeution of the form σ1tσ2 suh that t ∈ L and σ2 does not ontainany visible transition. For onveniene we use the notation M0
σ

−−−→M
τ

−−−→to denote this, and impliitly require that σ = σ1t with t ∈ L and that τ is anin�nite sequene whih only ontains invisible transitions.

In the rest of the setion we de�ne Σ¬ϕ. Readers only interested in the de�-nition of the tableau system for LTL model-heking an safely skip it. Only thefollowing theorem, whih is proved hand in hand with the de�nition, is neessaryfor it. Property (b) is what we win by our new approah: The environment onlyinterferes with the visible transitions of Σ.Theorem 1. Let Σ be a 1-safe net system whose reahable markings are pair-wise inomparable with respet to set inlusion.1 Let ϕ be an LTL-X formulaover the observable plaes of Σ. It is possible to onstrut a net system Σ¬ϕsatisfying the following properties:(a) Σ |= ϕ iff Σ¬ϕ has neither illegal ω-traes nor illegal liveloks.(b) The input and output plaes of the invisible transitions are the same in Σand Σ¬ϕ.Constrution of Σ¬ϕ We desribe the synhronization Σ¬ϕ of Σ and A¬ϕ in asemiformal but hopefully preise way. Let us start with two preliminaries. First,we identify the Bühi automaton A¬ϕ with a net system having a plae for eahstate q, with only the initial state q0 having a token, and a net transition for eahtransition (q, x, q′); the input and output plaes of the transition are q and q′,respetively; we keep A¬ϕ, q and (q, x, q′) as names for the net representation,the plae and the transition. Seond, we split the exeutions of Σ that violate ϕinto two lasses: exeutions of type I, whih ontain in�nitely many ourrenesof visible transitions, and exeutions of type II, whih only ontain �nitely many.We will deal with these two types separately.
Σ¬ϕ is onstruted in several steps:(1) Put Σ and (the net representation of) A¬ϕ side by side.(2) For eah observable plae p add a omplementary plae (see [17℄) p to Σ.
p is marked iff p is not, and so heking that proposition p does not hold isequivalent to heking that the plae p̄ has a token. A set x ⊆ Π an now beseen as a onjuntion of literals, where p ∈ x is used to denote p ∈ (Π \ x).(3) Add new ars to eah transition (q, x, q′) of A¬ϕ so that it �observes� theplaes in x.This means that for eah literal p (p) in x we add an ar from p (p) to
(q, x, q′) and an ar from (q, x, q′) to p (p). The transition (q, x, q′) an onlybe enabled by markings of Σ satisfying all literals in x.(4) Add a sheduler guaranteeing that:
• Initially A¬ϕ an make a move, and all visible moves (i.e., the �rings ofvisible transitions) of Σ are disabled.
• After a move of A¬ϕ, only Σ an make a move.
• After Σ makes a visible move, A¬ϕ an make a move and until thathappens all visible moves of Σ are disabled.1 This ondition is purely tehnial. Any 1-safe net system an be easily transformedinto an equivalent one satisfying it by adding some extra plaes and ars; moreover,the ondition an be removed at the prie of a less nie theory.

This is ahieved by introduing two sheduler plaes sf and ss [22℄. Theintuition behind these plaes is that when sf (ss) has a token it is the turnof the Bühi automaton (the system Σ) to make a move. In partiular, visibletransitions transfer a token from ss to sf , and Bühi transitions from sf to
ss. Beause the Bühi automaton needs to observe the initial marking of Σ,we initially put one token in sf and no tokens on ss.(5) Let I be a subset of transitions de�ned as follows. A transition belongs to Iiff its postset ontains a �nal state of A¬ϕ.Observe that sine only moves of A¬ϕ and visible moves of Σ are sheduled,invisible moves an still be onurrently exeuted.Let Σ′

¬ϕ be the net system we have onstruted so far. The following is animmediate onsequene of the de�nitions:
Σ has an exeution of type I if and only if Σ′

¬ϕ has an illegal ω-trae.We now extend the onstrution in order to deal with exeutions of type II.Let σ be a type II exeution of Σ. Take the sequene of markings reahed alongthe exeution of σ, and projet it onto the observable plaes. Sine σ only on-tains �nitely many ourrenes of visible transitions, the result is a sequene ofthe form O0
0O

1
0 . . . Oj

0O
0
1O

1
1 . . . Ok

1O0
2 . . . O0

n(On)ω. (The moves from Oi to Oi+1are aused by the �ring of visible transitions.)We an split σ into two parts: a �nite pre�x σ1 ending with the last ourreneof a visible transition (σ1 is empty if there are no visible transitions), and anin�nite su�x σ2 ontaining only invisible transitions. Clearly, the projetion ontothe observable plaes of the marking reahed by the exeution of σ1 is OnSine LTL-X is losed under stuttering, A¬ϕ has an aepting run
r = q0

O0−−−−→ q1
O1−−−−→ . . .

On−1

−−−−−−→ qn
On−−−−→ qn+1

On−−−−→ qn+2 . . .where the notation q
O

−−−→ q′ means that a transition (q, x, q′) is taken suh thatthe literals of x are true at the valuation given by O. We split this run into twoparts: a �nite pre�x r1 = q0
O0−−−−→ q1 . . . qn−1

On−1

−−−−−−→ qn and an in�nite su�x
r2 = qn

On−−−−→ qn+1
On−−−−→ qn+2In the net system representation of A¬ϕ, r1 and r2 orrespond to ourrenesequenes. By onstrution, the �interleaving� of r1 and σ1 yields an ourrenesequene τ1 of Σ′

¬ϕ.Observe that reahable markings of Σ′

¬ϕ are of the form (q, s, O, H), meaningthat they onsist of a token on a state q of A¬ϕ, a token on one of the plaesof the sheduler (i.e., s ∈ {ss, sf}), a marking O of the observable plaes, anda marking H of the hidden plaes. Let (qn, sf , On, H) be the marking of Σ′

¬ϕreahed after exeuting τ1. (We have s = sf beause the last transition of σ1is visible.) The following property holds: With qn as initial state, the Bühiautomaton A¬ϕ aepts the sequene Oω
n . We all any pair (q, O) satisfying thisproperty a hekpoint and de�ne Σ¬ϕ as follows:

(6) For eah hekpoint (q, O) and for eah reahable marking (q, sf , O, H) of
Σ′

¬ϕ, add a new transition having all the plaes marked at (q, sf , O, H) aspreset, and all the plaes marked at O and H as postset. Let L (for liveloks)be this set of transitions.The reader has possibly observed that the set L an be very large, beausethere an be many hidden markings H for a given marking O (exponentiallymany in the size of Σ). Apparently, this makes Σ¬ϕ unsuitable for model-heking. In Set. 6 we show that this is not the ase, beause Σ¬ϕ need not beexpliitly onstruted.Observe that after �ring a L-transition no visible transition an our any-more, beause all visible transitions need a token on ss for �ring. We prove:
Σ has an exeution of type II if and only if Σ¬ϕ has an illegal livelok.For the only if diretion, assume �rst that σ is a type II exeution of Σ.Let τ1 be the ourrene sequene of Σ¬ϕ de�ned above (as the �interleaving�of the pre�x σ1 of σ and the pre�x r1 of r). Further, let (qn, sf , On, H) be themarking reahed after the exeution of τ1, and let t be the transition added in(6) for this marking. De�ne ρ1 = τ1 and ρ2 = σ2. It is easy to show that ρ1tρ2is an exeution of Σ¬ϕ and so an illegal livelok. For the if diretion, let ρ1tρ2be an illegal livelok of Σ¬ϕ, where t is an L-transition. After the �ring of tthere are no tokens in the plaes of the sheduler, and so no visible transitionan our again; hene, no visible transition of Σ ours in ρ2. Let σ1 and σ2be the projetions of ρ1 and ρ2 onto the transitions of Σ. It is easy to see that

σ = σ1σ2 is an exeution of Σ. Sine σ2 does not ontain any visible transition,
σ is an exeution of type II.4 Basi de�nitions on unfoldingsIn this setion we brie�y introdue the de�nitions we needed to desribe theunfolding approah. More details an be found in [6℄.Ourrene nets. Given two nodes x and y of a net, we say that x is ausallyrelated to y, denoted by x ≤ y, if there is a (possibly empty) path of arrowsfrom x to y. We say that x and y are in on�it, denoted by x#y, if there is aplae z, di�erent from x and y, from whih one an reah x and y, exiting z bydi�erent arrows. Finally, we say that x and y are onurrent, denoted by x co y,if neither x < y nor y < x nor x#y hold. A co-set is a set of nodes X suhthat x co y for every x, y ∈ X . Ourrene nets are those satisfying the followingthree properties: the net, seen as a direted graph, has no yles; every plae hasat most one input transition; and, no node is in self-on�it, i.e., x#x holds forno x. A plae of an ourrene net is minimal if it has no input transitions. Thenet of Fig. 2 is an in�nite ourrene net with minimal plaes a, b. The defaultinitial marking of an ourrene net puts one token on eah minimal plae annone in the rest.

Branhing proesses. We assoiate to Σ a set of labelled ourrene nets, alledthe branhing proesses of Σ. To avoid onfusions, we all the plaes and transi-tions of branhing proesses onditions and events, respetively. The onditionsand events of branhing proesses are labelled with plaes and transitions of Σ,respetively. The onditions and events of the branhing proesses are subsetsfrom two sets B and E , indutively de�ned as the smallest sets satisfying thefollowing onditions:� ⊥ ∈ E , where ⊥ is an speial symbol;� if e ∈ E , then (p, e) ∈ B for every p ∈ P ;� if ∅ ⊂ X ⊆ B, then (t, X) ∈ E for every t ∈ T .In our de�nitions of branhing proess (see below) we make onsistent use ofthese names: The label of a ondition (p, e) is p, and its unique input event is
e. Conditions (p,⊥) have no input event, i.e., the speial symbol ⊥ is used forthe minimal plaes of the ourrene net. Similarly, the label of an event (t, X)is t, and its set of input onditions is X . The advantage of this sheme is that abranhing proess is ompletely determined by its sets of onditions and events.We make use of this and represent a branhing proess as a pair (B, E).De�nition 1. The set of �nite branhing proesses of a net system Σ with theinitial marking M0 = {p1, . . . , pn} is indutively de�ned as follows:� ({(p1,⊥), . . . , (pn,⊥)}, ∅) is a branhing proess of Σ.� If (B, E) is a branhing proess of Σ, t ∈ T , and X ⊆ B is a o-set labelledby •t, then (B ∪{(p, e) | p ∈ t•} , E ∪{e}) is also a branhing proess of Σ,where e = (t, X). If e /∈ E, then e is alled a possible extension of (B, E).The set of branhing proesses of Σ is obtained by delaring that the unionof any �nite or in�nite set of branhing proesses is also a branhing proess,where union of branhing proesses is de�ned omponentwise on onditions andevents. Sine branhing proesses are losed under union, there is a unique max-imal branhing proess, alled the unfolding of Σ. The unfolding of our runningexample is an in�nite ourrene net. Figure 2 shows an initial part. Events andonditions have been assigned identi�ators that will be used in the examples.For instane, the event (t1, {(p1,⊥)}) is assigned the identi�ator 1.We take as partial order semantis of Σ its unfolding. This is justi�ed, beauseit an be easily shown the reahability graphs of Σ and of its unfolding oinide.(Notie that the unfolding of Σ is a labelled net system, and so its reahabilitygraph is de�ned as the image under the labelling funtion of the reahabilitygraph of the unlabelled system.)Con�gurations. A on�guration of an ourrene net is a set of events C sat-isfying the two following properties: C is ausally losed, i.e., if e ∈ C and
e′ < e then e′ ∈ C, and C is on�it-free, i.e., no two events of C are inon�it. Given an event e, we all [e] = {e′ ∈ E | e′ ≤ e} the loal on�g-uration of e. Let Min denote the set of minimal plaes of the branhing pro-ess. A on�guration C of the branhing proess is assoiated with a marking

p1

p1 p1

p2

p2 p2

p3

p3 p3

p4

p4 p4

p5

p5 p5

p6 p6

p6 p6p6 p6

t1

t1 t1

t2

t2 t2

t3

t3 t3

t4

t4 t4

t5

t5 t5

t6 t6

p7 p7

p7 p7p7 p7

t7 t7

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

1 2 3

4 5

6 7 8 9

10 11 12 13 14 15

16 17 18 19

c d e

f g h i

j k l m

n o p q r s

t u v w x y z a’

a b

Figure 2. The unfolding of Σof Σ denoted by Mark (C) = l((Min ∪ C•) \ •C). The orresponding set ofonditions assoiated with a on�guration is alled a ut, and it is de�ned as
Cut(C) = ((Min ∪ C•) \ •C).In Fig. 2, {1, 3, 4, 6} is a on�guration, and {1, 4} (not ausally losed) or
{1, 2} (not on�it-free) are not. A set of events is a on�guration if and onlyif there is one or more �ring sequenes of the ourrene net (from the defaultinitial marking) ontaining eah event from the set exatly one, and no fur-ther events. These �ring sequenes are alled linearisations. The on�guration
{1, 3, 4, 6} has two linearisations, namely 1 3 4 6 and 3 1 4 6. All linearisations leadto the same reahable marking. For example, the two sequenes above lead to themarking {p1, p7}. By applying the labelling funtion to a linearisation we obtaina �ring sequene of Σ. Abusing of language, we also all this �ring sequene alinearisation. In our example we obtain t1t3t4t6 and t3t1t4t6 as linearisations.Given a on�guration C, we denote by ↑C the set of events of the unfolding
{e | e 6∈ C ∧ ∀e′ ∈ C : ¬(e#e′)}. Intuitively, ↑C orresponds to the behavior of
Σ from the marking reahed after exeuting any of the linearisations of C. Weall ↑C the ontinuation after C of the unfolding of Σ. If C1 and C2 are two �niteon�gurations leading to the same marking, i.e. Mark (C1) = M = Mark (C2),

then ↑C1 and ↑C2 are isomorphi, i.e., there is a bijetion between them whihpreserves the labelling of events and the ausal, on�it, and onurreny rela-tions (see [6℄).Adequate orders. To implement a net unfolding algorithm we need the notion ofadequate order on on�gurations [6℄. Given a on�guration C of the unfoldingof Σ, we denote by C ⊕ E the set C ∪ E, under the ondition that C ∪ E is aon�guration satisfying C ∩ E = ∅. We say that C ⊕ E is an extension of C.Now, let C1 and C2 be two �nite on�gurations leading to the same marking.Then ↑C1 and ↑C2 are isomorphi. This isomorphism, say f , indues a mappingfrom the extensions of C1 onto the extensions of C2; the image of C1 ⊕E underthis mapping is C2 ⊕ f(E).De�nition 2. A partial order ≺ on the �nite on�gurations of the unfolding ofa net system is an adequate order if:� ≺ is well-founded,� C1 ⊂ C2 implies C1 ≺ C2, and� ≺ is preserved by �nite extensions; if C1 ≺ C2 and Mark (C1) = Mark (C2),then the isomorphism f from above satis�es C1 ⊕ E ≺ C2 ⊕ f(E) for all�nite extensions C1 ⊕ E of C1.Total adequate orders for 1-safe Petri nets and for synhronous produts oftransition systems have been presented in [6,5℄.5 Tableau SystemWe showed in Setion 3 that the model heking problem for LTL-X an besolved by heking the existene of illegal ω-traes and illegal liveloks in Σ¬ϕ.In [3℄ these problems are solved using tableau tehniques. A branhing proessan be seen as a �distributed� tableau, in whih onditions are �fats� and eventsrepresent �inferenes�. For two onditions b and b′, b co b′ models that the fatsrepresented by b and b′ an be simultaneously true. A tableau is onstrutedby adding new events (inferenes) one by one following an adequate order; someevents are delared as �terminals�, and the onstrution of the tableau terminateswhen no new event an be added having no terminals among its predeessors.The tableau systems of [3℄ require to onstrut a possibly large set of branh-ing proesses. Here we present a new tableau system onsisting of one singlebranhing proess.22 For the reader familiar with [3℄: the L-transitions in the net system Σ¬ϕ at as glueto onnet a set of branhing proesses (the tableau omponents of [3℄) together intoone larger tableau.

An Adequate Order for LTL. We simplify the implementation of the tableausystem by seleting a speial adequate order. We use ≺ to denote the totaladequate order de�ned for 1-safe Petri nets in [6℄. We all an event orrespondingto an L-transition an L-event. We de�ne for a set of events C the funtion before
L-event as BL(C) = {e ∈ C | [e] \ {e} ontains no L-events}. The funtion after
L-event is de�ned orrespondingly as AL(C) = (C \BL(C)). We an now de�neour new adequate order.De�nition 3. Let C1 and C2 be two �nite on�gurations of the unfolding of theprodut net system Σ¬ϕ. C1 ≺LTL C2 holds if� BL(C1) ≺ BL(C2), or� BL(C1) = BL(C2) and C1 ≺ C2.The adequate order ≺LTL is appliation spei� in the sense that it is not anadequate order for an arbitrary net system Σ, but needs some speial propertiesof the net system Σ¬ϕ. We have the following result.Theorem 2. The order ≺LTL is a total adequate order for �nite on�gurationsof the unfolding of Σ¬ϕ.See [4℄ for the proof.New Tableau System. We �rst divide the unfolding of Σ¬ϕ into two disjoint setsof events. Intuitively, the �rst set is used for the ω-trae detetion part, and theseond for the illegal livelok detetion part. We de�ne part-I to be the set ofevents e suh that [e] does not ontain an L-event and part-II as the set of eventswhih are not in part-I.De�nition 4. An event e of the unfolding Σ¬ϕ is a terminal, if there existsanother event e′ suh that Mark ([e′]) = Mark ([e]), [e′] ≺LTL [e], and one of thefollowing two mutually exlusive ases holds:(I) e ∈ part-I, and either(a) e′ < e, or(b) ¬(e′ < e) and #I [e

′] ≥ #I [e], where #IC denotes the number of I-eventsin C.(II) e ∈ part-II, and either(a) BL([e′]) ≺LTL BL([e]), or(b) BL([e′]) = BL([e]) and ¬(e′#e), or() BL([e′]) = BL([e]), e′#e, and |[e′]| ≥ |[e]|.A tableau T is a branhing proess (B, E) of Σ¬ϕ suh that for every possibleextension e of (B, E) at least one of the immediate predeessors of e is a terminal.A terminal is suessful if it is type (I)(a) and [e]\ [e′] ontains an I-event, or itis of type (II)(b). All other terminals are unsuessful. A tableau T is suessfulif it ontains a suessful terminal, otherwise it is unsuessful.

Loosely speaking, a tableau is a branhing proess whih annot be extendedwithout adding a ausal suessor to a terminal.We have the following result:Theorem 3. Let T be a tableau for Σ¬ϕ.� Σ¬ϕ has an illegal ω-trae iff T has a suessful terminal of type I.� Σ¬ϕ has an illegal livelok iff T has a suessful terminal of type II.� T ontains at most K2 non-terminal events, where K is the number of reah-able markings of Σ¬ϕ.See [4℄ for the proof.6 Generating the TableauWe desribe an implementation of the tableau system of Set. 5. The main goalis to keep the tableau generation as similar as possible to a onventional pre�xgeneration algorithm [6℄. In this way any pre�x generation algorithm an beeasily adapted to also perform LTL model heking.The tableau generation algorithm (Algorithm 1) is almost idential to themain routine of a pre�x generation algorithm. The hanges are: an additionalblok of ode devoted to generating the L-events dynamially; a di�erent buteasy to implement adequate order; a new ut-o� detetion subroutine. The mainfeature of the implementation is the e�ient handling of L-transitions, whih wedisuss next.Generating the L-transitions Dynamially. Reall that in the synhronization
Σ¬ϕ we an for eah Bühi state q have as many L-transitions as there arereahable markings of the form (q, sf , O, H) in the net system Σ¬ϕ. Clearly wean not expliitly generate them all due to e�ieny reasons. Instead we generatea net system Σs

¬ϕ (s stands for stati) in whih this set of L-transitions (addedby step (6) of the synhronization proedure in Setion 3) is replaed by:(6') Add for eah Bühi transition t = (q, x, q′) in the net system Σ′

¬ϕ (i.e., thesynhronization after steps (1)-(5) as de�ned in Set. 3) a new transition t′.The preset of t′ is equivalent to the preset of t and the postset of t′ is empty.Let L (for liveloks) be this set of transitions.We an now dynamially generate any of the (enabled) L-transitions of
Σ¬ϕ. Namely, for a transition t orresponding to a reahable marking M =
(q, sf , O, H) to be enabled in Σ¬ϕ, a transition t′ (for some (q, x, q′)) must beenabled in Σs

¬ϕ and the Bühi automaton must aept Oω when q is given asthe initial state. Loosely speaking we test the �rst label of the sequene usingthe transition t′, and if this test sueeds we hek whether O an be in�nitelystuttered. (Using this onstrution it is easy to implement �no-are values� forseleted atomi propositions by leaving them out of the preset of t′.) Now gen-erating the postset of t from M is trivial.

Optimizations in Dynami Creation. We an thus dynamially generate L-transitions for eah reahable marking M as required. However, we an do betterby using the net unfolding method. The main idea is to generate the unfolding of
Σ¬ϕ by using Σs

¬ϕ to �nd �andidate� L-events. Assume we have found an event
es orresponding to a transition t′ in the unfolding of Σs

¬ϕ and the stutteringhek desribed above passes for the marking M = Mark ([es]). Then we add anevent e into the unfolding of Σ¬ϕ orresponding to the e�et of the transition tin the marking M . If we would diretly use the onstrution above we would alsoadd an event e′ to the unfolding of Σ¬ϕ for eah marking M ′ = (q, sf , O, H ′)whih is reahable from M using only invisible transitions. We now show thatadding only the event e su�es: Let E be an extension of [e]. If there is an illegallivelok starting from M ′ = Mark ([e] ⊕ E) then there is also an illegal livelokstarting from M . This an be easily seen to be the ase beause all extensions
E ontain only invisible events and thus the set of observable plaes in both Mand M ′ is O. Algorithm 1 uses the property desribed above to add the required
L-events dynamially. Another optimization used is the fat that only the plaesin the presets of invisible transitions (denoted InvisPre) need to be added to thepostset of an L-transition.Algorithm 2 is the ut-o� detetion subroutine. It handles events in part-Iand part-II di�erently. This is one example implementation, and it losely followsthe de�nition of the tableau. It sets the global boolean variable success to trueand alls the ounterexample generation subroutine (Algorithm 3) if it �nds aounterexample.The implementation of the hek whether Aq

¬ϕ aepts Oω in Algorithm 1an be done in linear time in the size of the automaton A¬ϕ as follows. Firstrestrit A¬ϕ to transitions satisfying O, and then use a linear time emptinessheking algorithm (see e.g. [2℄) to hek whether an aepting loop an bereahed starting from q in this restrited automaton. Beause A¬ϕ is usuallyquite small ompared to the size of the model heked system this should not bea limiting fator. Cahing of these hek results an also be used if neessary.The adequate order ≺LTL an also be quite e�iently implemented. We anprove that if a on�guration C ontains an L-event e, then BL(C) = [e]. Nowit is also the ase that eah on�guration only inludes at most one L-event. Byusing these two fats a simple and e�ient implementation an be devised.Eah time our algorithm adds a non-terminal L-event, it �rst �nds outwhether a livelok ounterexample an be generated from its future. Only ifno ounterexample is found, it ontinues to look for illegal ω-traes and furtherL-events. Thus we use the adequate order ≺LTL to fore a searh order similarto that used by Valmari in [19℄ whih detets divergene ounterexamples ininterleaved state spaes. However, our algorithm is �breadth-�rst style� and italso does illegal ω-trae detetion, a part whih is not inluded in [19℄.

Algorithm 1 The tableau generation algorithminput: The produt net system Σs
¬ϕ = (P, T, F, M0), where M0 = {p1, . . . , pn}.output: true if there is a ounterexample, false otherwise.global variables: successbegin

Fin := {(p1,⊥), . . . , (pn,⊥)};ut-o� := ∅;
pe := PE (Fin); /* Compute the set of possible extensions */
success := false;while pe 6= ∅ and success = false dohoose an event e = (t,X) in pe suh that [e] is minimalwith respet to ≺LTL;

Y := t•; /* Remember the postset of t *//* Create the required L-events dynamially */if t is a L-transition then
M := Mark([e] \ {e}); /* The marking M = (q, sf , O, H) */
q := M ∩ Q; /* Extrat the Bühi state q *//* (Bühi emptiness heking algorithm an be used here) */if Aq

¬ϕ = (Γ, Q, q, ρ, F) does not aept Oω thenontinue; /* Disard e beause (q, O) is not a hekpoint */endif
X := Cut([e] \ {e}); /* Extend the preset to also remove tokens from H */
e := (t,X); /* Rename e (i.e., add ars from all preset onditions to e) */
Y := (M ∩ InvisPre); /* Projet M on invisible transition presets */endifif [e] ∩ ut-o� = ∅ thenappend to Fin the event e and a ondition (p, e)for every plae p ∈ Y ;
pe := PE(Fin); /* Compute the set of possible extensions */if is_cutoff (e) thenut-o� := ut-o� ∪ {e};endifelse
pe := pe \ {e};endifenddoreturn success ;end

Algorithm 2 The is_cutoff subroutineinput: An event e.output: true if e is a terminal of the tableau, false otherwise.beginforeah e′ suh that Mark([e′]) = Mark([e]) do /* [e′] ≺LTL [e] holds */if e ∈ part-I then /* ase (I) */if e′ < e thenif [e] \ [e′] ontains an I-event then
success := true ; /* Counterexample found! */
counterexample(e, e′);endifreturn true ;else if #I [e

′] ≥ #I [e] thenreturn true ;endifelse /* ase (II) */if BL([e′]) ≺LTL BL([e]) thenreturn true ;else if ¬(e′#e) then /* BL([e′]) = BL([e]) holds */
success := true ; /* Counterexample found! */
counterexample(e, e′);return true ;else if |[e′]| ≥ |[e]| then /* BL([e′]) = BL([e]) holds */return true ;endifendifenddoreturn false;end

Algorithm 3 The counterexample subroutineinput: A suessful event e with the orresponding event e′.begin
C1 := [e] ∩ [e′];
C2 := [e] \ C1;/* C1 ontains the pre�x and C2 the aepting loop */
print_linearisation(C1);
print_linearisation(C2);end

7 Experimental ResultsWe have implemented a prototype of the LTL model heking proedure alledunfsmodels. We use the Spin tool [12℄ version 3.4.3 to generate the Bühi au-tomaton A¬ϕ and a tool by F. Wallner [22℄ to generate the synhronization Σ′

¬ϕwhih is given to the prototype tool as input.The smodels tool [18℄ is used to alulate the set of possible extensions ofa branhing proess. It is a NP-solver whih uses logi programs with stablemodel semantis as the input language. Calulating the possible extensions isa quite demanding ombinatorial problem. Atually a deision version of theproblem an be show to be NP-omplete in the general ase [10℄. However ifthe maximum preset size of the transitions |•t| is bounded the problem beomespolynomial [7℄. (The problem is losely related to the lique problem whih hasa similar harateristi, for a longer disussion see [7℄.)We hose to use smodels to solve this ombinatorial problem instead ofimplementing a dediated algorithm. That hoie allowed us to onentrate onother parts of the implementation. The translation employs onstruts similarto those presented for the submarking reahability problem in [11℄, however itdi�ers in several tehnial details. The translation is linear in the sizes of both thenet and the pre�x, however we will not present it here due to spae restritions.For benhmarks we used a set of LTL model heking examples olletedby C. Shröter. The experimental results are olleted in Fig. 3. The 1-safe netsystems used in the experiments are as follows:� BRUIJN(2), DIJKST(2), and KNUTH(2): Mutex algorithms modeled byS. Melzer.� BYZA4_0B and BYZA4_0B: Byzantine agreement algorithm versions mod-eled by S. Merkel [16℄.� RW1W1R, RW1W3R and RW2W1R: Readers and writers synhronizationmodeled by S. Melzer and S. Römer [15℄.� PLATE(5): A prodution ell example from [13℄, modeled by M. Heiner andP. Deussen [9℄.� EBAHN: A train model by K. Shmidt.� ELEV(3) and ELEV(4): Elevator models by J. C. Corbett [1℄, onverted tonets by S. Melzer and S. Römer [15℄.� RRR(xx): Dining philosophers with xx philosophers, modeled by C. Shröter.The reported running times only inlude unfsmodels 0.9 running times, asthe Bühi automata generation and the synhronization with the original netsystem took insigni�ant amount of time. All the running times are reported asthe sum of system and user times as reported by the /usr/bin/time ommandwhen run on a PC with an AMD Athlon 1GHz proessor, 512MB RAM, usingg 2.95.2 and Linux 2.2.17. The times are all averaged over 5 runs.The unfsmodels tool in an on-the-�y tool in the sense that it stops the pre-�x (tableau) generation if it �nds a ounterexample during the unfolding. The

Problem BLTL ELTL #LTL Cex BF in EF in #F in States SeLTL SeF inBRUIJN(2) 2874 1336 327 N 2676 1269 318 5183 13.1 11.0DIJKST(2) 1856 968 230 N 1700 921 228 2724 4.8 3.8KNUTH(2) 2234 1044 251 N 2117 1009 251 4483 7.1 6.1BYZA4_0B 1642 590 82 N 1630 587 82 >2000000 7.0 6.9BYZA4_2A 401 125 4 N 396 124 4 >2500000 0.3 0.3RW1W1R 568 296 32 N 563 295 32 2118 0.5 0.5RW1W3R 28143 15402 5210 N 28138 15401 5210 165272 1863.4 1862.2RW2W1R 18280 9242 1334 N 18275 9241 1334 127132 1109.6 1108.2PLATE(5) 1803 810 12 N 1619 768 12 1657242 14.0 11.8EBAHN 151 62 21 Y 1419 673 383 7776 0.0 0.7ELEV(3) 124 64 10 Y 7398 3895 1629 7276 0.1 91.7ELEV(4) 154 80 13 Y 32354 16935 7337 48217 0.1 1706.2RRR(10) 88 42 5 Y 85 45 19 14985 0.0 0.0RRR(20) 167 81 8 Y 161 81 32 >10000000 0.1 0.0RRR(30) 240 114 9 Y 230 110 41 >10000000 0.2 0.1RRR(50) 407 201 18 Y 388 188 70 >10000000 0.7 0.5Figure 3. Experimental results.reported pre�x sizes in this ase are the partial pre�x at the time the ounterex-ample was found. The tool an also be instruted to generate a onventionalpre�x using the pre�x generation algorithm desribed in [6℄ for omparison.In Fig. 3 the olumns of the table have the following meanings:� Problem: The name of the problem with the size of the instane.� BLTL, ELTL, and #LTL: The number of onditions, events, and the numberof events whih are terminals in the LTL pre�x, respetively.� Cex: N - There was no ounterexample, the formula holds. Y - There was aounterexample, the formula does not hold.� BFin, EFin, and #Fin: The size of di�erent parts of the �nite ompletepre�x as above but for the original net system Σ using the onventionalpre�x generation algorithm desribed in [6℄.� States: The number of states n in the reahability graph of the original netsystem Σ obtained using the PROD tool [21℄, or a lower bound > n.� SeLTL: The time used by unfsmodels in seonds needed to �nd a oun-terexample or to show that there is none.� SeFin: The time used by unfsmodels in seonds needed to generate a �niteomplete pre�x of the original net system Σ.At this point there are a ouple of observations to be made. First of all, onthis set of example nets and formulas, the speed of omputing a LTL pre�x isalmost idential to the speed of omputing a onventional pre�x (of omparablesize). The main reason for this is that the time needed to ompute the possibleextensions dominates the omputation time in our prototype. Thus the (slightly)more ompliated algorithm needed for the ut-o� detetion do not ontribute in

a major way to the running time of the tool. Seondly, on all of the experiments,the size of the LTL pre�x is of the same order of magnitude as the onventionalpre�x. Thus in this set of examples the quadrati worst-ase blow-up (possibleaording to Theorem 3) does not materialize. We expet this to be the ase alsoin other examples when the used LTL formulas are short and the properties tobe heked are loal, in the sense that the produt net system preserves most ofthe onurreny present in the original net system.Problem BI EI #I BII EII #II Cpt Formula typeBRUIJN(2) 2874 1336 327 0 0 0 0 2¬(p1 ∧ p2)DIJKST(2) 1856 968 230 0 0 0 0 2¬(p1 ∧ p2)KNUTH(2) 2234 1044 251 0 0 0 0 2¬(p1 ∧ p2)BYZA4_0B 1642 590 82 0 0 0 0 2(p1 → 3p2)BYZA4_2A 401 125 4 0 0 0 0 2(p1 → 3p2)RW1W1R 568 296 32 0 0 0 0 2(p1 → 3p2)RW1W3R 28143 15402 5210 0 0 0 0 2(p1 → 3p2)RW2W1R 18280 9242 1334 0 0 0 0 2(p1 → 3p2)PLATE(5) 1803 810 12 0 0 0 0 2((p1 ∧ ¬p2 ∧ ¬p3)∨
(¬p1 ∧ p2 ∧ ¬p3)∨
(¬p1 ∧ ¬p2 ∧ p3))EBAHN 113 48 20 38 14 1 1 2¬(p1 ∧ p2)ELEV(3) 22 10 0 102 54 10 1 2(p1 → 3p2)ELEV(4) 25 12 0 129 68 13 1 2(p1 → 3p2)RRR(10) 40 14 0 48 28 5 1 2(p1 → 3p2)RRR(20) 73 27 0 94 54 8 1 2(p1 → 3p2)RRR(30) 104 38 0 136 76 9 1 2(p1 → 3p2)RRR(50) 173 67 0 234 134 18 1 2(p1 → 3p2)Figure 4. Detailed LTL tableau statistis.In Fig. 4 a detailed breakdown of the di�erent omponents of the LTL pre�x isgiven. The subsripts I and II denote the part of the pre�x used for ω-trae andlivelok heking, respetively (i.e., events in part-I and part-II). Column Cptontains the number of hekpoints, i.e. how many of the L-events are hek-points. Finally Formula type gives the type of the formula being heked.In Fig. 4 we an also see that in the ases a ounterexample was found itwas found after only a small amount of the pre�x was generated. Atually inall the experiments the ounterexample was a livelok ounterexample, and thelivelok was found from the �rst hekpoint found during the pre�x generation.This allowed the LTL model heking proedure to terminate quite early with aounterexample in many ase, see e.g. the ELEV(4) example.The net systems used in experiments and unfsmodels 0.9 are available at<http://www.ts.hut.fi/�kepa/experiments/spin2001/>.

8 ConlusionsWe have presented an implementation of the tableau system of [3℄. We have beenable to merge the possibly large set of tableaux of [3℄ into a single one. In thisway, the algorithm for model heking LTL with unfoldings remains oneptuallysimilar to the algorithms used to generate pre�xes of the unfolding ontainingall reahable states [6,5℄: We just need more sophistiated adequate orders andut-o� events.The division of the tableau into part-I and part-II events is the prie to payfor a partial-order approah to model heking. Other partial-order tehniques,like the one introdued by Valmari [19℄, also require a speial treatment of di-vergenes or liveloks. 3 We have shown that the onditions for heking if part-Ior part-II events are terminals remain very simple.In our tableau system the size of a tableau may grow quadratially in thenumber of reahable states of the system. We have not been able to onstrut anexample showing that this bound an be reahed, although it probably exists. Inall experiments onduted so far the number of events of the tableau is alwayssmaller than the number of reahable states. In examples with a high degree ofonurreny we obtain exponential ompression fators.The prototype implementation was reated mainly for investigating the sizesof the generated tableau. Implementing this proedure in a high performanepre�x generator suh as the one desribed in [5℄ is left for further work.AknowledgementsWe would like to thank Claus Shröter for olleting the set of LTL modelheking benhmarks used in this work.Referenes1. J. C. Corbett. Evaluating deadlok detetion methods for onurrent software.Tehnial report, Department of Information and Computer Siene, University ofHawaii at Manoa, 1995.2. C. Couroubetis, M. Y. Vardi, P. Wolper, and M. Yannakakis. Memory-e�ientalgorithms for the veri�ation of temporal properties. Formal Methods in SystemDesign, 1:275�288, 1992.3. J. Esparza and K. Heljanko. A new unfolding approah to LTL model hek-ing. In Proeedings of 27th International Colloquium on Automata, Languages andProgramming (ICALP'2000), pages 475�486, July 2000. LNCS 1853.4. J. Esparza and K. Heljanko. Implementing LTL model heking with net un-foldings. Researh Report A68, Helsinki University of Tehnology, Laboratoryfor Theoretial Computer Siene, Espoo, Finland, Marh 2001. Available at<http://www.ts.hut.fi/Publiations/reports/A68abstrat.html>.3 The idea of dynamially heking whih L-transitions are hekpoints ould also beused with the approah of [19℄ to implement state based LTL-X model heking.

5. J. Esparza and S. Römer. An unfolding algorithm for synhronous produts oftransition systems. In Proeedings of the 10th International Conferene on Con-urreny Theory (Conur'99), pages 2�20, 1999. LNCS 1664.6. J. Esparza, S. Römer, and W. Vogler. An improvement of MMillan's unfoldingalgorithm. In Proeedings of 2nd International Workshop on Tools and Algorithmsfor the Constrution and Analysis of Systems (TACAS'96), pages 87�106, 1996.LNCS 1055.7. J. Esparza and C. Shröter. Reahability analysis using net unfoldings. In Proeed-ing of the Workshop Conurreny, Spei�ation & Programming 2000, volume IIof Informatik-Beriht 140, pages 255�270. Humboldt-Universität zu Berlin, 2000.8. R. Gerth, D. Peled, M. Y. Vardi, and P. Wolper. Simple on-the-�y automativeri�ation of linear temporal logi. In Proeedings of 15th Workshop ProtoolSpei�ation, Testing, and Veri�ation, pages 3�18, 1995.9. M. Heiner and P. Deussen. Petri net based qualitative analysis - A ase study.Tehnial Report Tehnial Report I-08/1995, Brandenburg Tehnishe UniversitätCottbus, Cottbus, Germany, Deember 1995.10. K. Heljanko. Deadlok and reahability heking with �nite omplete pre�xes. Re-searh Report A56, Helsinki University of Tehnology, Laboratory for TheoretialComputer Siene, Espoo, Finland, Deember 1999. Lientiate's Thesis. Availableat <http://www.ts.hut.fi/Publiations/reports/A56abstrat.html>.11. K. Heljanko. Using logi programs with stable model semantis to solve dead-lok and reahability problems for 1-safe Petri nets. Fundamenta Informatiae,37(3):247�268, 1999.12. G. Holzmann. The model heker SPIN. IEEE Transations on Software Engi-neering, 23(5):279�295, 1997.13. C. Lewerentz and T. Lindner. Formal Development of Reative Systems: CaseStudy Prodution Cell. Springer-Verlag, 1995. LNCS 891.14. K. L. MMillan. Symboli Model Cheking. Kluwer Aademi Publishers, 1993.15. S. Melzer and S. Römer. Deadlok heking using net unfoldings. In Proeedingsof 9th International Conferene on Computer-Aided Veri�ation (CAV '97), pages352�363, 1997. LNCS 1254.16. S. Merkel. Veri�ation of fault tolerant algorithms using PEP. Tehnial Re-port TUM-19734, SFB-Beriht Nr. 342/23/97 A, Tehnishe Universität Münhen,Münhen, Germany, 1997.17. W. Reisig. Petri Nets, An Introdution. Springer-Verlag, 1985.18. P. Simons. Extending and Implementing the Stable Model Semantis.PhD thesis, Helsinki University of Tehnology, Laboratory for Theoreti-al Computer Siene, April 2000. Also available on the Internet at<http://www.ts.hut.fi/Publiations/reports/A58abstrat.html>.19. A. Valmari. On-the-�y veri�ation with stubborn sets. In Proeeding of 5th In-ternational Conferene on Computer Aided Veri�ation (CAV'93), pages 397�408,1993. LNCS 697.20. M. Y. Vardi. An automata-theoreti approah to linear temporal logi. In Logisfor Conurreny: Struture versus Automata, pages 238�265, 1996. LNCS 1043.21. K. Varpaaniemi, K. Heljanko, and J. Lilius. PROD 3.2 - An advaned tool fore�ient reahability analysis. In Proeedings of the 9th International Confereneon Computer Aided Veri�ation (CAV'97), pages 472�475, 1997. LNCS 1254.22. F. Wallner. Model heking LTL using net unfoldings. In Proeeding of 10thInternational Conferene on Computer Aided Veri�ation (CAV'98), pages 207�218, 1998. LNCS 1427.

