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t We report on an implementation of the unfolding approa
hto model-
he
king LTL-X re
ently presented by the authors. Contrary tothat work, we 
onsider an state-based version of LTL-X, whi
h is moreused in pra
ti
e. We improve on the 
he
king algorithm; the new versionallows to reuse 
ode mu
h more e�
iently. We present results on a setof 
ase studies.1 Introdu
tionUnfoldings [14,6,5℄ are a partial-order approa
h to the automati
 veri�
ation of
on
urrent and distributed systems, in whi
h partial-order semanti
s is used togenerate a 
ompa
t representation of the state spa
e. For systems exhibitinga high degree of 
on
urren
y, this representation 
an be exponentially moresu

in
t than the expli
it enumeration of all states or the symboli
 representationin terms of a BDD, thus providing a very good solution to the state-explosionproblem.Unfolding-based model-
he
king te
hniques for LTL without the next opera-tor (
alled LTL-X in the sequel) were �rst proposed in [22℄. A new algorithm withbetter 
omplexity bounds was introdu
ed in [3℄, in the shape of a tableau system.The approa
h is based on the automata-theoreti
 approa
h to model-
he
king(see for instan
e [20℄), 
onsisting of the following well-known three steps: (1)translate the negation of the formula to be 
he
ked into a Bü
hi automaton; (2)syn
hronize the system and the Bü
hi automaton in an adequate way to yielda 
omposed system, and (3) 
he
k emptiness of the language of the 
omposedsystem, where language is again de�ned in a suitable way.In [3℄ we used an a
tion-based version of LTL-X having an operator φ1Uaφ2for ea
h a
tion a; φ1Uaφ2 holds if φ1 holds until a
tion a o

urs, and immedi-ately after φ2 holds. Step (2) is very simple for this logi
, whi
h allowed us to
on
entrate on step (3), the most novel 
ontribution of [3℄. However, the state-based version of LTL-X is more used in pra
ti
e. The �rst 
ontribution of thispaper is a solution to step (2) for this 
ase, whi
h turns out to be quite deli
ate.
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The se
ond 
ontribution of this paper 
on
erns step (3). In [3℄ we presenteda two-phase solution; the �rst phase requires to 
onstru
t one tableau, while these
ond phase requires to 
onstru
t a possibly large set of tableaux. We proposehere a more elegant solution whi
h, loosely speaking, allows to merge all thetableaux of [3℄ into one while keeping the rules for the tableau 
onstru
tionsimple and easy to implement.The third 
ontribution is an implementation using the smodels NP-solver[18℄, and a report on a set of 
ase studies.The paper is stru
tured as follows. Se
tion 2 
ontains basi
 de�nitions onPetri nets, whi
h we use as system model. Se
tion 3 des
ribes step (2) abovefor the state-based version of LTL-X. Readers wishing to skip this se
tion needonly read (and believe the proof of) Theorem 1. Se
tion 4 presents some basi
de�nitions about the unfolding method. Se
tion 5 des
ribes the new tableau sys-tem for (3), and shows its 
orre
tness. Se
tion 6 dis
usses the tableau generationtogether with some optimizations. Se
tion 7 reports on the implementation and
ase studies, and Se
tion 8 
ontains 
on
lusions.2 Petri netsA net is a triple (P, T, F ), where P and T are disjoint sets of pla
es and tran-sitions, respe
tively, and F is a fun
tion (P × T ) ∪ (T × P ) → {0, 1}. Pla
esand transitions are generi
ally 
alled nodes. If F (x, y) = 1 then we say thatthere is an ar
 from x to y. The preset of a node x, denoted by •x, is theset {y ∈ P ∪ T | F (y, x) = 1}. The postset of x, denoted by x•, is the set
{y ∈ P ∪ T | F (x, y) = 1}. In this paper we 
onsider only nets in whi
h everytransition has a nonempty preset and a nonempty postset.A marking of a net (P, T, F ) is a mapping P → IN (where IN denotes thenatural numbers in
luding 0). We identify a marking M with the multiset 
on-taining M(p) 
opies of p for every p ∈ P . For instan
e, if P = {p1, p2} and
M(p1) = 1, M(p2) = 2, we write M = {p1, p2, p2}.A marking M enables a transition t if it marks ea
h pla
e p ∈ •t with atoken, i.e. if M(p) > 0 for ea
h p ∈ •t. If t is enabled at M , then it 
an �re oro

ur, and its o

urren
e leads to a new marking M ′, obtained by removing atoken from ea
h pla
e in the preset of t, and adding a token to ea
h pla
e in itspostset; formally, M ′(p) = M(p) − F (p, t) + F (t, p) for every pla
e p. For ea
htransition t the relation t

−−−→ is de�ned as follows: M
t

−−−→M ′ if t is enabled at
M and its o

urren
e leads to M ′.A 4-tuple Σ = (P, T, F, M0) is a net system if (P, T, F ) is a net and M0 is amarking of (P, T, F ) (
alled the initial marking of Σ). A sequen
e of transitions
σ = t1t2 . . . tn is an o

urren
e sequen
e if there exist markings M1, M2, . . . ,
Mn su
h that

M0
t1−−−−→M1

t2−−−−→ . . .Mn−1
tn−−−−→Mn

Mn is the marking rea
hed by the o

urren
e of σ, whi
h is also denoted by
M0

σ
−−−→Mn. A marking M is a rea
hable marking if there exists an o

urren
e



sequen
e σ su
h that M0
σ

−−−→M . An exe
ution is an in�nite o

urren
e se-quen
e starting from the initial marking. The rea
hability graph of a net system
Σ is the labelled graph having the rea
hable markings of Σ as nodes, and the

t
−−−→ relations (more pre
isely, their restri
tion to the set of rea
hable mark-ings) as edges. In this work we only 
onsider net systems with �nite rea
habilitygraphs.A marking M of a net is n-safe if M(p) ≤ n for every pla
e p. A net system
Σ is n-safe if all its rea
hable markings are n-safe. Fig. 1 shows a 1-safe netsystem.
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t7Figure 1. The net system ΣLabelled nets. Let L be an alphabet. A labelled net is a pair (N, l) (also repre-sented as a 4-tuple (P, T, F, l)), where N is a net and l : P ∪ T → L is a labellingfun
tion. Noti
e that di�erent nodes of the net 
an 
arry the same label. Weextend l to multisets of P ∪ T in the obvious way.For ea
h label a ∈ L we de�ne the relation a
−−−→ between markings as follows:

M
a

−−−→M ′ if M t
−−−→M ′ for some transition t su
h that l(t) = a. For a �nite se-quen
e w = a1a2 . . . an ∈ L∗, M w

−−−→M ′ denotes that for some rea
hable mark-ings M1, M2, . . . , Mn−1 the relation M
a1−−−−→M1

a2−−−−→M2 . . . Mn−1
an−−−−→M ′holds. For an in�nite sequen
e w = a1a2 . . . ∈ Lω, M

w
−−−→ denotes that

M
a1−−−−→M1

a2−−−−→ M2 . . . holds for some rea
hable markings M1, M2, . . . .The rea
hability graph of a labelled net system (N, l, M0) is obtained byapplying l to the rea
hability graph of (N, M0). In other words, its nodes arethe set
{l(M) | M is a rea
hable marking}and its edges are the set

{l(M1)
l(t)

−−−−→ l(M2) | M1 is rea
hable and M1
t

−−−→M2} .



3 Automata Theoreti
 Approa
h to Model Che
king LTLWe show how to modify the automata theoreti
 approa
h to model 
he
kingLTL [20℄ to best suit the net unfolding method.We restri
t the logi
 LTL by removing the next time operator X . We 
all thisstuttering invariant fragment LTL-X. Given a �nite set Π of atomi
 propositions,the abstra
t syntax of LTL-X is given by:
ϕ ::= π ∈ Π | ¬ϕ1 | ϕ1 ∧ ϕ2 | ϕ1 U ϕ2The semanti
s is a set of ω-words over the alphabet 2Π , de�ned as usual.Given a 1-safe net system Σ with initial marking M0, we identify the atomi
propositions Π with a subset Obs ⊆ P of observable pla
es of the net system,while the rest of the pla
es are 
alled hidden. Ea
h marking M determines avaluation of Π = Obs in the following way: p ∈ Obs is true at M if M putsa token in p. Now, an exe
ution M0

t1−−−−→M1
t2−−−−→ . . . of Σ satis�es ϕ i� the

ω-word M0M1 . . . satis�es ϕ. The net system Σ satis�es ϕ, denoted Σ |= ϕ, ifevery exe
ution of Σ satis�es ϕ.The approa
h. Let ϕ be a formula of LTL-X. Using well-known algorithms (seee.g. [8℄) we 
onstru
t a Bü
hi automaton A¬ϕ over the alphabet 2Π = 2Obswhi
h a

epts a word w iff w 6|= ϕ.We de�ne a 1-safe produ
t net system Σ¬ϕ from Σ and A¬ϕ. Σ¬ϕ 
an beseen as the result of pla
ing Σ in a suitable environment, i.e., Σ¬ϕ is 
onstru
tedby 
onne
ting Σ to an environment net system through new ar
s.It is easy to 
onstru
t a produ
t net system with a distinguished set oftransitions I su
h that Σ violates ϕ iff some exe
ution of the produ
t �ressome transition of I in�nitely often. We 
all su
h an exe
ution an illegal ω-tra
e. However, this produ
t syn
hronizes A¬ϕ with Σ on all transitions, whi
he�e
tively disables all 
on
urren
y present in Σ. Sin
e the unfolding approa
hexploits the 
on
urren
y of Σ in order to generate a 
ompa
t representation ofthe state spa
e, this produ
t is not suitable, and so we propose a new one.We de�ne the set V of visible transitions of Σ as the set of transitions whi
h
hange the marking of some observable pla
e of Σ. Only these transitions willsyn
hronize with the automaton. So, for instan
e, in order to 
he
k a propertyof the form 2(p → 3q), where p and q are pla
es, we will only syn
hronize withthe transitions removing or adding tokens to p and q. This approa
h is similarbut not identi
al to Valmari's tester approa
h des
ribed in [19℄. (In fa
t, a subtlepoint in Valmari's 
onstru
tion makes its dire
t implementation unsuitable for
he
king state based LTL-X.)The pri
e to pay for this ni
er syn
hronization is the need to 
he
k notonly for illegal ω-tra
es, but also for so-
alled illegal livelo
ks. The new produ
t
ontains a new distinguished set of transitions L (for livelo
k). An illegal livelo
kis an exe
ution of the form σ1tσ2 su
h that t ∈ L and σ2 does not 
ontainany visible transition. For 
onvenien
e we use the notation M0
σ

−−−→M
τ

−−−→to denote this, and impli
itly require that σ = σ1t with t ∈ L and that τ is anin�nite sequen
e whi
h only 
ontains invisible transitions.



In the rest of the se
tion we de�ne Σ¬ϕ. Readers only interested in the de�-nition of the tableau system for LTL model-
he
king 
an safely skip it. Only thefollowing theorem, whi
h is proved hand in hand with the de�nition, is ne
essaryfor it. Property (b) is what we win by our new approa
h: The environment onlyinterferes with the visible transitions of Σ.Theorem 1. Let Σ be a 1-safe net system whose rea
hable markings are pair-wise in
omparable with respe
t to set in
lusion.1 Let ϕ be an LTL-X formulaover the observable pla
es of Σ. It is possible to 
onstru
t a net system Σ¬ϕsatisfying the following properties:(a) Σ |= ϕ iff Σ¬ϕ has neither illegal ω-tra
es nor illegal livelo
ks.(b) The input and output pla
es of the invisible transitions are the same in Σand Σ¬ϕ.Constru
tion of Σ¬ϕ We des
ribe the syn
hronization Σ¬ϕ of Σ and A¬ϕ in asemiformal but hopefully pre
ise way. Let us start with two preliminaries. First,we identify the Bü
hi automaton A¬ϕ with a net system having a pla
e for ea
hstate q, with only the initial state q0 having a token, and a net transition for ea
htransition (q, x, q′); the input and output pla
es of the transition are q and q′,respe
tively; we keep A¬ϕ, q and (q, x, q′) as names for the net representation,the pla
e and the transition. Se
ond, we split the exe
utions of Σ that violate ϕinto two 
lasses: exe
utions of type I, whi
h 
ontain in�nitely many o

urren
esof visible transitions, and exe
utions of type II, whi
h only 
ontain �nitely many.We will deal with these two types separately.
Σ¬ϕ is 
onstru
ted in several steps:(1) Put Σ and (the net representation of) A¬ϕ side by side.(2) For ea
h observable pla
e p add a 
omplementary pla
e (see [17℄) p to Σ.
p is marked iff p is not, and so 
he
king that proposition p does not hold isequivalent to 
he
king that the pla
e p̄ has a token. A set x ⊆ Π 
an now beseen as a 
onjun
tion of literals, where p ∈ x is used to denote p ∈ (Π \ x).(3) Add new ar
s to ea
h transition (q, x, q′) of A¬ϕ so that it �observes� thepla
es in x.This means that for ea
h literal p (p) in x we add an ar
 from p (p) to
(q, x, q′) and an ar
 from (q, x, q′) to p (p). The transition (q, x, q′) 
an onlybe enabled by markings of Σ satisfying all literals in x.(4) Add a s
heduler guaranteeing that:
• Initially A¬ϕ 
an make a move, and all visible moves (i.e., the �rings ofvisible transitions) of Σ are disabled.
• After a move of A¬ϕ, only Σ 
an make a move.
• After Σ makes a visible move, A¬ϕ 
an make a move and until thathappens all visible moves of Σ are disabled.1 This 
ondition is purely te
hni
al. Any 1-safe net system 
an be easily transformedinto an equivalent one satisfying it by adding some extra pla
es and ar
s; moreover,the 
ondition 
an be removed at the pri
e of a less ni
e theory.



This is a
hieved by introdu
ing two s
heduler pla
es sf and ss [22℄. Theintuition behind these pla
es is that when sf (ss) has a token it is the turnof the Bü
hi automaton (the system Σ) to make a move. In parti
ular, visibletransitions transfer a token from ss to sf , and Bü
hi transitions from sf to
ss. Be
ause the Bü
hi automaton needs to observe the initial marking of Σ,we initially put one token in sf and no tokens on ss.(5) Let I be a subset of transitions de�ned as follows. A transition belongs to Iiff its postset 
ontains a �nal state of A¬ϕ.Observe that sin
e only moves of A¬ϕ and visible moves of Σ are s
heduled,invisible moves 
an still be 
on
urrently exe
uted.Let Σ′

¬ϕ be the net system we have 
onstru
ted so far. The following is animmediate 
onsequen
e of the de�nitions:
Σ has an exe
ution of type I if and only if Σ′

¬ϕ has an illegal ω-tra
e.We now extend the 
onstru
tion in order to deal with exe
utions of type II.Let σ be a type II exe
ution of Σ. Take the sequen
e of markings rea
hed alongthe exe
ution of σ, and proje
t it onto the observable pla
es. Sin
e σ only 
on-tains �nitely many o

urren
es of visible transitions, the result is a sequen
e ofthe form O0
0O

1
0 . . . Oj

0O
0
1O

1
1 . . . Ok

1O0
2 . . . O0

n(On)ω. (The moves from Oi to Oi+1are 
aused by the �ring of visible transitions.)We 
an split σ into two parts: a �nite pre�x σ1 ending with the last o

urren
eof a visible transition (σ1 is empty if there are no visible transitions), and anin�nite su�x σ2 
ontaining only invisible transitions. Clearly, the proje
tion ontothe observable pla
es of the marking rea
hed by the exe
ution of σ1 is OnSin
e LTL-X is 
losed under stuttering, A¬ϕ has an a

epting run
r = q0

O0−−−−→ q1
O1−−−−→ . . .

On−1

−−−−−−→ qn
On−−−−→ qn+1

On−−−−→ qn+2 . . .where the notation q
O

−−−→ q′ means that a transition (q, x, q′) is taken su
h thatthe literals of x are true at the valuation given by O. We split this run into twoparts: a �nite pre�x r1 = q0
O0−−−−→ q1 . . . qn−1

On−1

−−−−−−→ qn and an in�nite su�x
r2 = qn

On−−−−→ qn+1
On−−−−→ qn+2 . . . .In the net system representation of A¬ϕ, r1 and r2 
orrespond to o

urren
esequen
es. By 
onstru
tion, the �interleaving� of r1 and σ1 yields an o

urren
esequen
e τ1 of Σ′

¬ϕ.Observe that rea
hable markings of Σ′

¬ϕ are of the form (q, s, O, H), meaningthat they 
onsist of a token on a state q of A¬ϕ, a token on one of the pla
esof the s
heduler (i.e., s ∈ {ss, sf}), a marking O of the observable pla
es, anda marking H of the hidden pla
es. Let (qn, sf , On, H) be the marking of Σ′

¬ϕrea
hed after exe
uting τ1. (We have s = sf be
ause the last transition of σ1is visible.) The following property holds: With qn as initial state, the Bü
hiautomaton A¬ϕ a

epts the sequen
e Oω
n . We 
all any pair (q, O) satisfying thisproperty a 
he
kpoint and de�ne Σ¬ϕ as follows:



(6) For ea
h 
he
kpoint (q, O) and for ea
h rea
hable marking (q, sf , O, H) of
Σ′

¬ϕ, add a new transition having all the pla
es marked at (q, sf , O, H) aspreset, and all the pla
es marked at O and H as postset. Let L (for livelo
ks)be this set of transitions.The reader has possibly observed that the set L 
an be very large, be
ausethere 
an be many hidden markings H for a given marking O (exponentiallymany in the size of Σ). Apparently, this makes Σ¬ϕ unsuitable for model-
he
king. In Se
t. 6 we show that this is not the 
ase, be
ause Σ¬ϕ need not beexpli
itly 
onstru
ted.Observe that after �ring a L-transition no visible transition 
an o

ur any-more, be
ause all visible transitions need a token on ss for �ring. We prove:
Σ has an exe
ution of type II if and only if Σ¬ϕ has an illegal livelo
k.For the only if dire
tion, assume �rst that σ is a type II exe
ution of Σ.Let τ1 be the o

urren
e sequen
e of Σ¬ϕ de�ned above (as the �interleaving�of the pre�x σ1 of σ and the pre�x r1 of r). Further, let (qn, sf , On, H) be themarking rea
hed after the exe
ution of τ1, and let t be the transition added in(6) for this marking. De�ne ρ1 = τ1 and ρ2 = σ2. It is easy to show that ρ1tρ2is an exe
ution of Σ¬ϕ and so an illegal livelo
k. For the if dire
tion, let ρ1tρ2be an illegal livelo
k of Σ¬ϕ, where t is an L-transition. After the �ring of tthere are no tokens in the pla
es of the s
heduler, and so no visible transition
an o

ur again; hen
e, no visible transition of Σ o

urs in ρ2. Let σ1 and σ2be the proje
tions of ρ1 and ρ2 onto the transitions of Σ. It is easy to see that

σ = σ1σ2 is an exe
ution of Σ. Sin
e σ2 does not 
ontain any visible transition,
σ is an exe
ution of type II.4 Basi
 de�nitions on unfoldingsIn this se
tion we brie�y introdu
e the de�nitions we needed to des
ribe theunfolding approa
h. More details 
an be found in [6℄.O

urren
e nets. Given two nodes x and y of a net, we say that x is 
ausallyrelated to y, denoted by x ≤ y, if there is a (possibly empty) path of arrowsfrom x to y. We say that x and y are in 
on�i
t, denoted by x#y, if there is apla
e z, di�erent from x and y, from whi
h one 
an rea
h x and y, exiting z bydi�erent arrows. Finally, we say that x and y are 
on
urrent, denoted by x co y,if neither x < y nor y < x nor x#y hold. A co-set is a set of nodes X su
hthat x co y for every x, y ∈ X . O

urren
e nets are those satisfying the followingthree properties: the net, seen as a dire
ted graph, has no 
y
les; every pla
e hasat most one input transition; and, no node is in self-
on�i
t, i.e., x#x holds forno x. A pla
e of an o

urren
e net is minimal if it has no input transitions. Thenet of Fig. 2 is an in�nite o

urren
e net with minimal pla
es a, b. The defaultinitial marking of an o

urren
e net puts one token on ea
h minimal pla
e annone in the rest.



Bran
hing pro
esses. We asso
iate to Σ a set of labelled o

urren
e nets, 
alledthe bran
hing pro
esses of Σ. To avoid 
onfusions, we 
all the pla
es and transi-tions of bran
hing pro
esses 
onditions and events, respe
tively. The 
onditionsand events of bran
hing pro
esses are labelled with pla
es and transitions of Σ,respe
tively. The 
onditions and events of the bran
hing pro
esses are subsetsfrom two sets B and E , indu
tively de�ned as the smallest sets satisfying thefollowing 
onditions:� ⊥ ∈ E , where ⊥ is an spe
ial symbol;� if e ∈ E , then (p, e) ∈ B for every p ∈ P ;� if ∅ ⊂ X ⊆ B, then (t, X) ∈ E for every t ∈ T .In our de�nitions of bran
hing pro
ess (see below) we make 
onsistent use ofthese names: The label of a 
ondition (p, e) is p, and its unique input event is
e. Conditions (p,⊥) have no input event, i.e., the spe
ial symbol ⊥ is used forthe minimal pla
es of the o

urren
e net. Similarly, the label of an event (t, X)is t, and its set of input 
onditions is X . The advantage of this s
heme is that abran
hing pro
ess is 
ompletely determined by its sets of 
onditions and events.We make use of this and represent a bran
hing pro
ess as a pair (B, E).De�nition 1. The set of �nite bran
hing pro
esses of a net system Σ with theinitial marking M0 = {p1, . . . , pn} is indu
tively de�ned as follows:� ({(p1,⊥), . . . , (pn,⊥)}, ∅) is a bran
hing pro
ess of Σ.� If (B, E) is a bran
hing pro
ess of Σ, t ∈ T , and X ⊆ B is a 
o-set labelledby •t, then (B ∪{(p, e) | p ∈ t•} , E ∪{e} ) is also a bran
hing pro
ess of Σ,where e = (t, X). If e /∈ E, then e is 
alled a possible extension of (B, E).The set of bran
hing pro
esses of Σ is obtained by de
laring that the unionof any �nite or in�nite set of bran
hing pro
esses is also a bran
hing pro
ess,where union of bran
hing pro
esses is de�ned 
omponentwise on 
onditions andevents. Sin
e bran
hing pro
esses are 
losed under union, there is a unique max-imal bran
hing pro
ess, 
alled the unfolding of Σ. The unfolding of our runningexample is an in�nite o

urren
e net. Figure 2 shows an initial part. Events and
onditions have been assigned identi�
ators that will be used in the examples.For instan
e, the event (t1, {(p1,⊥)}) is assigned the identi�
ator 1.We take as partial order semanti
s of Σ its unfolding. This is justi�ed, be
auseit 
an be easily shown the rea
hability graphs of Σ and of its unfolding 
oin
ide.(Noti
e that the unfolding of Σ is a labelled net system, and so its rea
habilitygraph is de�ned as the image under the labelling fun
tion of the rea
habilitygraph of the unlabelled system.)Con�gurations. A 
on�guration of an o

urren
e net is a set of events C sat-isfying the two following properties: C is 
ausally 
losed, i.e., if e ∈ C and
e′ < e then e′ ∈ C, and C is 
on�i
t-free, i.e., no two events of C are in
on�i
t. Given an event e, we 
all [e] = {e′ ∈ E | e′ ≤ e} the lo
al 
on�g-uration of e. Let Min denote the set of minimal pla
es of the bran
hing pro-
ess. A 
on�guration C of the bran
hing pro
ess is asso
iated with a marking
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Figure 2. The unfolding of Σof Σ denoted by Mark (C) = l((Min ∪ C•) \ •C). The 
orresponding set of
onditions asso
iated with a 
on�guration is 
alled a 
ut, and it is de�ned as
Cut(C) = ((Min ∪ C•) \ •C).In Fig. 2, {1, 3, 4, 6} is a 
on�guration, and {1, 4} (not 
ausally 
losed) or
{1, 2} (not 
on�i
t-free) are not. A set of events is a 
on�guration if and onlyif there is one or more �ring sequen
es of the o

urren
e net (from the defaultinitial marking) 
ontaining ea
h event from the set exa
tly on
e, and no fur-ther events. These �ring sequen
es are 
alled linearisations. The 
on�guration
{1, 3, 4, 6} has two linearisations, namely 1 3 4 6 and 3 1 4 6. All linearisations leadto the same rea
hable marking. For example, the two sequen
es above lead to themarking {p1, p7}. By applying the labelling fun
tion to a linearisation we obtaina �ring sequen
e of Σ. Abusing of language, we also 
all this �ring sequen
e alinearisation. In our example we obtain t1t3t4t6 and t3t1t4t6 as linearisations.Given a 
on�guration C, we denote by ↑C the set of events of the unfolding
{e | e 6∈ C ∧ ∀e′ ∈ C : ¬(e#e′)}. Intuitively, ↑C 
orresponds to the behavior of
Σ from the marking rea
hed after exe
uting any of the linearisations of C. We
all ↑C the 
ontinuation after C of the unfolding of Σ. If C1 and C2 are two �nite
on�gurations leading to the same marking, i.e. Mark (C1) = M = Mark (C2),



then ↑C1 and ↑C2 are isomorphi
, i.e., there is a bije
tion between them whi
hpreserves the labelling of events and the 
ausal, 
on�i
t, and 
on
urren
y rela-tions (see [6℄).Adequate orders. To implement a net unfolding algorithm we need the notion ofadequate order on 
on�gurations [6℄. Given a 
on�guration C of the unfoldingof Σ, we denote by C ⊕ E the set C ∪ E, under the 
ondition that C ∪ E is a
on�guration satisfying C ∩ E = ∅. We say that C ⊕ E is an extension of C.Now, let C1 and C2 be two �nite 
on�gurations leading to the same marking.Then ↑C1 and ↑C2 are isomorphi
. This isomorphism, say f , indu
es a mappingfrom the extensions of C1 onto the extensions of C2; the image of C1 ⊕E underthis mapping is C2 ⊕ f(E).De�nition 2. A partial order ≺ on the �nite 
on�gurations of the unfolding ofa net system is an adequate order if:� ≺ is well-founded,� C1 ⊂ C2 implies C1 ≺ C2, and� ≺ is preserved by �nite extensions; if C1 ≺ C2 and Mark (C1) = Mark (C2),then the isomorphism f from above satis�es C1 ⊕ E ≺ C2 ⊕ f(E) for all�nite extensions C1 ⊕ E of C1.Total adequate orders for 1-safe Petri nets and for syn
hronous produ
ts oftransition systems have been presented in [6,5℄.5 Tableau SystemWe showed in Se
tion 3 that the model 
he
king problem for LTL-X 
an besolved by 
he
king the existen
e of illegal ω-tra
es and illegal livelo
ks in Σ¬ϕ.In [3℄ these problems are solved using tableau te
hniques. A bran
hing pro
ess
an be seen as a �distributed� tableau, in whi
h 
onditions are �fa
ts� and eventsrepresent �inferen
es�. For two 
onditions b and b′, b co b′ models that the fa
tsrepresented by b and b′ 
an be simultaneously true. A tableau is 
onstru
tedby adding new events (inferen
es) one by one following an adequate order; someevents are de
lared as �terminals�, and the 
onstru
tion of the tableau terminateswhen no new event 
an be added having no terminals among its prede
essors.The tableau systems of [3℄ require to 
onstru
t a possibly large set of bran
h-ing pro
esses. Here we present a new tableau system 
onsisting of one singlebran
hing pro
ess.22 For the reader familiar with [3℄: the L-transitions in the net system Σ¬ϕ a
t as glueto 
onne
t a set of bran
hing pro
esses (the tableau 
omponents of [3℄) together intoone larger tableau.



An Adequate Order for LTL. We simplify the implementation of the tableausystem by sele
ting a spe
ial adequate order. We use ≺ to denote the totaladequate order de�ned for 1-safe Petri nets in [6℄. We 
all an event 
orrespondingto an L-transition an L-event. We de�ne for a set of events C the fun
tion before
L-event as BL(C) = {e ∈ C | [e] \ {e} 
ontains no L-events}. The fun
tion after
L-event is de�ned 
orrespondingly as AL(C) = (C \BL(C)). We 
an now de�neour new adequate order.De�nition 3. Let C1 and C2 be two �nite 
on�gurations of the unfolding of theprodu
t net system Σ¬ϕ. C1 ≺LTL C2 holds if� BL(C1) ≺ BL(C2), or� BL(C1) = BL(C2) and C1 ≺ C2.The adequate order ≺LTL is appli
ation spe
i�
 in the sense that it is not anadequate order for an arbitrary net system Σ, but needs some spe
ial propertiesof the net system Σ¬ϕ. We have the following result.Theorem 2. The order ≺LTL is a total adequate order for �nite 
on�gurationsof the unfolding of Σ¬ϕ.See [4℄ for the proof.New Tableau System. We �rst divide the unfolding of Σ¬ϕ into two disjoint setsof events. Intuitively, the �rst set is used for the ω-tra
e dete
tion part, and these
ond for the illegal livelo
k dete
tion part. We de�ne part-I to be the set ofevents e su
h that [e] does not 
ontain an L-event and part-II as the set of eventswhi
h are not in part-I.De�nition 4. An event e of the unfolding Σ¬ϕ is a terminal, if there existsanother event e′ su
h that Mark ([e′]) = Mark ([e]), [e′] ≺LTL [e], and one of thefollowing two mutually ex
lusive 
ases holds:(I) e ∈ part-I, and either(a) e′ < e, or(b) ¬(e′ < e) and #I [e

′] ≥ #I [e], where #IC denotes the number of I-eventsin C.(II) e ∈ part-II, and either(a) BL([e′]) ≺LTL BL([e]), or(b) BL([e′]) = BL([e]) and ¬(e′#e), or(
) BL([e′]) = BL([e]), e′#e, and |[e′]| ≥ |[e]|.A tableau T is a bran
hing pro
ess (B, E) of Σ¬ϕ su
h that for every possibleextension e of (B, E) at least one of the immediate prede
essors of e is a terminal.A terminal is su

essful if it is type (I)(a) and [e]\ [e′] 
ontains an I-event, or itis of type (II)(b). All other terminals are unsu

essful. A tableau T is su

essfulif it 
ontains a su

essful terminal, otherwise it is unsu

essful.



Loosely speaking, a tableau is a bran
hing pro
ess whi
h 
annot be extendedwithout adding a 
ausal su

essor to a terminal.We have the following result:Theorem 3. Let T be a tableau for Σ¬ϕ.� Σ¬ϕ has an illegal ω-tra
e iff T has a su

essful terminal of type I.� Σ¬ϕ has an illegal livelo
k iff T has a su

essful terminal of type II.� T 
ontains at most K2 non-terminal events, where K is the number of rea
h-able markings of Σ¬ϕ.See [4℄ for the proof.6 Generating the TableauWe des
ribe an implementation of the tableau system of Se
t. 5. The main goalis to keep the tableau generation as similar as possible to a 
onventional pre�xgeneration algorithm [6℄. In this way any pre�x generation algorithm 
an beeasily adapted to also perform LTL model 
he
king.The tableau generation algorithm (Algorithm 1) is almost identi
al to themain routine of a pre�x generation algorithm. The 
hanges are: an additionalblo
k of 
ode devoted to generating the L-events dynami
ally; a di�erent buteasy to implement adequate order; a new 
ut-o� dete
tion subroutine. The mainfeature of the implementation is the e�
ient handling of L-transitions, whi
h wedis
uss next.Generating the L-transitions Dynami
ally. Re
all that in the syn
hronization
Σ¬ϕ we 
an for ea
h Bü
hi state q have as many L-transitions as there arerea
hable markings of the form (q, sf , O, H) in the net system Σ¬ϕ. Clearly we
an not expli
itly generate them all due to e�
ien
y reasons. Instead we generatea net system Σs

¬ϕ (s stands for stati
) in whi
h this set of L-transitions (addedby step (6) of the syn
hronization pro
edure in Se
tion 3) is repla
ed by:(6') Add for ea
h Bü
hi transition t = (q, x, q′) in the net system Σ′

¬ϕ (i.e., thesyn
hronization after steps (1)-(5) as de�ned in Se
t. 3) a new transition t′.The preset of t′ is equivalent to the preset of t and the postset of t′ is empty.Let L (for livelo
ks) be this set of transitions.We 
an now dynami
ally generate any of the (enabled) L-transitions of
Σ¬ϕ. Namely, for a transition t 
orresponding to a rea
hable marking M =
(q, sf , O, H) to be enabled in Σ¬ϕ, a transition t′ (for some (q, x, q′)) must beenabled in Σs

¬ϕ and the Bü
hi automaton must a

ept Oω when q is given asthe initial state. Loosely speaking we test the �rst label of the sequen
e usingthe transition t′, and if this test su

eeds we 
he
k whether O 
an be in�nitelystuttered. (Using this 
onstru
tion it is easy to implement �no-
are values� forsele
ted atomi
 propositions by leaving them out of the preset of t′.) Now gen-erating the postset of t from M is trivial.



Optimizations in Dynami
 Creation. We 
an thus dynami
ally generate L-transitions for ea
h rea
hable marking M as required. However, we 
an do betterby using the net unfolding method. The main idea is to generate the unfolding of
Σ¬ϕ by using Σs

¬ϕ to �nd �
andidate� L-events. Assume we have found an event
es 
orresponding to a transition t′ in the unfolding of Σs

¬ϕ and the stuttering
he
k des
ribed above passes for the marking M = Mark ([es]). Then we add anevent e into the unfolding of Σ¬ϕ 
orresponding to the e�e
t of the transition tin the marking M . If we would dire
tly use the 
onstru
tion above we would alsoadd an event e′ to the unfolding of Σ¬ϕ for ea
h marking M ′ = (q, sf , O, H ′)whi
h is rea
hable from M using only invisible transitions. We now show thatadding only the event e su�
es: Let E be an extension of [e]. If there is an illegallivelo
k starting from M ′ = Mark ([e] ⊕ E) then there is also an illegal livelo
kstarting from M . This 
an be easily seen to be the 
ase be
ause all extensions
E 
ontain only invisible events and thus the set of observable pla
es in both Mand M ′ is O. Algorithm 1 uses the property des
ribed above to add the required
L-events dynami
ally. Another optimization used is the fa
t that only the pla
esin the presets of invisible transitions (denoted InvisPre) need to be added to thepostset of an L-transition.Algorithm 2 is the 
ut-o� dete
tion subroutine. It handles events in part-Iand part-II di�erently. This is one example implementation, and it 
losely followsthe de�nition of the tableau. It sets the global boolean variable success to trueand 
alls the 
ounterexample generation subroutine (Algorithm 3) if it �nds a
ounterexample.The implementation of the 
he
k whether Aq

¬ϕ a

epts Oω in Algorithm 1
an be done in linear time in the size of the automaton A¬ϕ as follows. Firstrestri
t A¬ϕ to transitions satisfying O, and then use a linear time emptiness
he
king algorithm (see e.g. [2℄) to 
he
k whether an a

epting loop 
an berea
hed starting from q in this restri
ted automaton. Be
ause A¬ϕ is usuallyquite small 
ompared to the size of the model 
he
ked system this should not bea limiting fa
tor. Ca
hing of these 
he
k results 
an also be used if ne
essary.The adequate order ≺LTL 
an also be quite e�
iently implemented. We 
anprove that if a 
on�guration C 
ontains an L-event e, then BL(C) = [e]. Nowit is also the 
ase that ea
h 
on�guration only in
ludes at most one L-event. Byusing these two fa
ts a simple and e�
ient implementation 
an be devised.Ea
h time our algorithm adds a non-terminal L-event, it �rst �nds outwhether a livelo
k 
ounterexample 
an be generated from its future. Only ifno 
ounterexample is found, it 
ontinues to look for illegal ω-tra
es and furtherL-events. Thus we use the adequate order ≺LTL to for
e a sear
h order similarto that used by Valmari in [19℄ whi
h dete
ts divergen
e 
ounterexamples ininterleaved state spa
es. However, our algorithm is �breadth-�rst style� and italso does illegal ω-tra
e dete
tion, a part whi
h is not in
luded in [19℄.



Algorithm 1 The tableau generation algorithminput: The produ
t net system Σs
¬ϕ = (P, T, F, M0), where M0 = {p1, . . . , pn}.output: true if there is a 
ounterexample, false otherwise.global variables: successbegin

Fin := {(p1,⊥), . . . , (pn,⊥)};
ut-o� := ∅;
pe := PE (Fin); /* Compute the set of possible extensions */
success := false;while pe 6= ∅ and success = false do
hoose an event e = (t,X) in pe su
h that [e] is minimalwith respe
t to ≺LTL;

Y := t•; /* Remember the postset of t *//* Create the required L-events dynami
ally */if t is a L-transition then
M := Mark([e] \ {e}); /* The marking M = (q, sf , O, H) */
q := M ∩ Q; /* Extra
t the Bü
hi state q *//* (Bü
hi emptiness 
he
king algorithm 
an be used here) */if Aq

¬ϕ = (Γ, Q, q, ρ, F ) does not a

ept Oω then
ontinue; /* Dis
ard e be
ause (q, O) is not a 
he
kpoint */endif
X := Cut([e] \ {e}); /* Extend the preset to also remove tokens from H */
e := (t,X); /* Rename e (i.e., add ar
s from all preset 
onditions to e) */
Y := (M ∩ InvisPre); /* Proje
t M on invisible transition presets */endifif [e] ∩ 
ut-o� = ∅ thenappend to Fin the event e and a 
ondition (p, e)for every pla
e p ∈ Y ;
pe := PE(Fin); /* Compute the set of possible extensions */if is_cutoff (e) then
ut-o� := 
ut-o� ∪ {e};endifelse
pe := pe \ {e};endifenddoreturn success ;end



Algorithm 2 The is_cutoff subroutineinput: An event e.output: true if e is a terminal of the tableau, false otherwise.beginforea
h e′ su
h that Mark([e′]) = Mark([e]) do /* [e′] ≺LTL [e] holds */if e ∈ part-I then /* 
ase (I) */if e′ < e thenif [e] \ [e′] 
ontains an I-event then
success := true ; /* Counterexample found! */
counterexample(e, e′);endifreturn true ;else if #I [e

′] ≥ #I [e] thenreturn true ;endifelse /* 
ase (II) */if BL([e′]) ≺LTL BL([e]) thenreturn true ;else if ¬(e′#e) then /* BL([e′]) = BL([e]) holds */
success := true ; /* Counterexample found! */
counterexample(e, e′);return true ;else if |[e′]| ≥ |[e]| then /* BL([e′]) = BL([e]) holds */return true ;endifendifenddoreturn false;end

Algorithm 3 The counterexample subroutineinput: A su

essful event e with the 
orresponding event e′.begin
C1 := [e] ∩ [e′];
C2 := [e] \ C1;/* C1 
ontains the pre�x and C2 the a

epting loop */
print_linearisation(C1);
print_linearisation(C2);end



7 Experimental ResultsWe have implemented a prototype of the LTL model 
he
king pro
edure 
alledunfsmodels. We use the Spin tool [12℄ version 3.4.3 to generate the Bü
hi au-tomaton A¬ϕ and a tool by F. Wallner [22℄ to generate the syn
hronization Σ′

¬ϕwhi
h is given to the prototype tool as input.The smodels tool [18℄ is used to 
al
ulate the set of possible extensions ofa bran
hing pro
ess. It is a NP-solver whi
h uses logi
 programs with stablemodel semanti
s as the input language. Cal
ulating the possible extensions isa quite demanding 
ombinatorial problem. A
tually a de
ision version of theproblem 
an be show to be NP-
omplete in the general 
ase [10℄. However ifthe maximum preset size of the transitions |•t| is bounded the problem be
omespolynomial [7℄. (The problem is 
losely related to the 
lique problem whi
h hasa similar 
hara
teristi
, for a longer dis
ussion see [7℄.)We 
hose to use smodels to solve this 
ombinatorial problem instead ofimplementing a dedi
ated algorithm. That 
hoi
e allowed us to 
on
entrate onother parts of the implementation. The translation employs 
onstru
ts similarto those presented for the submarking rea
hability problem in [11℄, however itdi�ers in several te
hni
al details. The translation is linear in the sizes of both thenet and the pre�x, however we will not present it here due to spa
e restri
tions.For ben
hmarks we used a set of LTL model 
he
king examples 
olle
tedby C. S
hröter. The experimental results are 
olle
ted in Fig. 3. The 1-safe netsystems used in the experiments are as follows:� BRUIJN(2), DIJKST(2), and KNUTH(2): Mutex algorithms modeled byS. Melzer.� BYZA4_0B and BYZA4_0B: Byzantine agreement algorithm versions mod-eled by S. Merkel [16℄.� RW1W1R, RW1W3R and RW2W1R: Readers and writers syn
hronizationmodeled by S. Melzer and S. Römer [15℄.� PLATE(5): A produ
tion 
ell example from [13℄, modeled by M. Heiner andP. Deussen [9℄.� EBAHN: A train model by K. S
hmidt.� ELEV(3) and ELEV(4): Elevator models by J. C. Corbett [1℄, 
onverted tonets by S. Melzer and S. Römer [15℄.� RRR(xx): Dining philosophers with xx philosophers, modeled by C. S
hröter.The reported running times only in
lude unfsmodels 0.9 running times, asthe Bü
hi automata generation and the syn
hronization with the original netsystem took insigni�
ant amount of time. All the running times are reported asthe sum of system and user times as reported by the /usr/bin/time 
ommandwhen run on a PC with an AMD Athlon 1GHz pro
essor, 512MB RAM, usingg

 2.95.2 and Linux 2.2.17. The times are all averaged over 5 runs.The unfsmodels tool in an on-the-�y tool in the sense that it stops the pre-�x (tableau) generation if it �nds a 
ounterexample during the unfolding. The



Problem BLTL ELTL #
LTL Cex BF in EF in #
F in States Se
LTL Se
F inBRUIJN(2) 2874 1336 327 N 2676 1269 318 5183 13.1 11.0DIJKST(2) 1856 968 230 N 1700 921 228 2724 4.8 3.8KNUTH(2) 2234 1044 251 N 2117 1009 251 4483 7.1 6.1BYZA4_0B 1642 590 82 N 1630 587 82 >2000000 7.0 6.9BYZA4_2A 401 125 4 N 396 124 4 >2500000 0.3 0.3RW1W1R 568 296 32 N 563 295 32 2118 0.5 0.5RW1W3R 28143 15402 5210 N 28138 15401 5210 165272 1863.4 1862.2RW2W1R 18280 9242 1334 N 18275 9241 1334 127132 1109.6 1108.2PLATE(5) 1803 810 12 N 1619 768 12 1657242 14.0 11.8EBAHN 151 62 21 Y 1419 673 383 7776 0.0 0.7ELEV(3) 124 64 10 Y 7398 3895 1629 7276 0.1 91.7ELEV(4) 154 80 13 Y 32354 16935 7337 48217 0.1 1706.2RRR(10) 88 42 5 Y 85 45 19 14985 0.0 0.0RRR(20) 167 81 8 Y 161 81 32 >10000000 0.1 0.0RRR(30) 240 114 9 Y 230 110 41 >10000000 0.2 0.1RRR(50) 407 201 18 Y 388 188 70 >10000000 0.7 0.5Figure 3. Experimental results.reported pre�x sizes in this 
ase are the partial pre�x at the time the 
ounterex-ample was found. The tool 
an also be instru
ted to generate a 
onventionalpre�x using the pre�x generation algorithm des
ribed in [6℄ for 
omparison.In Fig. 3 the 
olumns of the table have the following meanings:� Problem: The name of the problem with the size of the instan
e.� BLTL, ELTL, and #
LTL: The number of 
onditions, events, and the numberof events whi
h are terminals in the LTL pre�x, respe
tively.� Cex: N - There was no 
ounterexample, the formula holds. Y - There was a
ounterexample, the formula does not hold.� BFin, EFin, and #
Fin: The size of di�erent parts of the �nite 
ompletepre�x as above but for the original net system Σ using the 
onventionalpre�x generation algorithm des
ribed in [6℄.� States: The number of states n in the rea
hability graph of the original netsystem Σ obtained using the PROD tool [21℄, or a lower bound > n.� Se
LTL: The time used by unfsmodels in se
onds needed to �nd a 
oun-terexample or to show that there is none.� Se
Fin: The time used by unfsmodels in se
onds needed to generate a �nite
omplete pre�x of the original net system Σ.At this point there are a 
ouple of observations to be made. First of all, onthis set of example nets and formulas, the speed of 
omputing a LTL pre�x isalmost identi
al to the speed of 
omputing a 
onventional pre�x (of 
omparablesize). The main reason for this is that the time needed to 
ompute the possibleextensions dominates the 
omputation time in our prototype. Thus the (slightly)more 
ompli
ated algorithm needed for the 
ut-o� dete
tion do not 
ontribute in



a major way to the running time of the tool. Se
ondly, on all of the experiments,the size of the LTL pre�x is of the same order of magnitude as the 
onventionalpre�x. Thus in this set of examples the quadrati
 worst-
ase blow-up (possiblea

ording to Theorem 3) does not materialize. We expe
t this to be the 
ase alsoin other examples when the used LTL formulas are short and the properties tobe 
he
ked are lo
al, in the sense that the produ
t net system preserves most ofthe 
on
urren
y present in the original net system.Problem BI EI #
I BII EII #
II Cpt Formula typeBRUIJN(2) 2874 1336 327 0 0 0 0 2¬(p1 ∧ p2)DIJKST(2) 1856 968 230 0 0 0 0 2¬(p1 ∧ p2)KNUTH(2) 2234 1044 251 0 0 0 0 2¬(p1 ∧ p2)BYZA4_0B 1642 590 82 0 0 0 0 2(p1 → 3p2)BYZA4_2A 401 125 4 0 0 0 0 2(p1 → 3p2)RW1W1R 568 296 32 0 0 0 0 2(p1 → 3p2)RW1W3R 28143 15402 5210 0 0 0 0 2(p1 → 3p2)RW2W1R 18280 9242 1334 0 0 0 0 2(p1 → 3p2)PLATE(5) 1803 810 12 0 0 0 0 2((p1 ∧ ¬p2 ∧ ¬p3)∨
(¬p1 ∧ p2 ∧ ¬p3)∨
(¬p1 ∧ ¬p2 ∧ p3))EBAHN 113 48 20 38 14 1 1 2¬(p1 ∧ p2)ELEV(3) 22 10 0 102 54 10 1 2(p1 → 3p2)ELEV(4) 25 12 0 129 68 13 1 2(p1 → 3p2)RRR(10) 40 14 0 48 28 5 1 2(p1 → 3p2)RRR(20) 73 27 0 94 54 8 1 2(p1 → 3p2)RRR(30) 104 38 0 136 76 9 1 2(p1 → 3p2)RRR(50) 173 67 0 234 134 18 1 2(p1 → 3p2)Figure 4. Detailed LTL tableau statisti
s.In Fig. 4 a detailed breakdown of the di�erent 
omponents of the LTL pre�x isgiven. The subs
ripts I and II denote the part of the pre�x used for ω-tra
e andlivelo
k 
he
king, respe
tively (i.e., events in part-I and part-II). Column Cpt
ontains the number of 
he
kpoints, i.e. how many of the L-events are 
he
k-points. Finally Formula type gives the type of the formula being 
he
ked.In Fig. 4 we 
an also see that in the 
ases a 
ounterexample was found itwas found after only a small amount of the pre�x was generated. A
tually inall the experiments the 
ounterexample was a livelo
k 
ounterexample, and thelivelo
k was found from the �rst 
he
kpoint found during the pre�x generation.This allowed the LTL model 
he
king pro
edure to terminate quite early with a
ounterexample in many 
ase, see e.g. the ELEV(4) example.The net systems used in experiments and unfsmodels 0.9 are available at<http://www.t
s.hut.fi/�kepa/experiments/spin2001/>.



8 Con
lusionsWe have presented an implementation of the tableau system of [3℄. We have beenable to merge the possibly large set of tableaux of [3℄ into a single one. In thisway, the algorithm for model 
he
king LTL with unfoldings remains 
on
eptuallysimilar to the algorithms used to generate pre�xes of the unfolding 
ontainingall rea
hable states [6,5℄: We just need more sophisti
ated adequate orders and
ut-o� events.The division of the tableau into part-I and part-II events is the pri
e to payfor a partial-order approa
h to model 
he
king. Other partial-order te
hniques,like the one introdu
ed by Valmari [19℄, also require a spe
ial treatment of di-vergen
es or livelo
ks. 3 We have shown that the 
onditions for 
he
king if part-Ior part-II events are terminals remain very simple.In our tableau system the size of a tableau may grow quadrati
ally in thenumber of rea
hable states of the system. We have not been able to 
onstru
t anexample showing that this bound 
an be rea
hed, although it probably exists. Inall experiments 
ondu
ted so far the number of events of the tableau is alwayssmaller than the number of rea
hable states. In examples with a high degree of
on
urren
y we obtain exponential 
ompression fa
tors.The prototype implementation was 
reated mainly for investigating the sizesof the generated tableau. Implementing this pro
edure in a high performan
epre�x generator su
h as the one des
ribed in [5℄ is left for further work.A
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