Analyzing Context-Free Grammars Using an
Incremental SAT Solver

Roland Axelsson', Keijo Heljanko?*, and Martin Lange'

! Tnstitut fiir Informatik, Ludwig-Maximilians-Universitit Miinchen, Germany
2 Department of Information and Computer Science,
Helsinki University of Technology (TKK), Finland

Abstract. We consider bounded versions of undecidable problems about
context-free languages which restrict the domain of words to some fi-
nite length: inclusion, intersection, universality, equivalence, and ambi-
guity. These are in (co)-NP and thus solvable by a reduction to the
(un-)satisfiability problem for propositional logic. We present such en-
codings — fully utilizing the power of incrementat SAT solvers — prove
correctness and validate this approach with benchmarks.

1 Introduction

Context-free grammars (CFG) and languages (CFL) have been used in-
tensively by computer scientists and linguists since Chomsky formalized
them in 1956. They have applications in compiler design, speech process-
ing, bioinformatics, static program analysis, XML processing, etc.

The word problem for CFGs is decidable in cubic time and quadratic
space and the Pumping Lemma for CFLs [1] provides a criterion by
which the emptiness problem becomes decidable as well. However, it
has since long been known that the following problems are undecidable:
universality (given a CFG G over some alphabet X, is L(G) = X*7);
inclusion, intersection, and equivalence (given two CFG G1 and G2, is
L(G1) C L(G2), is L(G1) N L(G2) =0, and is L(G1) = L(G2)?)
Another very important undecidable problem is ambiguity — is there a
word which has at least two different parse trees w.r.t. a given CFG?
After seeing little progress for many years, this problem has recently
attracted attention again [3,8] which is, e.g., due to its importance in
compiler design and bioinformatics.

Due to decidability of the word problem these problems are all (co)-
semi-decidable through an enumeration of X*. Hence bounded versions of
these problems become decidable. For example, the bounded universality
problem is: given a CFG G and a k € N, does L(G) contain all words
of length < k7 Since the word problem is even decidable in polynomial
time, they are in (co-)NP and can therefore be solved by a polynomial
reduction to (UN-)SAT, provided that k is given in unary coding.

* Work financially supported by Academy of Finland (project 112016) and Technology
Industries of Finland Centennial Foundation.

The use of modern SAT solvers such as zChaff [6] has proved to be ex-
tremely beneficial in areas like computer aided verification, Al planning,
theorem proving, cryptanalysis, electronic design automation, etc. Here
we show that, apparently, formal language theory is also among them.
The observation about decidability of the above bounded problems is
not new although we are not aware of any work that exploits this idea
thoroughly in order to tackle the unbounded (and undecidable) prob-
lems. Here we present optimized reductions of these bounded problems
to SAT s.t. a SAT solver can find witnesses, resp. counterexamples for
these problems. The basis for the reduction is the well-known CYK al-
gorithm [9]. We generate propositional logic constraints encoding which
nonterminals may/must occur at certain positions in a CYK parse table.
A slightly different approach to encoding CYK parsing into SAT has been
independently discovered in [7]. However, the textbook version of CYK
is unsuitable since it requires the CFG to be in Chomsky Normal Form
(CNF) which may incur an exponential blow-up in the grammar. That
would clearly be counterproductive in the search for optimized reduc-
tions. We therefore develop and use an optimized version of CYK which
may be known in the community but does not seem to have made it into
the literature. When it comes to ambiguity, we even must. Note that the
transformation into CNF does not preserve ambiguity. We therefore use
a different normal form without these deficiencies.

The crucial difference between our symbolic encoding and an explicit
execution of the CYK algorithm though, is the absence of an input word.
This has to be “guessed” by the SAT solver and the constraints will
ensure (non)-inclusion in the languages of some CFGs. Thus, we do not
only get that the SAT formula is satisfiable iff the language of the CFG,
say, contains an ambiguous word of length < k. The satisfying assignment
also encodes this word as well as two different parse trees.

Note that CYK tables are in some sense closed under extension “to the
right”: the triangular table of size (k+1) x (k+ 1) can be obtained from
the one of size k X k by adding a column of length k£ + 1. This is what
makes incremental SAT solving predestined for solving bounded CFL
problems. If a witness/counterexample of size < k is not found, addi-
tional constraints for a greater bound plus a few changes in the current
constraints yield the new formula. Incremental SAT solvers maximally
utilize information gathered in solving a SAT instance to solve the next
“bigger” but structurally very similar one. Such solvers are therefore of
particular interest for our setting.

This is clearly just a semi-decision procedure for the unbounded versions
of the considered problems. But it has distinct advantages over approx-
imation approaches for ambiguity [3,8]. While the accuracy of answers
given by those depends on the quality of the approximation (that may
produce false-positives), our approach is only limited by time and avail-
able memory; the structure of the produced formula does not pose any
difficulty to the SAT solver. A report on an empirical evaluation is in-
cluded after some preliminary definitions, and the presentation as well
as exemplary correctness proofs of encodings for the above problems.
On the other hand, our approach is clearly not complete and not meant
to replace approximation approaches to ambiguity. Instead, they could

also be combined, e.g. to provide a search for smallest witnesses to the
problems of horizontal and vertical ambiguity in [3] for instance.

2 Preliminaries

Let X be an alphabet. As usual, we write |w| for the length of a word
w, X* for the set of finite words over X, X<F for {w € X* | |w| < k} for
any k € N, ¢ for the empty word and uv or LL’ to denote concatenation
of words, sets, languages, etc. If w = ai...a, we write w® " for its
subword a; ...a; of length j — i+ 1. A context-free grammar is a tuple
G = (Ng, X, Pg,Sc) where Ng is a finite set of non-terminals, X' is an
alphabet, No N X = (), S¢ € Ng is the starting symbol and Pc C Ng X
(NgUX)™ is a finite set of production rules. We use infix notation A — «
to denote (A, o) € Pg. As the size of G we define |G| := [N|+>_,_,_ |ol.
The derivation relation =¢C (NUX)T x (NUX)* is defined as A3 =¢
ayBiff A— v € Pfora,f,ve (NUX)*, A€ N. We will drop the index
G if it becomes clear from the context.

L(G) :=={w € X" | S¢ =" w} is the language of G. An alternative way
to define the derivation of a word is via the existence of parse trees. We
assume the reader familiar with these fundamental concepts and refer to
[4] for details.

A word w is ambiguous w.r.t. a CFG G, if there are two different parse
trees for w w.r.t. G. For a CFG G let amb(G) denote the set of words
that are ambiguous w.r.t. G. G itself is called ambiguous if amb(G) # 0.
In the following we will always assume the context-free languages under
consideration not to contain the empty word e. This is not a restriction
but simplifies the presentation.

Definition 1. A CFG is in binary normal form (2NF), if for all (A —
a) € Pg we have o € {¢JUYXUNUNN. It is acyclic if forall A# B € N
we have, if A =" B then B %" A. It is reduced if all nonterminals are
reachable and productive, i.e. for all A € N there are sentential forms «,
B and a word w € X" s.t. S =" a«Af and A =" w.

Lemma 1. For every CFG G there is a CFG G’ in reduced acyclic 2NF,
computable in time O(|G)?) s.t. L(G) = L(G") and |G| = O(|G]).

Lemma 2. Let G be an acyclic grammar. There exists a well-founded
strict partial order >C N&, s.t. if A=" B and A # B then A > B.

3 The Encoding

The task is now to create propositional logic constraints from a CFG
G and a k € N that are satisfiable iff L(G) is (k-bounded) universal,
ambiguous, etc. Let G = (N, X, P, S) in reduced, acyclic 2NF and k be
fixed. We use two kinds of propositional variables: X{ for every a € ¥
and every 1 < i < k stating that the i-th symbol of a witnessing word
is a. An assignment to these variables corresponds to the choice of a

witness w. The other kind is X{f‘j and states that nonterminal A derives

the subword w® 7. Let P = {X{", X/}, |a€ 8, A€ N,1<i<;j<k}. In
the following, n will denote an assignment of these variables to {tt, ff },
and we write n(C) = tt if 7 satisfies all the constraints C under the usual
interpretation of the operators in propositional logic.

With incrementality in mind we define constraint sets w.r.t. some p, p’
st. 1 < p < p’ < k. Intuitively, these contain the constraints for the
columns p, . ..,p" of a CYK table. Note that they may use variables with
indices below p.

Let & = {¢1,...,¢vn} be an ordered set of propositional formulas. There
is a standard trick to state that at most one of them holds by introducing
auxiliary variables Y; for 1 <i¢ < n+ 1.

One(®) = {(pi = YiAYip)A(Yi = Yigr) | 1<i<n}

With this macro, we can easily state that each position in a witnessing
word is occupied by a unique symbol.

W(p,p') = { One({X{ |ae ZHA \/ X{' | p<i<yp'}
acX
Lemma 3. Foranyn, n(W(p,p’)) = tt iff there exists a unique sequence
bpy .y byr, st (X)) =t iff bi =a; for allp <i<p',a; € X.

We will therefore simply write wg’p/ for the unique w”? induced by n.
We encode a derivation with the help of constraints R(p,p’) :=

j—1
A a B B B C
(x5« Vxtv /x5 v x5v V&G AX)
3;(; g;g AA—;BCCBQT A—BC h=i
A#B,C=*e

|AeN,p<i<j<p'}

This encoding splits up the derivation of w;’j by non-terminal A into
the following four cases (marked by the big disjunctions): derivation of
a single terminal, two cases of single non-terminal derivations and the
derivation of composites. Note that pre-computing the set of all nonter-
minals C' s.t. C' =" € can be done in time O(|G]). It is also a necessary
preliminary step during the transformation into 2NF. So far, R(p,p’)
contains a bi-implication. However, for some problems, implications in
one direction only will suffice. For example, when encoding bounded
emptiness, the «—-parts are unnecessary. In general, the —-parts express
soundness of the encoding and are used to express that something is
derivable; the «—-parts encode completeness and can be used to express
that a word is not derivable. We write R~ (p,p’) and R (p,p’) for the
soundness, resp. completeness parts only.

Lemma 4. Let k > 0, n be an assignment s.t. n(R™(1,k) UW(1,k)) =
tt and w = w},’k‘ Then for all A € Ng, all 1 <1i < j <k we have: if
n(X{?j) = tt then A =" w" 7.

Proof. Suppose n(X{i‘j) = tt. We prove the claim by induction on j — ¢
where we refer to the four different (big) disjunctions in R~ (1,k) as
“blocks 1-4”.

Base case (i = j): Clearly, at least one variable from blocks 1-3 has to
be evaluated to tt. Block 4 evaluates to f£f for ¢ = j.

1. n(X#) = tt. There must be a rule A — w" and therefore A =* w'.

2. n(Xfi) = tt. We proceed by well-founded induction on >. Suppose
for all B < A, we have B =" w" if n(X}) = tt. Because of the rule
A — B we also have A =* w'.

3. n(X[;) = tt. Analogous to (2).

Inductive case (i < j): Block 1 evaluates to ff for ¢ < j, so at least one
disjunct from blocks 2—4 has to evaluate to tt.

1. n(X7;) = tt. Same as in the base case.

2. n(xp7) = 77(X}?+1,j) = tt (4). In particular, h, B,C exist and ¢ <
h<j.Clearly h—i < j—iand j— (h+1) <j—iand therefore by
induction hypothesis B =* w*" and C =* w"™'J. As A — BC it
follows that A =* w'J, O

Lemma 5. Let k > 0, n be an assignment s.t. n(R™(1,k) UW(1,k)) =
tt and w = w,lfk. Then for all A € Ng, all1 < i < j < k we have: if
A= w7 then n(X/72) = tt.

Proof. Again, we prove this by induction on j —i. Let w = wy. In the
base case suppose A =* w’? = a. Thus, n(X{) = tt. Furthermore, there
is a derivation tree with root A and leaf front a. Clearly, whenever a node
in this tree has two successors labeled B and C then B =" € or C =" e.
Because of 2NF, a must be generated by some rule B — a, and because
of block 1 we have n(X/;) = tt. A separate induction on the height of
the tree — using blocks 2-4 — shows that we have n(X{;) = tt for all
predecessors of this B in this tree, including the root A. The crucial
insight to the applicability of this induction is the fact that in this parse
tree the node labels on the path from the root to the leaf a are strictly
decreasing w.r.t. > according to Lemma 2.

Now assume j > i and A =* w"7. Hence, we have a parse tree ¢ with
root A whose leaf front is w® 7. For a node n in t we write w(n) for the
subword of w7 that constitutes of the leaf labels in the subtree under n.
Furthermore, for two words u, v we write u < v if u is a genuine subword
of v.

Note that |w®*/| > 2, and — because of 2NF — leaves in this tree have
a direct predecessor n that can only have a single successor. Therefore,
for each such n we have w(n) < w®7. Note that w(no) = w7 for ng
the root of t. Hence, there must be a highest (closest to the root) node
n in this tree, that is labeled with some B € Ng and has two successors
ny1 and ng labeled with some C, resp. D, s.t. w(ni) < w(n) = w(no)
and w(n2) < w(n) = w(ng). Hence, w(ni) = w™ " and w(ng) = whJ
for some ¢ < h < j. But then we have C =* w*" D =* "1,
and, by hypothesis, n(th) = n(XhDH,j) = tt. Since B — C'D we have
n(XJ7;) = tt by block 4. Finally, the path from the node labeled B to
the root A must be strictly increasing w.r.t. < again, and an induction
on its length eventually shows n(X;%;) = tt using blocks 1-3. O

3.1 Constraints for Particular Problems

We will now assemble the above constraints in order to obtain encodings
of the following problems. Let G, G’ be CFG and k > 0.

Re(p,p')
¢ Ra (p,p) | Ra(p¥) | Ra(p,p) | Rar(p.p)
bINCL¢. ¢/ X X
bUNIV¢ X
bISECT ¢ ¢ X X
bEQUIV ¢, ¢/ X X X X

Fig. 1. How to use the R-constraints.

— Bounded Inclusion (bINCL): does Yw € X=F : w € L(G) = w €
L(G") hold?
— Bounded Universality (bUNIV): is X<F C L(G)?
— Bounded Intersection (bISECT): is there a w € £* N L(G) N L(G')?
— Bounded Equivalence (bEQUIV): does Yw € X=F : w € L(G) <
w € L(G") hold?
For those that take two CFG G, G’ as input we write Rg to clarify which
CFG the constraints refer to.
The following is not hard to prove using the fact that the word prob-
lem for a CFG can be solved in polynomial time. Note that bounded
ambiguity is missing. It will be treated separately below.

Proposition 1. For unarily encoded k € N, the problems bINCL,
bUNIV, bEQUIV are in co-NP, and bISECT is in NP.

All of these encodings have a similar structure: they take some form
of the R-constraints plus a single problem specific one constraining the
grammar’s starting symbols. We therefore define

C(p,p) = W(p,p') U Re(p,p’) U Selp,p)

for C € {bINCL, bUNIV, bISECT, bEQUIV}. The R-parts can be ob-
tained from the table in Fig. 1. The S-part is always a single constraint

Sc = {V?_, Te(j)} with

. S .
Toinen () = X7 9 A X, § Thuniv(j) = ~X7§

. S ! . S ’
Toisecr (j) == X1 A X1 Topquiv(j) = X1 § < X, ¢

We write bINCL(p) for bINCL(1, p), etc. The following theorem confirms
the introductory statement about the reductions from these bounded
problems to SAT being polynomial. Its proof is straight-forwardly based
on standard techniques for obtaining conjunctive normal form and there-
fore not presented here.

Proposition 2. Let G,G’ be CFGs, k > 0. For any set of constraints
C € { bINCL(k), bUNIV (k), bISECT (k), bEQUIV (k) } there is an
equivalent propositional formula Pc in conjunctive mormal form over
O(|Ng U Ng/| - k?) many variables s.t. |dc| = O((|G| + |G']) - k%).

We will prove correctness of one of these reductions, namely for bINCL.
The others are proved in a similar way.

Theorem 1. Let G,G’ be CFGs in reduced acyclic 2NF, k > 0. Then
bINCL¢ ¢ (k) is satisfiable iff there is a w € Z=F s.t. w € L(G)\ L(G").

Proof. (=) Suppose 7 is a satisfying evaluation of bINCLg ¢/ (1, k). Let
w= w%”“ according to Lemma 3. We will show that there is a k' < k s.t.

Sa =* w'* and Sgr = w'* . Let k' be the least j s.t. n(Xlsf) =tt

and n(X Sary = #f. Tts existence is guaranteed by the specific constraints
1,5

for bINCL. The rest follows immediately from Lemmas 4 and 5.
(<) W.l.o.g we assume that the counterexample w is of minimal length
k, i.e. that bINCLg ¢ (k') is unsatisfiable for any k&’ < k. We construct
an evaluation 1 of bINCL¢g ¢/ (1, k) as follows.

n(X{) =t iff w' =a n(ij) =t iff A=>"w"?
for all A € Ng¢ UNg, 1 < i < j < k. A simple inspection of the
constraints in bINCL(k) shows that they are all fulfilled by 7. O

Theorem 2. Let G,G’ be CFGs in 2NF, k > 0. Then we have
— bUNIV¢(k) is satisfiable iff there is a w € X=<F s.t. w ¢ L(G).
— bISECTg, o (k) is satisfiable iff there is a w € X=F s.t. w € L(G) N
L(G").
— bEQUIV¢ ¢ (k) is satisfiable iff there is a w € X=F s.t. w € L(G)\
L(G") orw € L(G") \ L(G).

A counterexample for the universality problem could therefore be found
by iteratively checking the constraint sets bUNIV(1), bUNIV(2), ... for
satisfiability. Note that bUNIV(k+ 1) contains many constraints already
present in bUNIV (k). In fact, for all of the above problems we have the
following relation. Let 0 < k < k'.

Ck) = (Ctk) \ |J Selp.p)) U Clk+1,k) U Se(k+1,K)

1<p<p’<k

Hence, these constraints support incrementality in the sense that the
wider range Y<K can be checked by modifying the constraints for the
smaller range X<*. Furthermore, the increase need not take place in
steps of size 1 only.

3.2 Ambiguity

We define the bounded ambiguity problem bAMB for a grammar G in
reduced acyclic 2NF and a k > 1 in a non-obvious way: is there a non-
terminal A € Ng and a word v € Y =F s.t. v has at least two different
parse trees with roots labeled A that differ in a node on level 17

Note that a word w is ambiguous in the original sense w.r.t. a grammar
G iff it has two different parse trees that differ in a node (determined by
the derived subword under that node and the node’s label) which is not
the root. Therefore, these trees must have a subtree each with equally

labeled roots and equal derived subwords that differ on level 1. In other
words, a derivation for w derives a subword v from a nonterminal A by
using two different rules for A or using one rule in two different ways.

By not looking for ambiguous words, but ambiguous subwords, found
witnesses explain the reason for ambiguity more clearly. For example, if
the examined grammar was an ambiguous one for Java, then the witness
may not be a whole Java program but just an ambiguous Java expression.
Furthermore, this definition of bounded ambiguity allows for much more
compact encodings. Finally, if a CFG is reduced, i.e. all terminals are
reachable and productive then we have the following property: if (v, A)
is an instance of bAMB for a CFG G as defined above, then there is an
ambiguous w € L(G) s.t. w = uvz for some u,z € X*. The converse
direction holds trivially. Thus, bounded ambiguity in our sense is just a
more detailed description of bounded ambiguity as one may expect it.

Proposition 3. The problem bAMB is solvable in NP for unarily en-
coded k € N.

Before we can present the encoding we need to reconsider the transfor-
mation of a CFG into reduced acyclic 2NF. Remember that acyclicity is
necessary for the R-constraints to be correct. However, it requires the
removal of productions of the form A — A after replacing nonterminals
with equivalence class representants in the construction of Lemma 1. But
then the transformation does not preserve ambiguity anymore, because
such a cyclic rule can be its cause.

Definition 2. An extended CFG is a tuple G = (N, X, P, S, M, E) like
a CFG with E C M C N called the ambiguously nullable nonterminals
and the ambiguous nonterminals. The notions of language, derivability,
2NF, acyclicity, reducedness etc. are defined as for a CFG. However, we
define amb(G) = {w | there are two different parse trees for w, or there
is one parse tree containing a nonterminal A € M }.

Then we can reformulate Lemma 1 for the new purpose as follows.

Lemma 6. For every CFG G there is an extended CFG G’ in acyclic
and reduced 2NF, computable in time O(|G|?) s.t. L(G') = L(G), and
|G'| = O(|G|). Moreover, we have amb(G') = amb(G), and A € E iff
there are two different parse trees with root A and leaf front e.

Proof. Let G = (N, X, P,S) be a CFG. It can be reduced and trans-
formed into 2NF in time O(|G|). Define G’ := (N, %,P,S,M,E) as
the canonical factorisation of G under the equivalence relation A ~ B
iff A=* B ="* A. Le. its non-terminals are equivalence classes A under
this relation, and the production rules of G’ are canonically derived from
those in G. It should be clear that G’ is also reduced. Let E consist of all
A that can derive € in at least two different ways. This can be computed
in time O(|G’|). Define M := EU{A | A =% A}. Note that M can be
computed in time O(|G|?). In order to make G’ acyclic, simply remove
all productions of the form A — A.

It is not hard to see that amb(G’') C amb(G) holds. For the converse
direction, assume that t1 # t2 are two parse trees for some w w.r.t. G.

Let #; and #, result from them by replacing every node label A with A
and collapsing edges of the form A — A. Note that these are parse trees
for w w.r.t. G'. If £ # t2 then w € amb(G’). Otherwise, if £; = t2 then
either they coincide because of a collapsed edge in some ¢;. In this case,
#1 must contain some A € M and therefore w € amb(G’). Or there are
nodes with labels A and B in ¢; and ¢z that get mapped to the same

node A in #1, i.e. A ~ B and therefore A € M. m]

We are now ready to describe the SAT encoding of bounded ambiguity.
As above, we assume a macro Two(®) which, for an ordered set @ of
propositional formulas, is satisfiable iff there is an assignment satisfying
at least two formulas out of . It can easily be constructed by introducing
at most 2 - |@| + 2 new variables, c.f. the construction of One above.
Let G be an extended CFG in reduced, acyclic 2NF. The W-constraints
remain the same. Since “having two different parse trees” entails being
derivable, we also add the R™ constraints defined above. Finally, we
simply have to state that there is a nonterminal which forms the root
of the parse (sub)tree which is either an ambiguous nonterminal or to
which two different productions apply.

bAMB(k k) = Wk k) U R™(k k) U

{\/(VXt v VX AXE) v (XA Two(Pay))}
j=k AeMg A~>BCCBQV AENG\ Mg
A#B,C€Eg

where
Pay; = { X, | A—ac{B,BC,CB} with C =" ¢}
U{X{ | A-aandj=1}
U{X{nAXi; | A= BC1<h<j}

encodes all the different productions that can be made at the root la-
beled A of a parse tree for a word of length j. Again, let bAMB(k) :=
bAMB(1, k). It is not difficult to see that the encoding of this problem
supports incrementality as well. In each increment, the W- and R -
constraints remain, the other one has to be deleted, etc.

Lemma 6 together with an argument similar to that in the proof of
Thm. 1 yields correctness of the encoding.

Theorem 3. Let G be a CFG in 2NF, k > 0. Then bAMB(k) is satisfi-
able iff there are u,v,z € X s.t. wz € L(G), |v] < k and there are two
different parse trees for w that differ on level 1 of the subtree for v.

Proposition 4. Let G be a CFG, k > 0. Then bAMB(k) can be equiv-
alently translated into a propositional formula @ in conjunctive normal
form over O(|Ng| - k*) many variables s.t. || = O(|G| - k*).

4 Comparison

A prototype implementation of the reduction approach (cfganalyzer)
has been implemented for all 5 bounded problems mentioned above. It

is written in OCaml 3.09.3, uses zChaff version 2007.03.12 as a linked-in
incremental SAT solver and is available online.?

Of the problems discussed here, ambiguity is the one to which most
attention has been paid and for which a number of tools is available.
These basically split up into three different approaches: (1) brute-force
ambiguity detection, (2) LRR detection and (3) language approximation.
(1) Brute-force ambiguity detection systematically generates parse trees
of a certain maximal size and looks for double appearances of the de-
rived words. Ambiguous words which exceed the bound are not found —
as in our approach. The crucial difference though is the use of a high-
performance SAT solver as a back-end. While brute-force ambiguity de-
tectors need to generate all parse trees for a certain bound one-by-one,
our reduction covers all parse trees for that bound at once, and it is up
to the SAT solver to find two in its solution space. In terms of com-
plexity: we use a polynomial reduction to an NP-problem while (1) is
an exponential reduction to a problem in P (finding equal strings in
lists). The performance discrepancies between derivation generators and
cfganalyzer can be seen by comparing Fig. 2 to the results of AMBER in
[2]; cfganalyzer is more than 1000 times faster on subwords of the same
size as words in e.g. the Pascal grammar and capable of pushing the
bounds to k = 25 in reasonable time where AMBER is already at 100.000
sec for k = 17.

(2) LRR or LR-regularity is a generalisation of the well-known LR(k)
grammar classes [5]. Instead of a k-symbol lookahead, an LRR parser
considers regular equivalence classes on the remaining input and re-
ports parsing conflicts. LRR detectors rely on the fact that every LRR-
grammar is unambiguous and simply check a given grammar for this
property. But since not every unambiguous grammar is LRR this method
is of course also incomplete. Although being relatively fast, common
LR(k) parsers such as yacc often reveal little about the causes of con-
flicts. Another positive effect of our approach is that it does always offer
a detailed report on the cause of the ambiguity upon termination, i.e.
provides two parsetrees for the ambiguous subword.

(3) Methods of the third kind usually are complete but not sound by
over-approximating the grammar. False-positives can occur because the
language of the approximated grammar is a superset of the original
one. Examples are the ACLA framework [3] or Schmitz’s method [8].
Our approach does not easily compare to those since it is an under-
approximation: it is sound, and complete only in the sense that it pro-
duces no spurious reports. It does however not terminate on unambiguous
inputs. Hence, the situation is dual to that of the over-approximation ap-
proaches which can reliably report unambiguity. Because of this duality
these two approaches combine well: a reported potential ambiguity of an
over-approximation tool may be confirmed as a fact by cfganalyzer and
a seemingly non-terminating run of it can be verified as unambiguous by
such a tool.

3 http://www.tcs.ifi.lmu.de/ mlange/cfganalyzer,
We would also like to thank Harri Haanp#i (TKK) and Anders Mgller (Arhus) for
kindly providing us with benchmark CFGs.

To measure the performance of cfganalyzer it was run on 81 ambiguous
grammars from bioinformatics, ambiguous variants of programming lan-
guages as well as on a larger number of toy examples from [2]. Note that
unambiguous ones are meaningless benchmarks here. Crucial for the per-
formance of the tool on ambiguous examples is of course the size of the
grammar as it directly influences the bound k up to which witnesses are
found before the SAT solver runs out of memory. Their number of rules
varies between 3 and 862 (in 2NF). Most grammars have less than 200
rules, but among the 13 grammars with number of rules above 200, there
are such prominent examples as C (413 rules), SML (304), Pascal (337),
Elsa C++ (862) and SQL (202). Fig. 2 gives an overview of the perfor-
mance on these in relation to the witness size k for ambiguous subwords.
All ambiguities in the given grammars were confirmed by cfganalyzer.
We have also examined cfganalyzer’s performance on the bounded
equivalence problem. It not only is the most difficult of the other prob-
lems but it also has obvious applications in CFG design whenever one
grammar serves as a specification and another as an implementation, and
one wants to ensure that they generate the same language. The following
scenario provides a nice test suite. At Helsinki University of Technology,
students are given veral descriptions of CFLs and their task is to come
up with CFGs which generate them. An automatized homework grading
system has collected approx. 2000 student submissions for 40 different
CFLs. Currently, unequivalence is only tested by sampling random words
and checking that they are in both or neither of the two languages.

For running qualitatively better tests — cfganalyzer will not miss coun-
terexamples up to the given bound unlike the testing approach — we have
checked each of the 2000 grammars against all the sample solutions over
the same alphabet (which of course makes the equivalence test fail for
a large percentage). First, a coarse mapping of the submissions to the
solution grammars was made, sorting out all submissions which were in-
equivalent to all solutions within a bound of k < 15 already (less than 0.1s
in most tests). The remaining 251 grammars which potentially matched
a solution were given a more thorough check by setting the maximum
bound up to £ = 50. Checking this range took on average 23.41s which is
well below the time it would take to test all | 2|%* —1 words of length upto
50. This confirms cfganalyzer’s feasibility and usefulness in set-ups that
have to deal with CFGs in an automatic fashion.

5 Conclusion

The previous section shows that undecidable problems of CFLs can be
(under-)approximated by bounding the search space of witnesses / coun-
terexamples and using an incremental SAT solver for finding them. This
approach is sound and “complete upto termination”: it does not yield
false-positives but, while unambiguity for example cannot be proved but
only insinuated by the lack of found witnesses. This complements other
work on ambiguity detection, in particular over-approximations which
are complete — they can prove unambiguity — but not sound. The pro-
totype implementation cfganalyzer shows feasibility of this approach:

100

sec

k

Fig. 2. Ambiguity detection of subwords with length &

it has found ambiguity of large real-world grammars in short time. It
also shows that this approach by far outperforms other existing and
comparable approaches, e.g. under-approximations like the brute-force
enumeration of parse trees of bounded length.

References

1. Y. Bar-Hillel, M. Perles, and E. Shamir. On formal properties of sim-
ple phrase structure grammars. Zeitschrift fiir Phonologie, Sprach-
wissenschaft und Kommunikationsforschung, 14:113-124, 1961.

2. H.J.S. Basten. The usability of ambiguity detection methods for
context-free grammars. In A. Johnstone and J. Vinju, editors, Fighth
Workshop on Language Descriptions, Tools, and Applications (LDTA
2008), Budapest, Hungary, April 2008.

3. C. Brabrand, R. Giegerich, and A. Mgller. Analyzing ambiguity of
context-free grammars. In CIAA’07, volume 4783 of LNCS, pages
214-225. Springer, 2007.

4. J. Hopcroft and J. Ullman. Introduction to Automata Theory, Lan-
guages, and Computation. Addison-Wesley, 1979.

5. Karel Culik IT and Rina S. Cohen. LR-regular grammars - an exten-
sion of LR(k) grammars. Journal of Computer and System Sciences,
7(1):66-96, 1973.

6. M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik.
Chaff: Engineering an efficient sat solver. In DAC, pages 530-535.
ACM, 2001.

7. C.-G. Quimper and T. Walsh. Decomposing global grammar con-
straints. In CP, volume 4741 of LNCS, pages 590-604. Springer, 2007.

8. S. Schmitz. Conservative ambiguity detection in context-free gram-
mars. In JCALP’07, volume 4596 of LNCS, pages 692-703. Springer,
2007.

9. D. H. Younger. Recognition and parsing of context-free languages in
time n®. Information and Control, 10(2):372-375, 1967.

