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Qualitx assessment C | T C

How is the result of a classifier usually accessed?
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How is the result of a classifier usually accessed?

89.76% (0.05)
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How is the result of a classifier usually accessed?
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Qualitx assessment C | T C

How is the result of a classifier usually accessed?

Table: Confusion matrix

1 2 3 4 5 >
1 176 10 12 7 2 207
2 1 57 11 9 3 81
3 18 25 43 31 10 127
4 1 5 23 127 4 160
5 4 3 11 26 131 175

) 200 100 100 200 150 750

class-wise accuracy of estimation in %
88.00 57.00 43.00 63.50 87.33
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What else could be interesting? C | T C

More information about the result:
» Which samples near to the decision boundary?
» Which samples are classified incorrectly and “how much”?
» How smooth is the decision boundary?
» How are the modes of the classes structured?
» How are errors distributed?
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Where is the Difficultx? C | T C

Class borders are

» Often non linear
» Often not given in an explicit functional form (e.g. SVM)
» High-dimensional — non feasible for visualization
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Our agﬁroach C IT C

1. Project the trained data into 2D
DR method (should map relative positions of classes faithfully)
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Our aEBroach C IT C

1. Project the trained data into 2D
DR method (should map relative positions of classes faithfully)

2. Sample the 2D data space
much less effort than sampling in the high-dimensional space

3. Project the samples up to the original space
4. Classify them
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An illustration: ”high”-dimensional data ClT C
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An illustration: dimensionalitx reductionC | T Ec

Train the classifier and project data to 2D

- class 1
- class 2
SVs
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An illustration: dimensionalitx reductionC | T -

Train the classifier and project data to 2D

- class 1
- class 2
© SVs
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Sample in 2D and project up
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An illustration: border visualization
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» contours code the distance
from the class boundaries
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Inverting the dimensionalitx reduction C | T EC

Assume n training data x; € R? accompanied by labels /; € L

» Use a nonlinear dimension reduction method to produce a low-
dimensional embedding p(x;) = y; € R?
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Inverting the dimensionalitx reduction C | T EC

Assume n training data x; € R? accompanied by labels /; € L

» Use a nonlinear dimension reduction method to produce a low-
dimensional embedding p(x;) = y; € R?

» Define a kernel mapping

_ k(YY)
X ~p (v = M — AK
i~ P) diki(yi ;)

with parameters «, the kernel and possible kernel parameters
» Find the least squares solution for a of the reconstruction error

E=)" HX/' - Pq(.Vj)H2
J
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AEBIication C | T

» Gene Expression Data Set (Ground truth available)
» Visualization via LLiRaM LVQ [Bunte, Dissertation]
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» Gene Expression Data Set (Ground truth available)
» Visualization via LLiRaM LVQ [Bunte, Dissertation]
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Agﬁlication C IT C

» Letter Recognition Data Set
» Visualization via LiRaM LVQ + t-sne [Bunte et.al 2012]
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AEBIication C IT C

» Letter Recognition Data Set
» Visualization via LiRaM LVQ + t-sne [Bunte et.al 2012]
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Conclusions & Future work C | T _—

Conclusion:
» The visualization of classification boundaries is possible
» First experiments showed promising results

Future Work:

» What if certain dimensions are more relevant for classification?
(Fisher information, classifier)

» Learning of hyper-parameters
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Thank You For Your Attention!
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