

How to visualize a classifier?

A. Schulz, A. Gisbrecht, K. Bunte and B. Hammer {aschulz|agisbrec|kbunte|bhammer}@ techfak.uni-bielefeld.de

University of Bielefeld 28.08.2012

How is the result of a classifier usually accessed?

How is the result of a classifier usually accessed?

89.76%

How is the result of a classifier usually accessed?

89.76% (0.05)

How is the result of a classifier usually accessed?

How is the result of a classifier usually accessed?

Table: Confusion matrix

	1	2	3	4	5	Σ
1	176	10	12	7	2	207
2	1	57	11	9	3	81
3	18	25	43	31	10	127
4	1	5	23	127	4	160
5	4	3	11	26	131	175
\sum	200	100	100	200	150	750
class-wise accuracy of estimation in %						
	88.00	57.00	43.00	63.50	87.33	

What else could be interesting?

More information about the result:

- Which samples near to the decision boundary?
- Which samples are classified incorrectly and "how much"?
- How smooth is the decision boundary?
- ▶ How are the modes of the classes structured?
- How are errors distributed?

Where is the Difficulty?

Class borders are

- Often non linear
- Often not given in an explicit functional form (e.g. SVM)
- $\blacktriangleright \ \ \text{High-dimensional} \to \text{non feasible for visualization}$

 Project the trained data into 2D DR method (should map relative positions of classes faithfully)

- Project the trained data into 2D DR method (should map relative positions of classes faithfully)
- Sample the 2D data space much less effort than sampling in the high-dimensional space

- Project the trained data into 2D DR method (should map relative positions of classes faithfully)
- Sample the 2D data space much less effort than sampling in the high-dimensional space
- 3. Project the samples up to the original space

- Project the trained data into 2D DR method (should map relative positions of classes faithfully)
- Sample the 2D data space much less effort than sampling in the high-dimensional space
- 3. Project the samples up to the original space
- 4. Classify them

An illustration: "high"-dimensional data CITEC

An illustration: dimensionality reduction CITEC

Train the classifier and project data to 2D

An illustration: dimensionality reduction CITEC

Train the classifier and project data to 2D

Sample in 2D and project up

An illustration: border visualization

 contours code the distance from the class boundaries

Inverting the dimensionality reduction CITEC

Assume *n* training data $\mathbf{x}_i \in \mathbb{R}^D$ accompanied by labels $l_i \in L$

▶ Use a nonlinear dimension reduction method to produce a lowdimensional embedding $p(\mathbf{x}_i) = \mathbf{y}_i \in \mathbb{R}^2$

Inverting the dimensionality reduction CITEC

Assume *n* training data $\mathbf{x}_i \in \mathbb{R}^D$ accompanied by labels $I_i \in L$

- Use a nonlinear dimension reduction method to produce a lowdimensional embedding $p(\mathbf{x}_i) = \mathbf{y}_i \in \mathbb{R}^2$
- Define a kernel mapping

$$oldsymbol{x}_j pprox oldsymbol{
ho}^{-1}(oldsymbol{y}_j) = rac{\sum_i lpha_i k_i(oldsymbol{y}_i, oldsymbol{y}_j)}{\sum_i k_i(oldsymbol{y}_i, oldsymbol{y}_j)} = oldsymbol{\mathsf{AK}}$$

with parameters α , the kernel and possible kernel parameters

Inverting the dimensionality reduction CITEC

Assume *n* training data $\mathbf{x}_i \in \mathbb{R}^D$ accompanied by labels $l_i \in L$

- Use a nonlinear dimension reduction method to produce a lowdimensional embedding $p(\mathbf{x}_i) = \mathbf{y}_i \in \mathbb{R}^2$
- Define a kernel mapping

$$\mathbf{x}_j pprox p^{-1}(\mathbf{y}_j) = rac{\sum_i \alpha_i k_i(\mathbf{y}_i, \mathbf{y}_j)}{\sum_i k_i(\mathbf{y}_i, \mathbf{y}_j)} = \mathbf{AK}$$

with parameters α , the kernel and possible kernel parameters

 \triangleright Find the least squares solution for α of the reconstruction error

$$E = \sum_{i} \left\| \boldsymbol{x}_{i} - p^{-1}(\boldsymbol{y}_{i}) \right\|^{2}$$

- ► Gene Expression Data Set (Ground truth available)
- Visualization via LLiRaM LVQ [Bunte, Dissertation]

- ► Gene Expression Data Set (Ground truth available)
- Visualization via LLiRaM LVQ [Bunte, Dissertation]

- ► Letter Recognition Data Set
- ▶ Visualization via LiRaM LVQ + t-sne [Bunte et.al 2012]

- ► Letter Recognition Data Set
- Visualization via LiRaM LVQ + t-sne [Bunte et.al 2012]

Conclusions & Future work

Conclusion:

- ► The visualization of classification boundaries is possible
- First experiments showed promising results

Future Work:

- What if certain dimensions are more relevant for classification? (Fisher information, classifier)
- Learning of hyper-parameters

Thank You For Your Attention!