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Abstract. Principal component analysis (PCA) is a widely used tech-
nique for data analysis and dimensionality reduction. Eigenvalue decom-
position is the standard algorithm for solving PCA, but a number of other
algorithms have been proposed. For instance, the EM algorithm is much
more efficient in case of high dimensionality and a small number of prin-
cipal components. We study a case where the data are high-dimensional
and a majority of the values are missing. In this case, both of these algo-
rithms prove inadequate. We propose using a gradient descent algorithm
inspired by Oja’s rule, and speeding it up by an approximate Newton’s
method. The computational complexity of the proposed method is lin-
ear to the number of observed values in the data and to the number of
principal components. The experiments with Netflix data confirm that
the proposed algorithm is about ten times faster than any of the four
comparison methods.

1 Introduction

Principal component analysis (PCA) [1–6] is a classic technique in data analysis.
It can be used for compressing higher dimensional data sets to lower dimensional
ones for data analysis, visualization, feature extraction, or data compression.
PCA can be derived from a number of starting points and optimization criteria
[2–4]. The most important of these are minimization of the mean-square error
in data compression, finding mutually orthogonal directions in the data having
maximal variances, and decorrelation of the data using orthogonal transforma-
tions [5].

While standard PCA is a very well-established linear statistical technique
based on second-order statistics (covariances), it has recently been extended into
various directions and considered from novel viewpoints. For example, various
adaptive algorithms for PCA have been considered and reviewed in [4, 6]. Fairly
recently, PCA was shown to emerge as a maximum likelihood solution from a
probabilistic latent variable model independently by several authors; see [3] for
a discussion and references.

In this paper, we study PCA in the case where most of the data values
are missing (or unknown). Common algorithms for solving PCA prove to be
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inadequate in this case, and we thus propose a new algorithm. The problem of
overfitting is also studied and solutions based on regularization and variational
Bayesian learning are given.

2 Algorithms for Principal Component Analysis

Principal subspace and components Assume that we have n d-dimensional
data vectors x1,x2, . . . ,xn, which form the d×n data matrix X = [x1,x2, . . . ,xn].
The matrix X is decomposed into

X ≈ AS, (1)

where A is a d× c matrix, S is a c×n matrix and c ≤ d ≤ n. Principal subspace
methods [6, 4] find A and S such that the reconstruction error

C = ‖X−AS‖2F =

d
∑

i=1

n
∑

j=1

(xij −
c
∑

k=1

aikskj)
2 , (2)

is minimized. There F denotes the Frobenius norm, and xij , aik, and skj ele-
ments of the matrices X, A, and S, respectively. Typically the row-wise mean
is removed from X as a preprocessing step.

Without any further constraints, there exist infinitely many ways to perform
such a decomposition. However, the subspace spanned by the column vectors of
the matrix A, called the principal subspace, is unique. In PCA, these vectors
are mutually orthogonal and have unit length. Further, for each k = 1, . . . , c,
the first k vectors form the k dimensional principal subspace. This makes the
solution practically unique, see [4, 2, 5] for details.

There are many ways to determine the principal subspace and components
[6, 4, 2]. We will discuss three common methods that can be adapted for the case
of missing values.

Singular Value Decomposition PCA can be determined by using the singular
value decomposition (SVD) [5]

X = UΣVT , (3)

where U is a d× d orthogonal matrix, V is an n× n orthogonal matrix and Σ

is a d×n pseudodiagonal matrix (diagonal if d = n) with the singular values on
the main diagonal [5]. The PCA solution is obtained by selecting the c largest
singular values from Σ, by forming A from the corresponding c columns of U,
and S from the corresponding c rows of ΣVT .

Note that PCA can equivalently be defined using the eigendecomposition of
the d× d covariance matrix C of the column vectors of the data matrix X:

C =
1

n
XXT = UDUT , (4)
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Here, the diagonal matrix D contains the eigenvalues of C, and the columns of
the matrix U contain the unit-length eigenvectors of C in the same order [6, 4,
2, 5]. Again, the columns of U corresponding to the largest eigenvalues are taken
as A, and S is computed as ATX. This approach can be more efficient for cases
where d≪ n, since it avoids the n× n matrix.

EM Algorithm The EM algorithm for solving PCA [7] iterates updating A

and S alternately. When either of these matrices is fixed, the other one can
be obtained from an ordinary least-squares problem. The algorithm alternates
between the updates

S← (AT A)−1ATX , A← XST (SST )−1. (5)

This iteration is especially efficient when only a few principal components are
needed, that is c≪ d [7].

Subspace Learning Algorithm It is also possible to minimize the recon-
struction error (2) by any optimization algorithm. Applying the gradient descent
algorithm yields rules for simultaneous updates

A← A + γ(X−AS)ST , S← S + γAT (X−AS) . (6)

where γ > 0 is called the learning rate. Oja-Karhunen learning algorithm [8, 9, 6,
4] is an online learning method that uses the EM formula for computing S and
the gradient for updating A, a single data vector at a time.

A possible speed-up to the subspace learning algorithm is to use the natural
gradient [10] for the space of matrices. This yields the update rules

A← A + γ(X−AS)ST ATA , S← S + γSSTAT (X−AS) . (7)

If needed, the end result of subspace analysis can be transformed into the
PCA solution, for instance, by computing the eigenvalue decomposition SST =

USDSU
T
S

and the singular value decomposition AUSD
1/2
S

= UAΣAVT
A

. The
transformed A is formed from the first c columns of UA and the transformed S

from the first c rows of ΣAVT
A
D

−1/2
S

UT
S
S. Note that the required decompositions

are computationally lighter than the ones done to the data matrix directly.

3 Principal Component Analysis with Missing Values

Let us consider the same problem when the data matrix has missing entries1. In
the following there are N = 9 observed values and 6 missing values marked with

1 We make the typical assumption that values are missing at random, that is, the miss-
ingness does not depend on the unobserved data. An example where the assumption
does not hold is when out-of-scale measurements are marked missing.
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a question mark (?):

X =





−1 +1 0 0 ?
−1 +1 ? ? 0
? ? −1 +1 ?



 . (8)

We would like to find A and S such that X ≈ AS for the observed data samples.
The rest of the product AS represents the reconstruction of missing values.

Adapting SVD: Imputation Algorithm One can use the SVD approach
(4) in order to find an approximate solution to the PCA problem. However,
estimating the covariance matrix C becomes very difficult when there are lots
of missing values. If we estimate C leaving out terms with missing values from
the average, we get for the estimate of the covariance matrix

C =
1

n
XXT =





0.5 1 0
1 0.667 ?
0 ? 1



 . (9)

There are at least two problems. First, the estimated covariance 1 between the
first and second components is larger than their estimated variances 0.5 and
0.667. This is clearly wrong, and leads to the situation where the covariance
matrix is not positive (semi)definite and some of its eigenvalues are negative.
Secondly, the covariance between the second and the third component could not
be estimated at all2.

Another option is to complete the data matrix by iteratively imputing the
missing values (see, e.g., [11]). Initially, the missing values can be replaced by
zeroes. The covariance matrix of the complete data can be estimated without
the problems mentioned above. Now, the product AS can be used as a better es-
timate for the missing values, and this process can be iterated until convergence.
This approach requires the use of the complete data matrix, and therefore it is
computationally very expensive if a large part of the data matrix is missing. The
time complexity of computing the sample covariance matrix explicitly is O(nd2).
We will further refer to this approach as the imputation algorithm.

Note that after convergence, the missing values do not contribute to the
reconstruction error (2). This means that the imputation algorithm leads to the
solution which minimizes the reconstruction error of observed values only.

Adapting the EM Algorithm Grung and Manne [12] studied the EM algo-
rithm in the case of missing values. Experiments showed a faster convergence
compared to the iterative imputation algorithm. The computational complexity
is O(Nc2 + nc3) per iteration, where N is the number of observed values, as-
suming näıve matrix multiplications and inversions but exploiting sparsity. This
is quite a bit heavier than EM with complete data, whose complexity is O(ndc)
[7] per iteration.

2 It could be filled by finding a value that maximizes the determinant of the covariance
matrix (and thus the entropy of the underlying Gaussian distribution).
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Adapting the Subspace Learning Algorithm The subspace learning algo-
rithm works in a straightforward manner also in the presence of missing values.
We just take the sum over only those indices i and j for which the data entry
xij (the ijth element of X) is observed, in short (i, j) ∈ O. The cost function is

C =
∑

(i,j)∈O

e2
ij , with eij = xij −

c
∑

k=1

aikskj . (10)

and its partial derivatives are

∂C

∂ail
= −2

∑

j|(i,j)∈O

eijslj ,
∂C

∂slj
= −2

∑

i|(i,j)∈O

eijail . (11)

The update rules for gradient descent are

A← A + γ
∂C

∂A
, S← S + γ

∂C

∂S
(12)

and the update rules for natural gradient descent are

A← A + γ
∂C

∂A
ATA , S← S + γSST ∂C

∂S
. (13)

We propose a novel speed-up to the original simple gradient descent algo-
rithm. In Newton’s method for optimization, the gradient is multiplied by the
inverse of the Hessian matrix. Newton’s method is known to converge fast es-
pecially in the vicinity of the optimum, but using the full Hessian is computa-
tionally too demanding in truly high-dimensional problems. Here we use only
the diagonal part of the Hessian matrix. We also include a control parameter α
that allows the learning algorithm to interpolate between the standard gradient
descent (α = 0) and the diagonal Newton’s method (α = 1), much like the well
known Levenberg-Marquardt algorithm. The learning rules then take the form

ail ← ail − γ′

(

∂2C

∂a2
il

)−α
∂C

∂ail
= ail + γ

∑

j|(i,j)∈O eijslj
(

∑

j|(i,j)∈O s2
lj

)α , (14)

slj ← slj − γ′

(

∂2C

∂s2
lj

)−α
∂C

∂slj
= slj + γ

∑

i|(i,j)∈O eijail
(

∑

i|(i,j)∈O a2
il

)α . (15)

The computational complexity is O(Nc + nc) per iteration.

4 Overfitting

A trained PCA model can be used for reconstructing missing values:

x̂ij =

c
∑

k=1

aikskj , (i, j) /∈ O . (16)
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Although PCA performs a linear transformation of data, overfitting is a serious
problem for large-scale problems with lots of missing values. This happens when
the value of the cost function C in Eq. (10) is small for training data, but the
quality of prediction (16) is poor for new data. For further details, see [13].

Regularization A popular way to regularize ill-posed problems is penalizing
the use of large parameter values by adding a proper penalty term into the cost
function; see for example [3]. In our case, one can modify the cost function in
Eq. (2) as follows:

Cλ =
∑

(i,j)∈O

e2
ij + λ(‖A‖2F + ‖S‖2F ) . (17)

This has the effect that the parameters that do not have significant evidence will
decay towards zero.

A more general penalization would use different regularization parameters λ
for different parts of A and S. For example, one can use a λk parameter of its
own for each of the column vectors ak of A and the row vectors sk of S. Note
that since the columns of A can be scaled arbitrarily by rescaling the rows of S

accordingly, one can fix the regularization term for ak, for instance, to unity.
It is well known that an equivalent optimization problem can be obtained us-

ing a probabilistic formulation with (independent) Gaussian priors and a Gaus-
sian noise model:

p(xij | A,S) = N

(

xij ;
c
∑

k=1

aikskj , vx

)

, (18)

p(aik) = N (aik; 0, 1) , p(skj) = N (skj ; 0, vsk) , (19)

where N (x; m, v) denotes the random variable x having a Gaussian distribution
with the mean m and variance v. The regularization parameter λk = vsk/vx is
the ratio of the prior variances vsk and vx. Then, the cost function (ignoring
constants) is minus logarithm of the posterior for A and S:

CBR =
∑

(i,j)∈O

(

e2
ij/vx + ln vx

)

+

d
∑

i=1

c
∑

k=1

a2
ik +

c
∑

k=1

n
∑

j=1

(

s2
kj/vsk + ln vsk

)

(20)

An attractive property of the Bayesian formulation is that it provides a natural
way to choose the regularization constants. This can be done using the evidence
framework (see, e.g., [3]) or simply by minimizing CBR by setting vx, vsk to the
means of e2

ij and s2
kj respectively. We will use the latter approach and refer to

it as regularized PCA.
Note that in case of joint optimization of CBR w.r.t. aik, skj , vsk, and vx, the

cost function (20) has a trivial minimum with skj = 0, vsk → 0. We try to avoid
this minimum by using an orthogonalized solution provided by unregularized
PCA from the learning rules (14) and (15) for initialization. Note also that
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setting vsk to small values for some components k is equivalent to removal of
irrelevant components from the model. This allows for automatic determination
of the proper dimensionality c instead of discrete model comparison (see, e.g.,
[14]). This justifies using separate vsk in the model in (19).

Variational Bayesian Learning Variational Bayesian (VB) learning provides
even stronger tools against overfitting. VB version of PCA by [14] approximates
the joint posterior of the unknown quantities using a simple multivariate dis-
tribution. Each model parameter is described a posteriori using independent
Gaussian distributions. The means can then be used as point estimates of the
parameters, while the variances give at least a crude estimate of the reliability
of these point estimates. The method in [14] does not extend to missing val-
ues easily, but the subspace learning algorithm (Section 3) can be extended to
VB. The derivation is somewhat lengthy, and it is omitted here together with
the variational Bayesian learning rules because of space limitations; see [13] for
details. The computational complexity of this method is still O(Nc + nc) per
iteration, but the VB version is in practice about 2–3 times slower than the
original subspace learning algorithm.

5 Experiments

Collaborative filtering is the task of predicting preferences (or producing personal
recommendations) by using other people’s preferences. The Netflix problem [15]
is such a task. It consists of movie ratings given by n = 480189 customers to
d = 17770 movies. There are N = 100480507 ratings from 1 to 5 given, from
which 1408395 ratings are reserved for validation (or probing). Note that 98.8%
of the values are thus missing. We tried to find c = 15 principal components
from the data using a number of methods.3 We subtracted the mean rating for
each movie, assuming 22 extra ratings of 3 for each movie as a Dirichlet prior.

Computational Performance In the first set of experiments we compared
the computational performance of different algorithms on PCA with missing
values. The root mean square (rms) error is measured on the training data,

EO =
√

1
|O|

∑

(i,j)∈O e2
ij . All experiments were run on a dual cpu AMD Opteron

SE 2220 using Matlab.
First, we tested the imputation algorithm. The first iteration where the miss-

ing values are replaced with zeros, was completed in 17 minutes and led to
EO = 0.8527. This iteration was still tolerably fast because the complete data
matrix was sparse. After that, it takes about 30 hours per iteration (we com-
puted 500 rows (and columns) of the covariance matrix at a time because the
size of the complete data matrix is huge: d × n > 8 · 109). After three itera-
tions, EO was still 0.8513. Also, estimating the covariance matrix based on only

3 The PCA approach has been considered by other Netflix contestants as well (see,
e.g., [16, 17]).
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Fig. 1. Left: Learning curves for unregularized PCA (Section 3) applied to the Netflix
data: Root mean-square error on the training data EO is plotted against computation
time in hours. Right: The root mean square error on the validation data EV from the
Netflix problem during runs of several algorithms: basic PCA (Section 3), regularized
PCA (Section 4) and VB (Section 4). VB1 fixes variances vsk to large values while VB2
updates all the parameters. The time scales are linear below 1 and logarithmic above
1.

the observed part of the data led to problems as explained in Section 3. The
covariance matrix had both missing values and values out of range.

Using the EM algorithm by [12], the E-step (updating S) takes 7 hours and
the M-step (updating A) takes 18 hours. (There is some room for optimization
since we used a straightforward Matlab implementation.) Each iteration gives a
much larger improvement compared to the imputation algorithm, but starting
from a random initialization, EM could not reach a good solution in reasonable
time.

We also tested the subspace learning algorithm described in Section 3 with
and without the proposed speed-up. Each run of the algorithm with different val-
ues of the speed-up parameter α was initialized in the same starting point (gen-
erated randomly from a normal distribution). The learning rate γ was adapted
such that if an update decreased the cost function, γ was multiplied by 1.1. Each
time an update would increase the cost, the update was canceled and γ was di-
vided by 2. Figure 1 (left) shows the learning curves for basic gradient descent,
natural gradient descent, and the proposed speed-up with the best found pa-
rameter value α = 0.625. The proposed speed-up gave about a tenfold speed-up
compared to the gradient descent algorithm even if each iteration took longer.
Natural gradient was slower than the basic gradient. Table 1 gives a summary
of the computational complexities.

Overfitting We compared PCA (Section 3), regularized PCA (Section 4) and
VB-PCA (Section 4) by computing the rms reconstruction error for the vali-
dation set V , that is, testing how the models generalize to new data: EV =
√

1
|V |

∑

(i,j)∈V e2
ij . We tested VB-PCA by firstly fixing some of the parameter

values (this run is marked as VB1 in Fig. 1, see [13] for details) and secondly by
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Method Complexity Seconds/Iter Hours to EO = 0.85

Gradient O(Nc + nc) 58 1.9
Speed-up O(Nc + nc) 110 0.22
Natural Grad. O(Nc + nc

2) 75 3.5
Imputation O(nd

2) 110000 ≫ 64
EM O(Nc

2 + nc
3) 45000 58

Table 1. Summary of the computational performance of different methods on the Net-
flix problem. Computational complexities (per iteration) assume näıve computation of
products and inverses of matrices and ignores the computation of SVD in the impu-
tation algorithm. While the proposed speed-up makes each iteration slower than the
basic gradient update, the time to reach the error level 0.85 is greatly diminished.

adapting them (marked as VB2). We initialized regularized PCA and VB1 using
normal PCA learned with α = 0.625 and orthogonalized A, and VB2 using VB1.
The parameter α was set to 2/3.

Fig. 1 (right) shows the results. The performance of basic PCA starts to de-
grade during learning, especially using the proposed speed-up. Natural gradient
diminishes this phenomenon known as overlearning, but it is even more effective
to use regularization. The best results were obtained using VB2: The final vali-
dation error EV was 0.9180 and the training rms error EO was 0.7826 which is
naturally larger than the unregularized EO = 0.7657.

6 Discussion

We studied a number of different methods for PCA with sparse data and it turned
out that a simple gradient descent approach worked best due to its minimal
computational complexity per iteration. We also gave it a more than tenfold
speed-up by using an approximated Newton’s method. We found out empirically
that setting the parameter α = 2/3 seems to work well for our problem. It is left
for future work to find out whether this generalizes to other problem settings.
There are also many other ways to speed-up the gradient descent algorithm. The
natural gradient did not help here, but we expect that the conjugate gradient
method would. The modification to the gradient proposed in this paper, could be
used together with the conjugate gradient speed-up. This will be another future
research topic.

There are also other benefits in solving the PCA problem by gradient descent.
Algorithms that minimize an explicit cost function are rather easy to extend. The
case of variational Bayesian learning applied to PCA was considered in Section
4, but there are many other extensions of PCA, such as using non-Gaussianity,
non-linearity, mixture models, and dynamics.

The developed algorithms can prove useful in many applications such as
bioinformatics, speech processing, and meteorology, in which large-scale datasets
with missing values are very common. The required computational burden is lin-
early proportional to the number of measured values. Note also that the proposed
techniques provide an analogue of confidence regions showing the reliability of



10 Tapani Raiko et al.

estimated quantities.
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