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Abstract— We introduce in this paper methods for finding on, the indext is left out, assuming that the order of the
mutually corresponding dependent components from two differ-  data vectorst(¢) is not important. This assumption is made
ent but related data sets in an unsupervised (blind) manner. The ;,, standard ICA.
basic idea is to generalize cross-correlation analysis for taking L. . L -
into account higher-order statistics. We propose independent ~IN PCA, itis required that the mixing matrix is orthogonal:
component analysis (ICA) type extensions for the singular value AT A =1, leading to mutually orthonormal basis vectars
decomposition of the cross-correlation matrix. They extend In ICA, there is no such requirement, and hence the mixing
cross-correlation analysis in a similar manner as ICA extends matrix A and the basis vectors; of ICA are generally

standard principal component analysis for covariance matrices. non-orthogonal. In both the expansions, the components
We present experimental results demonstrating the usefulness

of the proposed methods both for artificially generated data Must be mutually uncorrelated:{Es;} = 0, i # j. To

and for a cryptographic problem. get the true principal components, the variancés? are
in addition sequentially maximized far= 1,2,...,n [5],
|. INTRODUCTION [18], [17], [4]. In ICA, the orthogonality condition of PC/Asi

Principal component analysis (PCA) [5], [4], [17] andreplaced by the strong but often realistic requirement et
independent component analysis (ICA) [17], [4] are wellcomponentss; of the source vectog should be statistically
known techniques for unsupervised (blind) extraction ofhdependent (or as independent as possible). This stiletea
useful information from vector-valued data While PCA is  the sign, order, and scaling of the independent components
a well-established, old statistical technique, ICA hasiedi si ambiguous [17]. Usually they are scaled so that their
a lot of popularity during the last decade because it oftevariances Es7} = 1.
provides more meaningful results. Assuming zero mean,{k} = 0, the covariance matrix of

Standard linear PCA and ICA are both based on the sartfee datax is both for PCA and ICA
type of simple linear latent variable model for the observed
data vectorx(t): C.. = E{xx"} = AE{ss" JAT = AC, AT ()

" where the covariance matri€,, = E{ss”} of the source
x(t) = As(t) = Z si(t)ai @ vectors is a diagonal matrix due to ';{he u}ncorrelatedness of
=t the components;.
In this model, the data vectax(t) is expressed as a lin-  Because PCA considers second-order statistics (covari-
ear combination of scalar sources(t), i = 1,2,...,n, ances) only, it can be easily computed using the eigende-
which multiply the respective constant basis vectass composition of the covariance matri€,,. An alternative
1=1,2,...,n. The sources are in different contexts Ca||6dhough less accurate way is to app|y linear PCA neural
also latent variables, (hidden) factors, or (hidden) causenetworks taught by Hebbian (and possibly anti-Hebbian)
The indext may denote time, position, or just numberearning rules [5], [4]. Such stochastic gradient algerish
of the sample vector, again depending on the context. F@ir estimating the PCA expansion were developed by the
simplicity, we assume here that both the data vest0f first author together with Prof. E. Oja in a somewhat différen
= [x1(t),z2(t), ..., 2, (t)]" and the source vectos(t) = context already in early 1980's [20], [24]. The ICA expamsio
[s1(t),s2(t),...,sn(t)]" are zero meam-vectors, and that is somewhat more difficult to estimate, requiring highetesr
the mixing matrixA = [a;, a, ..., a,] is a full-rank constant  statistics, but several good batch or adaptive neural type
n x n matrix. The column vectors;, i = 1,2,...,n of  algorithms now exists for computing it, too [17], [4].
the mixing matrix A comprise the basis vectors of PCA  Both standard ICA and PCA have been generalized into
or ICA, and the components;(t), i = 1,2,...,n, of the  many different directions [5], [17], [18], [4], [14]. In tki
source vectos(t) are respectively principal or independentyaper, we consider a generalization in which one tries to
components corresponding to the data veg{@j. From now  find mutually dependent corresponding components from two
o _ _ different but related data sets andy. For simplicity, we
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A well-known related statistical technique is canonicakxpansion (4) in whichk = y, U = V, ands = t. SVD
correlation analysis [23]. There one tries to find linear bem can be estimated using neural PCA type algorithms [4], too,
nationsz* andy* of the components of the vectaxsandy, but we have in this work used more efficient and accurate
respectively, so that* and y* have maximal correlations. standard numerical algorithms for computing it.

Because canonical correlation analysis resorts to second\We can think that the diagonalization (4) of the cross-
order statistics only, its solution can again be found usingovariance matri>C,,, is realized via two orthogonal linear
eigenanalysis and singular value decomposition of autd- atransformationdJ and V:

cross-covariance matrices »fandy [23]. Fyfe and Lai have U Vit ©6)
considered a neural implementation of canonical coraati X S Y
analysis in [22], and a nonlinear generalization of it usingvhere the corresponding compones@ndt; of the vectors
kernels in [8]. Furthermore, Koetsier et al. have presented and t are correlated: Es;t;} # 0, but their different

in [21] an unsupervised neural algorithm called Explonatorcomponents are uncorrelated{dz,} = 0 for ¢ # j. Later
Correlation Analysis for the extraction of common featuresn in our experiments, to make the comparisons easier, the
in multiple data sources. This method, is also closely eelat variances of the components of the vectarsand y are

with canonical correlation analysis. always normalized to unity.

In an interesting paper, Akaho and his co-authors [2] The key idea in this work is to allow non-orthogonal
have considered an ICA style generalization of canonicaluare transformation matrices and B instead ofU and
correlation analysis which they call multimodal indepemide V:
component analysis (MICA). In their method, standard linea x=As, y=Bt (7
EI%A is first applied tc_) both data sets andy separately. In a similar manner as in standard linear ICA for one data

en the cqrespondmg cﬁ_apendgnt components of the t t x, we require that the transformation® and B not
ICA expansions are identified using a natural gradient typg

; . nly make the different components and ¢;, ¢ B
learning rule. Akaho’s method seems to work in most case y P & il 7

. : . ) . ¥ the vectorss and t uncorrelated, but they should be
in practice, but it has a potential theoretical weakness. . . .

. o : as independent as possible. The goal is to concentrate the
two scalar variables; and s, are statistically independent

o dependencies between the vectomndt as far as possible
and similarlyt; andt,, buts; andt¢; depend on each other P P

and similarl andt,, one cannot in general theoreticall to their corresponding components and ¢;, which are in
deduce an )tlkffn on ?k,le dependence gr independence ofngrn required to be as dependent as possible.
. ything P P ?Jsing the transformations (7), the cross-covariance matri
variable pairss; andt, or s andt;. For examplegs; andis C
) . zy €an be expressed as
may have a common part which does not appeas.imnd ;
t1, which makes them statistically dependent. C,, = AD,B” (8)

1. THEORETICAL BACKGROUND It should be noted that it is always possible to find orthodona
matricesU and V providing the singular value decomposi-
tion (4) and making the different components of the vectors
Consider two different but related data set&ndy. The x andy uncorrelated. By finding suitable transformations
dimensionm of y is in general different from the dimension (7) among the considerably more flexible class of non-
n of x. Assuming zero mean also fgr, the cross-covariance orthogonal matricesA. and B, one should therefore in
matrix of x andy is general be able to achieve more than just decorrelation.

A. Removal of second-order dependencies

C., =E{xy"} (3) B. Removal of higher order dependencies

The elements Er;y;} of this matrix are cross-covariances Our approach for computing the matricés and B is
between the components andy; of the vectorsx andy, based on nonlinear decorrelation and the FastICA algorithm

and they are in general nonzero. [17]. The algorithm has converged to a good solution when
_ The c_ross—covariance matrtzx_y_ can be diagonalized us- E{xg(x)T} 9)
ing its singular value decomposition (SVD) (see for example
[13], [5]): is a diagonal matrix, and the data vectarBave been prepro-
C,, = UD, V7 (4) cessed to have zero mean and unit variance. The vgsor
= [g(x1),9(z2),-..,g(z,)]T is a nonlinear transformation
HereU andV aren x n andm x m orthogonal matrices, of the data vectok. The nonlinearityg(t) must be chosen
respectively, and carefully in order to get as independent signals as possible
D, = E{st”} (5)  Good nonlinearities for wide classes of signals a(e) =

is ann x m (pseudo)diagonal matrix (that is, a diagonafank(t) org(t) = 2, .
. ) ) to From this result we see that the signaisand z;, ¢ #
matrix appended with zerosifi # n [13]). The matricedU . L ; . .
) X o , are usually statistically independent when their nomine
andV andD¢; are obtained from the eigendecompositions O?:orrelations
the symmetric matrice€,,,CZ, and C], C..,, respectively

[5], [13]. Standard PCA is a special case of SVD the E{z,g(z;)} =0, E{z;g(z;)} =0. (20)



Therefore, to remove cross-dependencies between the zéfere A is ann x n matrix ands, ann-dimensional vector,
mean vectorsc andy, we need to diagonalize the matricesand B is an m x m matrix and s, an m-dimensional
T T T vector. Furthermore, the variances of vectéysands, were
E{xy'}, Eixgly)'}, Elsx)y }. A1) hormalized to unity for getting suitable starting vectors.
Furthermore, because the nonlinearitigs) = tanh(x) and After this, the singular value decomposition of the matrix

g(z) = x® above have the property that they preserve th _ T T ™ T
sign of z, it is possible to diagonalize all these matrices by‘i‘w = Bl{xy” +tanh(x)y" +xtanh(y)"} = UrDrVp

; . - ) ) (29)
Just diagonalizing a single matrix containing nonlinear correlations of the vectarsandy is
E{xy” +xg(y)’ + g(x)y’} (12) computed quite similarly as for the standard cross-cditgla
] ) ) matrix C,, in (4). On the right hand side of Eq. (10 r
This matrix can be further generalized to and Vi denote the orthogonal left and right matrices of

E{[x + (g(x) — E{g(x)})][y + (g(y) — E{g(y)})]*} (13) the singular value decomposition of the matii,,, and
the diagonal matrixDy contains the respective singular

where the term Eg(x) — E{g(x)})(g(y) — E{g(y)})"} values. The nonlinearity, in (19pnh(-), is applied to each

vanishes when the vectoxsandy are independent. component of the vectors andy separately.
We can diagonalize this form by simple use of SVD. In Finally, the estimated source (independent component)
general we want to diagonalize the matrix vectorss, ands, in Eq. (18) are rotated using the singular

vector matricedUr andV r, yielding the final results
E{f(x)g(y)"} = USV™. (14) r F Yielding

We can do this nonlinearly with tranforms s; = UkSe, sy =Vis, (20)

x = (UTE(x), v =g '(V'gly)) (15) 'I_'he basic idga behind thi§ and the following method is

to include nonlinear correlations of the components of the
provided that the inverse functiofs’(-) andg™'(-) exist. ~ vectorsx andy into computation of the matri¥,,. In (19),
Assume now that the data vectoxsand y have been the sigmoidaltanh(-) nonlinearity is applied tox andy to
whitened and cross-decorrelated. For vector-valued immet achieve this goal.
f(x) which map their components independently, the optimal This is a heuristic way to try to concentrate the dependen-
linear mapping in the mean-square error sense is fligh  cies betweerx andy into their corresponding components.
= Ax = alx, and similarly forg(y). This can be used to But due to the averaged nature of the expectation defining
find linear approximations to the non-linear diagonalizinghe matrix F,,, one cannot in general claim that other
transforms (15): than targeted component pairs gif ands; are statistically
¥ = 4 ' TUTaIx — UTx (16) independent or even uncorrelated.

yI _ b*lIvaIy _ VTy (17) B Method 2
i . . In the second method, the zero mean data vectoasd
These approximations, although suboptimal, turned out SQ are first whitened using PCA. This takes place by first

give good results in our experiments. computing the PCA expansions &fandy:

I1l. METHODS C,, — UwaUZT., C,y = UyDyyUg 1)
We have developed and tested several somewhat heuristic
methods based on the above ideas. We restricted our test#{gere the column vectors of the orthogonal matritgsand
to matrices which have a similar form as in Eq. (12). EqsUy contain the eigenvectors of the covariance matrices
(16) and (17) could also be used iteratively to totally oANdC,y Of x andy, respectively. The diagonal matricks.,
significantly reduce non-diagonal values of this form ofndDy, consist of their eigenvalues in the same order. The
matrix containing nonlinear correlations. In the follogjin Whitened data vectors are given by [17]
we p_resent the tyvo methods which performed on average X =D 2uTx, y =D /2UTy (22)
best in our experiments. e ooy
The components of the preprocessed vectdrare mutually
A. Method 1 uncorrelated and have unit variance, and similarlyyfar
In the first method (Method 1), we first estimate the The whitened vectors’ andy’ are then rotated further
independent componeht®f the vectorsx andy. Let us ysing alternatively the singular value decompositionshef t
denote the vectors containing these estimated independ@@ghlinear correlation matriceB,,, in (19) andG.,,:
components by, ands,:
Gay = E{xy" +x’y" +x(y")’} = UcDeV(  (23)
x=As8,, y=Bs, (18)
This takes place quite similarly as in our first method,

10r the most independent components if strictly statisticaljependent T T
components do not exist. s, =U'x', s/ =V'y (24)



where the matricedJ and V are alternatively taken from where the last step follows from the whitening (sphering) of
the SVDs (19) and (23). The iteration is continued until conthe datax: C, = C;! = I. So if diagonalization of a cross-
vergence. Thus Method 2 uses in addition to the sigmoiddependence matrix removes most of the correlations between
nonlinearitytanh(-) the cubic nonlinearitiesx® and y for  different components of the involved vectors, then Method 3
including nonlinear correlations of the vectatsandy into  minimizes the mean-square error and at the same time it tries
computations. to take non-Gaussian properties of distributions into anto

We tried several slightly different methods of similar type In our tests we preprocessed the data with PCA to have
in our experiments. The two methods described above wezero mean and unit variance, and then used the cross-
selected to this paper because they provided on average tfependence matrix
best results and are computationally sufficiently efficient G,y = E{tanh(x)y” + x tanh(y)”} (30)

C. Method 3 which was iteratively diagonalized with SVD. Brief tests
The just described Methods 1 and 2 try to find oneindicated that this method has about same minimum mean-

dimensional signal pairs;,t; where all the relevant infor- square error (28) whey = Ax + e. But sometimes the
mation about theth component; of the vectort has been method performed considerably better than the standard
concentrated onto the corresponding compongnof the Pseudoinverse based least-square error minimization (29)
vectors and visa versa. These ideas can be also used to filgien the output vectorg were generated from with two
a linear mapping between two sets of signals. different matricesy = Ax andy = Bx.

Method 3 extends the linear mean-squared error minimiza- IV. MEASURING THE DEPENDENCE

tion to a more generic linear method. The method relaxes . .
. o . Theoretically, a suitable measure of the dependence be-
assumptions about distributions of signals and errors. The

idea is to solve signal pairs with one of the methods desntribéween. any two .contmuc.)us scalar random variablesnd y
X . : . - . __|s their mutual information [14], [17]

above, and then find one-dimensional mappings minimizing N

the mean-square error betweenapd t; pairs. Thgse one- I, = pu() log Pa () dady (31)

dimensional mappings are sufficient for cross-independent oo Py (y)

signal pairs, where the signails, j # ¢ do not contain any

information about the correct value of An optimum linear

wherep,(z) andp,(y) denote the probability density func-

. inimizina th h | ttions of x and y, respectively. The mutual information can
mapping minimizing the mean-square error changes only sily be generalized for vector-valued random variables
sign and scaling of zero mean signals [12], and can be carrie

: . . . : . x and y. It is actually the Kullback-Leibler divergence
out without changing mutual information (or independesgie (information) between: and y, and measures the distance
between the variables '

between the probability densities (x) andp,(y) [14], [17].
ti=prssi, I(puX,Y)=I(X,Y) (25) _Mutual information I, is _s'_cnctly speaklng not a proper
' distance measure because it is not symmetrie fandy. But
wherep,, ;, is correlation betweety ands;. Thus if the given it has the following important theoretical property: Muitua
data have been sphered to have zero mean and unit variarinégrmation is always nonnegative, and it is zero if and only
and the cross-dependence mat€i, can be diagonalized if = andy are statistically independent. The more dependent
with mappingss = U”x andt = VTy then the mapping they are the larger is their mutual informatid, .
fromx toy is While mutual information is in some sense a theoretically
_ - ideal dependence measure, it cannot usually be applied in
W = Vdiag(pt,s,s Ptasas- - Prysn)U (26) practice. The basic reason is that it is very difficult to

This method can be seen as an extension of linear mea{ﬁl'ably estimate the tails of the distributions;(z) and

square error optimization which assumes Gaussian distrib@?(y) [rgl)’(ir[i?gi' ;\I’herefor?,ron;(e rr:ulst rf75 ort 4t0 sro:ne I:;\ndr
tions. If a cross-correlation matri€,, is used as a cross- Of approximations (see for example [17], [4]) or to othe
simpler dependence measures.

dependence malris..,, then the resulting mapping becomes A review of dependence measures related to tests of
W = Vdiag(phspptzszw--»PthN)UT —VvVSsu?® = ny independence in statistics can be found in the paper [26].
(27) However, such tests are not necessarily most suitable in
It can be seen that this is exacly the same as given by lineg®ntext with ICA, because they typically make specific
mean-square error minimization for sphered data. With a ssumptions on the distributions of the variables to beietud

of calculus one can see that minimization of the mean-squalf®r example, Gaussianity).
error criterion In ICA and blind source separation (BSS) [17], [4],

1 2 measures of statistical dependence have been developed
E{2wa_y” } (28) and studied in several papers. Bach and Jordan [3] have
yields the optimal solution introduced contrast functions based on canonical coroelst

in a reproducing kernel Hilbert space. They have shown that
W =C,,C,'= ny (29) these contrast functions are related to mutual information



and have desirable mathematical properties as measureq6if [7]
statistical dependence. Their ideas have recently beegi-dev

oped further in [10], where two new kernel-based functisnal

are introduced for measuring the degree of independence of +
random variables.

Another way is to use characteristic functions for defininq2
statistical independence and for measuring dependence. Tl
approach has been studied in [6], [7], leading to thre¢:
criteria for ICA. Dependence measures can be based eith,
on approximating mutual information using the charactieris
function or on applying a moment generating function.™ 20 a0 0  s00 0 200 400 600 800
Furthermore, simpler quadratic measures for estimating d¢? 2
pendence have been developed in [1], [27]. o

We have tested several of these methods experimental W
using simple test cases of three statistically independer” N
source signals. It turned out that the method based C4 a0 -4 e me B
moment generating function performed best in the sense th ,
the difference between the cases of independent and mc | .
or less dependent signals was the largest. However, also t | .
other tested methods gave qualitatively correct resuligt T . o
is, more independent variables provided better valuesef tr_ s
respective performance index than more dependent ones. © 20 400 60 800 0 200 400 600 800

Accordingly, we chose the method based on moment
generating function [6], [7] for measuring dependence in olFig- 1.  The source signals(t) (left) and t(t) = f(s(t)) (right) used to

enerate input data(t) andy(t) The nonlinearity used in generating the

experiments. In the following, we explain this dependencgource signal pairs wag(s) = s3 — 0.5s2. The mean and variance of the

iTj (wu wj)dziz] (_wia —wj)
fifj(iwi’wj)dzizj (wiv *wj) (35)

Iriz] [W] =

measure in more detail. generated source signals were set to zero and one.
The moment generating function method is based on
estimation of the expectation This is a positive, real-valued function measuring the
" dependence. We generated this function only at the point
Efexp(w?x)] = E[exp(z wiz:)] B2 W= (1,1). Finally, the quality of _the found solution was
assessed by computing the quantity
n
over the componentsry,zs,...,z, of the data vec- J(x,y) = nZizlnI“yi(l’l) (36)
tor x. Here w is the weight vector whose components Dic Zj;ﬁi Ia,y,(1,1)
wy,we, ..., w, define some linear combination of the com-The higher the value of (x,y), the more dependent and

ponents ofx. Clearly, if w” is one of the row vectors of the y are. Heret denotes the index of the sample. This is a
inverseA~! of the square mixing matriA in the standard measure of goodness which tries to take into account both
linear ICA model (1),w”x becomes one of the independentndependence and dependence between the targeted pairs
components;; [17]. On the other hand, if the components  z;(t), y;(¢t) and non-pairse;(t), y;(t), j # i of the signals.

gf x in (32) are statistically independent, Eq. (32) decouples V. EXPERIMENTAL RESULTS
into . n A. Artificially generated data

Elexp(w” x)] = H Elexp(wizi)] (33) First, we present some experimental results for artifigiall
=t generated data. Such data are useful in testing various
Based on this observation, one can estimate for two scak@ethods, because the correct results are known, enabling

random variableg; andx; the quantity computation of performance or error measures and compar-
isons.
Aoy (wisw;) = {Elexp(wiz; +wjz;)] The original source signals were as follows:
Elexp(w;z;)|Elexp(w;z;)]} (34) s1(t) = —sindlog | cos(207t)|)
This is always nonnegative, and becomes zero when the 2(t) = sind(cos(10mt) sin(1007¢))
variables z; and z; are independent. The moments and s3(t) = log|sin(180xt) + 0.01]
moment generating function do not uniquely define the tt) = f(s1)
variablesz; andx;, but a large correspondence implies that ) —
the functions are similar. 2(t) = f(s2)
In the experiments, we measured the independence of a t3(t) = f(s3)

two-dimensional random variable by computing the function (37)
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Fig. 2. The generated input daigt) = As(t) (left) andy(t) = Bt(t) Fig. 4. The jointly dependent sources found using Method 1.
(right).
4 4

methods have been depicted in Figures 3, 4, and 5. More

2 ? specifically, Figure 3 shows the sources estimated by the
OW ° singular value decomposition (4) and (8):= UTx, t =
-2

VTy. Figure 4 depicts the sources provided by our first

% 200 200 600 o 200 400 w0  method (18)-(20), and Figure 5 the sources given by the
2 2 second method (21)-(24). A visual inspection of the results
OW . suggests that the proposed novel methods 1 and 2 perform
somewhat better than linear singular value decomposition i
2 2 this example. This is confirmed in Figure 6, which shows
-4 4 the performance measutEx,y) in (36) for the estimated
0 200 400 600 0 200 400 600

jointly dependent 6 sources. Method 1 (Algorithm 6 in the

z Z figure) attains consistently somewhat higher values thab SV

. . (Algorithm 1 in the figure), while our second Method 2
(Algorithm 5) performs for the 2nd and 6th source better

- e than SVD and for the remaining sources about equally

o 200 400 oo % 200 400 s well. Figure 7 illustrates the average performances of the
algorithms using the moment generating function.

Fig. 3. The jointly dependent sources found using singuédmes decom- The results were qualitatively similar for the other nonlin

position. earities tried in our simulations. They included the abiolu

value f(s(t)) = |s(t)| (cf. [2]), a sinusoidal type nonlinear-

ity f(s(t)) = sin(s(t)) cos(s(t)), and a nonlinearity which

strongly breaks the signalf(s(t)) = floor[s(t)]sin(s(t)),

where the function flodt) means rounding to the nearest

ﬁﬂeger which has a lower or equal value. Hence for example

floor(5.1) = 5 and floof—3.3) = —4. In particular our

, . . .. second method was consistently among the three best ones of
_T_he first data sek(?) was obtained by directly MIXING the 13 methods tried for all error measures. Our first method

original sourcess(t) with a randomly chosen non's'ngmarperformed the best when a simple correlation between the

mixing matrix A The ;econd relaf[ed Qata sglt) was best matching pairs of two variables or characteristic tionc
generated by first applying the nonlinearity was used as an error measure

Fs() = [s(t)]” — 0.5[s(t)]? (38) B, Application to cryptographic data
to the sourcess(t), which were then mixed using another In these experiments, we tried to find out the dependent
randomly chosen non-singular mixing matrR, yielding corresponding components from texts and their encrypted
y(t) = Bf(s(t)). The data vectors(t) andy(t) generated versions. The texts were taken from the data sets made
in this way are shown in Figure 2. available by Project Gutenberg [11] in ASCII form. We
The jointly dependent sources estimated using differepicked up 4 books, with each ASCII letter at the same

The function sin¢t) = sin(¢)/t for ¢ # 0, and 1 fort = 0.
The sources (t), s2(t), andssz(t) are our own and actually
not statistically independent. These sources have be
depicted in Figure 1.
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\ — algorithm 1

\ — - algorithm 5
S |~ algorithm 6 |
° // \ ] as the mixing matricesA and B in the model (7) using
K | the methods developed in the previous section. That is,
af K | ] we tried to determine these quantities so that the joint

information between the corresponding components arfid
t is maximized. After this, we computed the connectivity
matrix M, defined by

t=Ms=A"'Bs (39)

goodness

assuming that the mixing matrix is square and of full rank
and hence invertible.

Encryption aims at blurring or mixing the information
contents of a message as much as possible, so that it cannot
o s > 25 3 Y n s s o5 o be identified any more from the encrypted version [25]. Thus

signal set the goal of encryption is a kind of opposite to what ICA
and BSS methods aim at. It is realistic to expect that the
Fig. 6. Performances (goodness-of-fit measures) of the singlue elements of the connectivity matrixI have higher absolute

decomposition (algorithm 1), Method 1 (algorithm 6), and M&t 2 \alyes when the encrypted message is strongly related to the
(algorithm 5) for the artificially generated data set&) and y(t) of 6

sources. The nonlinearity used was (38), and the performaasestimated original _teXt' ) )
using the moment generating function. We tried several algorithms for this problem. A general

conclusion on these experiments is that the performance of

the suggested algorithms for estimating jointly dependent
position (that is, the index of the letter in question stayti components gradually improves. Roughly speaking, they sta
from the beginning of the text) in the books correspondingp perform appropriately when the number of the elements
to one component of d—dimensional vector. There were in the vectorsx(¢) andy(¢) nears200,000. As an example,
288048 such vectors(t) (¢t = 1,2,...,288048). The consider Method 1. It could connect correctly two compo-
encrypted corresponding vectorét) (¢t = 1,2,...,288048) nents of the vectors(t) and y(t) when the number of
were generating by applying a 128-bit AES encoding [25$ample vectors was = 180000, and all four components
separately to each ASCII letter appended by zeros, so thfat ¢+ = 262440 andt = 288048. Some other algorithms
each letter contained 128 bits. The encrypted 128 bit longerformed slightly better, being able to find out all the four
numbers were transformed to floating point numbers havingependent components already whea 180000. This holds
96 bits, which we further approximated by a 32-bit floatingespecially for Method 3, which was on an average the best
point number in our MATLAB experiments. The sourceperforming of the methods we tested in this problem.
signals were preprocessed so that their mean was zero andror identifying the connected components, we used the
variance unity. following heuristics. Consider the absolute valyes;;| of

We tried to estimate the source vectersindt as well the elementsn;; of the connectivity matrixM. Find the
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