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Abstract— We introduce in this paper methods for finding
mutually corresponding dependent components from two differ-
ent but related data sets in an unsupervised (blind) manner. The
basic idea is to generalize cross-correlation analysis for taking
into account higher-order statistics. We propose independent
component analysis (ICA) type extensions for the singular value
decomposition of the cross-correlation matrix. They extend
cross-correlation analysis in a similar manner as ICA extends
standard principal component analysis for covariance matrices.
We present experimental results demonstrating the usefulness
of the proposed methods both for artificially generated data
and for a cryptographic problem.

I. I NTRODUCTION

Principal component analysis (PCA) [5], [4], [17] and
independent component analysis (ICA) [17], [4] are well-
known techniques for unsupervised (blind) extraction of
useful information from vector-valued datax. While PCA is
a well-established, old statistical technique, ICA has gained
a lot of popularity during the last decade because it often
provides more meaningful results.

Standard linear PCA and ICA are both based on the same
type of simple linear latent variable model for the observed
data vectorx(t):

x(t) = As(t) =

n
∑

i=1

si(t)ai (1)

In this model, the data vectorx(t) is expressed as a lin-
ear combination of scalar sourcessi(t), i = 1, 2, . . . , n,
which multiply the respective constant basis vectorsai,
i = 1, 2, . . . , n. The sources are in different contexts called
also latent variables, (hidden) factors, or (hidden) causes.
The index t may denote time, position, or just number
of the sample vector, again depending on the context. For
simplicity, we assume here that both the data vectorx(t)
= [x1(t), x2(t), . . . , xn(t)]T and the source vectors(t) =
[s1(t), s2(t), . . . , sn(t)]T are zero meann-vectors, and that
the mixing matrixA = [a1,a2, . . . ,an] is a full-rank constant
n × n matrix. The column vectorsai, i = 1, 2, . . . , n of
the mixing matrix A comprise the basis vectors of PCA
or ICA, and the componentssi(t), i = 1, 2, . . . , n, of the
source vectors(t) are respectively principal or independent
components corresponding to the data vectorx(t). From now
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on, the indext is left out, assuming that the order of the
data vectorsx(t) is not important. This assumption is made
in standard ICA.

In PCA, it is required that the mixing matrix is orthogonal:
AT A = I, leading to mutually orthonormal basis vectorsai.
In ICA, there is no such requirement, and hence the mixing
matrix A and the basis vectorsai of ICA are generally
non-orthogonal. In both the expansions, the componentssi

must be mutually uncorrelated: E{sisj} = 0, i 6= j. To
get the true principal components, the variances E{s2

i } are
in addition sequentially maximized fori = 1, 2, . . . , n [5],
[18], [17], [4]. In ICA, the orthogonality condition of PCA is
replaced by the strong but often realistic requirement thatthe
componentssi of the source vectors should be statistically
independent (or as independent as possible). This still leaves
the sign, order, and scaling of the independent components
si ambiguous [17]. Usually they are scaled so that their
variances E{s2

i } = 1.
Assuming zero mean, E{x} = 0, the covariance matrix of

the datax is both for PCA and ICA

Cxx = E{xxT } = AE{ssT }AT = ACssA
T (2)

where the covariance matrixCss = E{ssT } of the source
vectors is a diagonal matrix due to the uncorrelatedness of
the componentssi.

Because PCA considers second-order statistics (covari-
ances) only, it can be easily computed using the eigende-
composition of the covariance matrixCxx. An alternative
though less accurate way is to apply linear PCA neural
networks taught by Hebbian (and possibly anti-Hebbian)
learning rules [5], [4]. Such stochastic gradient algorithms
for estimating the PCA expansion were developed by the
first author together with Prof. E. Oja in a somewhat different
context already in early 1980’s [20], [24]. The ICA expansion
is somewhat more difficult to estimate, requiring higher-order
statistics, but several good batch or adaptive neural type
algorithms now exists for computing it, too [17], [4].

Both standard ICA and PCA have been generalized into
many different directions [5], [17], [18], [4], [14]. In this
paper, we consider a generalization in which one tries to
find mutually dependent corresponding components from two
different but related data setsx and y. For simplicity, we
assume in this paper that such dependences appear between
transformed components ofx and y pairwise, while their
other component pairs are statistically fairly independent. We
note here that it would be possible to consider more flexible
and general subspace type models.



A well-known related statistical technique is canonical
correlation analysis [23]. There one tries to find linear combi-
nationsx∗ andy∗ of the components of the vectorsx andy,
respectively, so thatx∗ and y∗ have maximal correlations.
Because canonical correlation analysis resorts to second-
order statistics only, its solution can again be found using
eigenanalysis and singular value decomposition of auto- and
cross-covariance matrices ofx andy [23]. Fyfe and Lai have
considered a neural implementation of canonical correlation
analysis in [22], and a nonlinear generalization of it using
kernels in [8]. Furthermore, Koetsier et al. have presented
in [21] an unsupervised neural algorithm called Exploratory
Correlation Analysis for the extraction of common features
in multiple data sources. This method, is also closely related
with canonical correlation analysis.

In an interesting paper, Akaho and his co-authors [2]
have considered an ICA style generalization of canonical
correlation analysis which they call multimodal independent
component analysis (MICA). In their method, standard linear
ICA is first applied to both data setsx and y separately.
Then the corresponding dependent components of the two
ICA expansions are identified using a natural gradient type
learning rule. Akaho’s method seems to work in most cases
in practice, but it has a potential theoretical weakness. If
two scalar variabless1 and s2 are statistically independent
and similarlyt1 and t2, but s1 and t1 depend on each other
and similarlys2 and t2, one cannot in general theoretically
deduce anything on the dependence or independence of the
variable pairss1 andt2 or s2 andt1. For example,s1 andt2
may have a common part which does not appear ins2 and
t1, which makes them statistically dependent.

II. T HEORETICAL BACKGROUND

A. Removal of second-order dependencies

Consider two different but related data setsx andy. The
dimensionm of y is in general different from the dimension
n of x. Assuming zero mean also fory, the cross-covariance
matrix of x andy is

Cxy = E{xyT } (3)

The elements E{xiyj} of this matrix are cross-covariances
between the componentsxi and yj of the vectorsx andy,
and they are in general nonzero.

The cross-covariance matrixCxy can be diagonalized us-
ing its singular value decomposition (SVD) (see for example
[13], [5]):

Cxy = UDstV
T (4)

HereU andV aren × n andm × m orthogonal matrices,
respectively, and

Dst = E{stT } (5)

is an n × m (pseudo)diagonal matrix (that is, a diagonal
matrix appended with zeros ifm 6= n [13]). The matricesU
andV andDst are obtained from the eigendecompositions of
the symmetric matricesCxyC

T
xy andCT

xyCxy, respectively
[5], [13]. Standard PCA is a special case of SVD the

expansion (4) in whichx = y, U = V, and s = t. SVD
can be estimated using neural PCA type algorithms [4], too,
but we have in this work used more efficient and accurate
standard numerical algorithms for computing it.

We can think that the diagonalization (4) of the cross-
covariance matrixCxy is realized via two orthogonal linear
transformationsU andV:

x = Us, y = Vt (6)

where the corresponding componentssi andti of the vectors
s and t are correlated: E{siti} 6= 0, but their different
components are uncorrelated: E{sitj} = 0 for i 6= j. Later
on in our experiments, to make the comparisons easier, the
variances of the components of the vectorsx and y are
always normalized to unity.

The key idea in this work is to allow non-orthogonal
square transformation matricesA and B instead ofU and
V:

x = As, y = Bt (7)

In a similar manner as in standard linear ICA for one data
set x, we require that the transformationsA and B not
only make the different componentssi and tj , i 6= j,
of the vectorss and t uncorrelated, but they should be
as independent as possible. The goal is to concentrate the
dependencies between the vectorss andt as far as possible
to their corresponding componentssi and ti, which are in
turn required to be as dependent as possible.

Using the transformations (7), the cross-covariance matrix
Cxy can be expressed as

Cxy = ADstB
T (8)

It should be noted that it is always possible to find orthogonal
matricesU andV providing the singular value decomposi-
tion (4) and making the different components of the vectors
x and y uncorrelated. By finding suitable transformations
(7) among the considerably more flexible class of non-
orthogonal matricesA and B, one should therefore in
general be able to achieve more than just decorrelation.

B. Removal of higher order dependencies

Our approach for computing the matricesA and B is
based on nonlinear decorrelation and the FastICA algorithm
[17]. The algorithm has converged to a good solution when

E{xg(x)T } (9)

is a diagonal matrix, and the data vectorsx have been prepro-
cessed to have zero mean and unit variance. The vectorg(x)
= [g(x1), g(x2), . . . , g(xn)]T is a nonlinear transformation
of the data vectorx. The nonlinearityg(t) must be chosen
carefully in order to get as independent signals as possible.
Good nonlinearities for wide classes of signals areg(t) =
tanh(t) or g(t) = t3.

From this result we see that the signalsxi and xj , i 6=
j, are usually statistically independent when their nonlinear
correlations

E{xig(xj)} = 0, E{xjg(xi)} = 0. (10)



Therefore, to remove cross-dependencies between the zero
mean vectorsx andy, we need to diagonalize the matrices

E{xyT }, E{xg(y)T }, E{g(x)yT }. (11)

Furthermore, because the nonlinearitiesg(x) = tanh(x) and
g(x) = x3 above have the property that they preserve the
sign of x, it is possible to diagonalize all these matrices by
just diagonalizing a single matrix

E{xyT + xg(y)T + g(x)yT } (12)

This matrix can be further generalized to

E{[x + (g(x)−E{g(x)})][y + (g(y)−E{g(y)})]T } (13)

where the term E{(g(x) − E{g(x)})(g(y) − E{g(y)})T }
vanishes when the vectorsx andy are independent.

We can diagonalize this form by simple use of SVD. In
general we want to diagonalize the matrix

E{f(x)g(y)T } = USVT . (14)

We can do this nonlinearly with tranforms

x′ = f−1(UT f(x)), y′ = g−1(VT g(y)) (15)

provided that the inverse functionsf−1(·) andg−1(·) exist.
Assume now that the data vectorsx and y have been

whitened and cross-decorrelated. For vector-valued functions
f(x) which map their components independently, the optimal
linear mapping in the mean-square error sense is thenf(x)
= Ax = aIx, and similarly forg(y). This can be used to
find linear approximations to the non-linear diagonalizing
transforms (15):

x′ = a−1IUT aIx = UT x (16)

y′ = b−1IVT bIy = VT y (17)

These approximations, although suboptimal, turned out to
give good results in our experiments.

III. M ETHODS

We have developed and tested several somewhat heuristic
methods based on the above ideas. We restricted our testing
to matrices which have a similar form as in Eq. (12). Eqs.
(16) and (17) could also be used iteratively to totally or
significantly reduce non-diagonal values of this form of
matrix containing nonlinear correlations. In the following,
we present the two methods which performed on average
best in our experiments.

A. Method 1

In the first method (Method 1), we first estimate the
independent components1 of the vectorsx and y. Let us
denote the vectors containing these estimated independent
components bŷsx and ŝy:

x = Aŝx, y = Bŝy (18)

1Or the most independent components if strictly statisticallyindependent
components do not exist.

HereA is ann× n matrix andŝx an n-dimensional vector,
and B is an m × m matrix and ŝy an m-dimensional
vector. Furthermore, the variances of vectorsŝx and ŝy were
normalized to unity for getting suitable starting vectors.

After this, the singular value decomposition of the matrix

Fxy = E{xyT + tanh(x)yT + x tanh(y)T } = UF DF VT
F

(19)
containing nonlinear correlations of the vectorsx and y is
computed quite similarly as for the standard cross-correlation
matrix Cxy in (4). On the right hand side of Eq. (19),UF

and VF denote the orthogonal left and right matrices of
the singular value decomposition of the matrixFxy, and
the diagonal matrixDF contains the respective singular
values. The nonlinearity, in (19)tanh(·), is applied to each
component of the vectorsx andy separately.

Finally, the estimated source (independent component)
vectorsŝx and ŝy in Eq. (18) are rotated using the singular
vector matricesUF andVF , yielding the final results

s∗x = UT
F ŝx, s∗y = VT

F ŝy (20)

The basic idea behind this and the following method is
to include nonlinear correlations of the components of the
vectorsx andy into computation of the matrixFxy. In (19),
the sigmoidaltanh(·) nonlinearity is applied tox andy to
achieve this goal.

This is a heuristic way to try to concentrate the dependen-
cies betweenx andy into their corresponding components.
But due to the averaged nature of the expectation defining
the matrix Fxy, one cannot in general claim that other
than targeted component pairs ofs∗x and s∗y are statistically
independent or even uncorrelated.

B. Method 2

In the second method, the zero mean data vectorsx and
y are first whitened using PCA. This takes place by first
computing the PCA expansions ofx andy:

Cxx = UxDxxU
T
x , Cyy = UyDyyU

T
y (21)

where the column vectors of the orthogonal matricesUx and
Uy contain the eigenvectors of the covariance matricesCxx

andCyy of x andy, respectively. The diagonal matricesDxx

andDyy consist of their eigenvalues in the same order. The
whitened data vectors are given by [17]

x′ = D−1/2
xx UT

x x, y′ = D−1/2
yy UT

y y (22)

The components of the preprocessed vectorsx′ are mutually
uncorrelated and have unit variance, and similarly fory′.

The whitened vectorsx′ and y′ are then rotated further
using alternatively the singular value decompositions of the
nonlinear correlation matricesFxy in (19) andGxy:

Gxy = E{xyT + x3yT + x(yT )3} = UGDGVT
G (23)

This takes place quite similarly as in our first method,

s∗x = UT x′, s∗y = VT y′ (24)



where the matricesU and V are alternatively taken from
the SVDs (19) and (23). The iteration is continued until con-
vergence. Thus Method 2 uses in addition to the sigmoidal
nonlinearitytanh(·) the cubic nonlinearitiesx3 and y3 for
including nonlinear correlations of the vectorsx andy into
computations.

We tried several slightly different methods of similar type
in our experiments. The two methods described above were
selected to this paper because they provided on average the
best results and are computationally sufficiently efficient.

C. Method 3

The just described Methods 1 and 2 try to find one-
dimensional signal pairssi, ti where all the relevant infor-
mation about theith componentti of the vectort has been
concentrated onto the corresponding componentsi of the
vectors and visa versa. These ideas can be also used to find
a linear mapping between two sets of signals.

Method 3 extends the linear mean-squared error minimiza-
tion to a more generic linear method. The method relaxes
assumptions about distributions of signals and errors. The
idea is to solve signal pairs with one of the methods described
above, and then find one-dimensional mappings minimizing
the mean-square error betweensi and ti pairs. These one-
dimensional mappings are sufficient for cross-independent
signal pairs, where the signalssj , j 6= i do not contain any
information about the correct value ofti. An optimum linear
mapping minimizing the mean-square error changes only the
sign and scaling of zero mean signals [12], and can be carried
out without changing mutual information (or independencies)
between the variables

ti = ρtisi
si, I(ρiiX,Y ) = I(X,Y ) (25)

whereρtisi
is correlation betweenti andsi. Thus if the given

data have been sphered to have zero mean and unit variance,
and the cross-dependence matrixGxy can be diagonalized
with mappingss = UT x and t = VT y then the mapping
from x to y is

W = Vdiag(ρt1s1
, ρt2s2

, . . . , ρtN sN
)UT (26)

This method can be seen as an extension of linear mean-
square error optimization which assumes Gaussian distribu-
tions. If a cross-correlation matrixCxy is used as a cross-
dependence matrixGxy, then the resulting mapping becomes

W = Vdiag(ρt1s1
, ρt2s2

, . . . , ρtN sN
)UT = VSUT = CT

xy

(27)
It can be seen that this is exacly the same as given by linear

mean-square error minimization for sphered data. With a bit
of calculus one can see that minimization of the mean-square
error criterion

E{
1

2
||Wx − y||2} (28)

yields the optimal solution

W = CyxC
−1
x = CT

xy (29)

where the last step follows from the whitening (sphering) of
the datax: Cx = C−1

x = I. So if diagonalization of a cross-
dependence matrix removes most of the correlations between
different components of the involved vectors, then Method 3
minimizes the mean-square error and at the same time it tries
to take non-Gaussian properties of distributions into account.

In our tests we preprocessed the data with PCA to have
zero mean and unit variance, and then used the cross-
dependence matrix

Gxy = E{tanh(x)yT + x tanh(y)T } (30)

which was iteratively diagonalized with SVD. Brief tests
indicated that this method has about same minimum mean-
square error (28) wheny = Ax + ǫ. But sometimes the
method performed considerably better than the standard
pseudoinverse based least-square error minimization (29)
when the output vectorsy were generated fromx with two
different matricesy = Ax andy = Bx.

IV. M EASURING THE DEPENDENCE

Theoretically, a suitable measure of the dependence be-
tween any two continuous scalar random variablesx and y
is their mutual information [14], [17]

Ixy =

∫ +∞

−∞

px(x) log
px(x)

py(y)
dxdy (31)

wherepx(x) andpy(y) denote the probability density func-
tions of x and y, respectively. The mutual information can
easily be generalized for vector-valued random variables
x and y. It is actually the Kullback-Leibler divergence
(information) betweenx and y, and measures the distance
between the probability densitiespx(x) andpy(y) [14], [17].

Mutual informationIxy is strictly speaking not a proper
distance measure because it is not symmetric forx andy. But
it has the following important theoretical property: Mutual
information is always nonnegative, and it is zero if and only
if x andy are statistically independent. The more dependent
they are the larger is their mutual informationIxy.

While mutual information is in some sense a theoretically
ideal dependence measure, it cannot usually be applied in
practice. The basic reason is that it is very difficult to
reliably estimate the tails of the distributionspx(x) and
py(y) [9], [17]. Therefore, one must resort to some kind
of approximations (see for example [17], [4]) or to other
simpler dependence measures.

A review of dependence measures related to tests of
independence in statistics can be found in the paper [26].
However, such tests are not necessarily most suitable in
context with ICA, because they typically make specific
assumptions on the distributions of the variables to be studied
(for example, Gaussianity).

In ICA and blind source separation (BSS) [17], [4],
measures of statistical dependence have been developed
and studied in several papers. Bach and Jordan [3] have
introduced contrast functions based on canonical correlations
in a reproducing kernel Hilbert space. They have shown that
these contrast functions are related to mutual information



and have desirable mathematical properties as measures of
statistical dependence. Their ideas have recently been devel-
oped further in [10], where two new kernel-based functionals
are introduced for measuring the degree of independence of
random variables.

Another way is to use characteristic functions for defining
statistical independence and for measuring dependence. This
approach has been studied in [6], [7], leading to three
criteria for ICA. Dependence measures can be based either
on approximating mutual information using the characteristic
function or on applying a moment generating function.
Furthermore, simpler quadratic measures for estimating de-
pendence have been developed in [1], [27].

We have tested several of these methods experimentally
using simple test cases of three statistically independent
source signals. It turned out that the method based on
moment generating function performed best in the sense that
the difference between the cases of independent and more
or less dependent signals was the largest. However, also the
other tested methods gave qualitatively correct results. That
is, more independent variables provided better values of the
respective performance index than more dependent ones.

Accordingly, we chose the method based on moment
generating function [6], [7] for measuring dependence in our
experiments. In the following, we explain this dependence
measure in more detail.

The moment generating function method is based on
estimation of the expectation

E[exp(wT x)] = E[exp(

n
∑

i=1

wixi)] (32)

over the componentsx1, x2, . . . , xn of the data vec-
tor x. Here w is the weight vector whose components
w1, w2, . . . , wn define some linear combination of the com-
ponents ofx. Clearly, if wT is one of the row vectors of the
inverseA−1 of the square mixing matrixA in the standard
linear ICA model (1),wT x becomes one of the independent
componentssj [17]. On the other hand, if the componentsxi

of x in (32) are statistically independent, Eq. (32) decouples
into

E[exp(wT x)] =

n
∏

i=1

E[exp(wixi)] (33)

Based on this observation, one can estimate for two scalar
random variablesxi andxj the quantity

dxixj
(wi, wj) = {E[exp(wixi + wjxj)]

− E[exp(wixi)]E[exp(wjxj)]}
2 (34)

This is always nonnegative, and becomes zero when the
variables xi and xj are independent. The moments and
moment generating function do not uniquely define the
variablesxi andxj , but a large correspondence implies that
the functions are similar.

In the experiments, we measured the independence of a
two-dimensional random variable by computing the function

[6], [7]

Ixixj
[w] = dxixj

(wi, wj)dxixj
(−wi,−wj)

+ dxixj
(−wi, wj)dxixj

(wi,−wj) (35)
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Fig. 1. The source signalss(t) (left) and t(t) = f(s(t)) (right) used to
generate input datax(t) andy(t). The nonlinearity used in generating the
source signal pairs wasf(s) = s3

− 0.5s2. The mean and variance of the
generated source signals were set to zero and one.

This is a positive, real-valued function measuring the
dependence. We generated this function only at the point
w = (1, 1). Finally, the quality of the found solution was
assessed by computing the quantity

J(x,y) =

∑n
i=1

Ixiyi
(1, 1)

∑n
i=1

∑n
j 6=i Ixiyj

(1, 1)
(36)

The higher the value ofJ(x,y), the more dependentx and
y are. Heret denotes the index of the sample. This is a
measure of goodness which tries to take into account both
independence and dependence between the targeted pairs
xi(t), yi(t) and non-pairsxi(t), yj(t), j 6= i of the signals.

V. EXPERIMENTAL RESULTS

A. Artificially generated data

First, we present some experimental results for artificially
generated data. Such data are useful in testing various
methods, because the correct results are known, enabling
computation of performance or error measures and compar-
isons.

The original source signals were as follows:

s1(t) = −sinc(log | cos(20πt)|)

s2(t) = sinc(cos(10πt) sin(100πt))

s3(t) = log | sin(180πt) + 0.01|

t1(t) = f(s1)

t2(t) = f(s2)

t3(t) = f(s3)

(37)
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Fig. 2. The generated input datax(t) = As(t) (left) andy(t) = Bt(t)
(right).
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Fig. 3. The jointly dependent sources found using singular value decom-
position.

The function sinc(t) = sin(t)/t for t 6= 0, and 1 fort = 0.
The sourcess1(t), s2(t), ands3(t) are our own and actually
not statistically independent. These sources have been
depicted in Figure 1.

The first data setx(t) was obtained by directly mixing
original sourcess(t) with a randomly chosen non-singular
mixing matrix A. The second related data sety(t) was
generated by first applying the nonlinearity

f(s(t)) = [s(t)]3 − 0.5[s(t)]2 (38)

to the sourcess(t), which were then mixed using another
randomly chosen non-singular mixing matrixB, yielding
y(t) = Bf(s(t)). The data vectorsx(t) andy(t) generated
in this way are shown in Figure 2.

The jointly dependent sources estimated using different
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Fig. 4. The jointly dependent sources found using Method 1.

methods have been depicted in Figures 3, 4, and 5. More
specifically, Figure 3 shows the sources estimated by the
singular value decomposition (4) and (6):s = UT x, t =
VT y. Figure 4 depicts the sources provided by our first
method (18)-(20), and Figure 5 the sources given by the
second method (21)-(24). A visual inspection of the results
suggests that the proposed novel methods 1 and 2 perform
somewhat better than linear singular value decomposition in
this example. This is confirmed in Figure 6, which shows
the performance measureJ(x,y) in (36) for the estimated
jointly dependent 6 sources. Method 1 (Algorithm 6 in the
figure) attains consistently somewhat higher values than SVD
(Algorithm 1 in the figure), while our second Method 2
(Algorithm 5) performs for the 2nd and 6th source better
than SVD and for the remaining sources about equally
well. Figure 7 illustrates the average performances of the
algorithms using the moment generating function.

The results were qualitatively similar for the other nonlin-
earities tried in our simulations. They included the absolute
value f(s(t)) = |s(t)| (cf. [2]), a sinusoidal type nonlinear-
ity f(s(t)) = sin(s(t)) cos(s(t)), and a nonlinearity which
strongly breaks the signal:f(s(t)) = floor[s(t)] sin(s(t)),
where the function floor(t) means roundingt to the nearest
integer which has a lower or equal value. Hence for example
floor(5.1) = 5 and floor(−3.3) = −4. In particular our
second method was consistently among the three best ones of
the 13 methods tried for all error measures. Our first method
performed the best when a simple correlation between the
best matching pairs of two variables or characteristic function
was used as an error measure.

B. Application to cryptographic data

In these experiments, we tried to find out the dependent
corresponding components from texts and their encrypted
versions. The texts were taken from the data sets made
available by Project Gutenberg [11] in ASCII form. We
picked up 4 books, with each ASCII letter at the same
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Fig. 5. The jointly dependent sources found using Method 2.
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Fig. 6. Performances (goodness-of-fit measures) of the singular value
decomposition (algorithm 1), Method 1 (algorithm 6), and Method 2
(algorithm 5) for the artificially generated data setsx(t) and y(t) of 6
sources. The nonlinearity used was (38), and the performancewas estimated
using the moment generating function.

position (that is, the index of the letter in question starting
from the beginning of the text) in the books corresponding
to one component of a4−dimensional vector. There were
288048 such vectorsx(t) (t = 1, 2, . . . , 288048). The
encrypted corresponding vectorsy(t) (t = 1, 2, . . . , 288048)
were generating by applying a 128-bit AES encoding [25]
separately to each ASCII letter appended by zeros, so that
each letter contained 128 bits. The encrypted 128 bit long
numbers were transformed to floating point numbers having
96 bits, which we further approximated by a 32-bit floating
point number in our MATLAB experiments. The source
signals were preprocessed so that their mean was zero and
variance unity.

We tried to estimate the source vectorss and t as well
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Fig. 7. Average performances of the SVD (algorithm 1), Method2
(algorithm 5), and Method 1 (algorithm 6) for the nonlinearity (38),
estimated using the moment generating function.

as the mixing matricesA and B in the model (7) using
the methods developed in the previous section. That is,
we tried to determine these quantities so that the joint
information between the corresponding components ofs and
t is maximized. After this, we computed the connectivity
matrix M, defined by

t = Ms = A−1Bs (39)

assuming that the mixing matrixA is square and of full rank
and hence invertible.

Encryption aims at blurring or mixing the information
contents of a message as much as possible, so that it cannot
be identified any more from the encrypted version [25]. Thus
the goal of encryption is a kind of opposite to what ICA
and BSS methods aim at. It is realistic to expect that the
elements of the connectivity matrixM have higher absolute
values when the encrypted message is strongly related to the
original text.

We tried several algorithms for this problem. A general
conclusion on these experiments is that the performance of
the suggested algorithms for estimating jointly dependent
components gradually improves. Roughly speaking, they start
to perform appropriately when the number of the elements
in the vectorsx(t) andy(t) nears200, 000. As an example,
consider Method 1. It could connect correctly two compo-
nents of the vectorsx(t) and y(t) when the number of
sample vectors wast = 180000, and all four components
for t = 262440 and t = 288048. Some other algorithms
performed slightly better, being able to find out all the four
dependent components already whent = 180000. This holds
especially for Method 3, which was on an average the best
performing of the methods we tested in this problem.

For identifying the connected components, we used the
following heuristics. Consider the absolute values|mij | of
the elementsmij of the connectivity matrixM. Find the



element having the largest absolute value, and mark the
corresponding components having the indicesi = imax and
j = jmax connected. Continue the procedure by finding the
element of the matrixM having the next largest absolute
value and different indicesi 6= imax and j 6= jmax, and
connect the corresponding conponents. The procedure is
continued until all the components of the vectorss and t

have been connected. Of course, connecting takes place so
that only one element on each row and column of the matrix
M is selected. That is, each of the components of the source
vectors is connected to one of the component of the source
vectort.

When the numbert of data vectors increased, not only the
found connected components gradually became the correct
ones. Also the absolute values of correct elements in the
matrix M increased, and large erroneous values decreased.
The methods using ICA for preprocessing were quite slow,
because ICA was not usually able to find an independent
group of source signals.

The final value of the matrixM for t = 288048 data
vectors is shown in (40) for the best performing Method 3.
For clarity, we have omitted the common multiplying factor
1036 from the elements ofM. From the results (40), one
can without doubt deduce the correct jointly dependent cor-
responding source pairs. The corresponding largest elements
of the matrix M on its each row and column have been
boldfaced in (40).

M =









0.138 −0.225 0.939 2.889

−1.446 1.329 2.269 1.039
0.330 2.797 −1.212 −0.050
2.719 0.428 1.410 0.514









(40)

VI. CONCLUDING REMARKS

In this paper, we have presented first result on some novel
methods for finding mutually corresponding dependent com-
ponents from two different but related data sets. Our methods
generalize cross-correlation analysis based on singular value
decomposition to take into account higher-order statistics
in a similar manner as in ICA. The data model is rather
simple, and could be generalized in several ways. A natural
extension would be to allow a more flexible model than
pairs of dependent components independent of other such
pairs, see for example [15], [16], [19]. Experimental results
demonstrating the usefulness of proposed methods have
been presented both for artificially generated and realistic
cryptography data.
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