
A Two-Stage Pretraining Algorithm for

Deep Boltzmann Machines

Kyunghyun Cho, Tapani Raiko, Alexander Ilin, and Juha Karhunen

1 Introduction

Deep Boltzmann machine (DBM), proposed in [33], is a recently introduced variant

of Boltzmann machines which extends a widely used restricted Boltzmann machine

(RBM) to have multiple layers of hidden neurons. It differs from the popular deep

belief network (DBN) which is built by stacking multiple layers of RBMs [19] in

that every edge in the DBM model is undirected. This construction of DBMs facili-

tates propagating uncertainties across multiple layers of hidden variables.

Although it is straightforward to derive a learning algorithm for DBMs using a

variational approximation and stochastic maximum likelihood method, recent re-

search (see, for example, [33] and [13]) has shown that learning the parameters

of DBMs is not trivial. Especially the generative performance of the trained model,

commonly measured by the variational lower-bound of log-probabilities of test sam-

ples, tends to degrade as more hidden layers are added.

In [33] a greedy layer-wise pretraining algorithm was proposed to initialize the

parameters of DBMs. It was shown that the proposed algorithm largely overcomes

the difficulty of learning a good generative model.

Along this line of research, we propose another strategy of pretraining DBMs

in this paper. The proposed scheme is based on an observation that training DBMs

consists of two separate stages; approximating the posterior distribution over hidden

units and updating parameters to maximize the lower-bound of the log-likelihood

given the approximate posterior distribution.

Based on this observation, the proposed algorithm in this paper pretrains a DBM

in two stages. During the first stage we train a simpler, directed deep model such as

DBNs or stacked denoising autoencoders (sDAE) to obtain an approximate posterior

distribution over hidden units. With this approximate posterior distribution fixed,

Kyunghyun Cho · Tapani Raiko · Alexander Ilin · Juha Karhunen
Department of Information and Computer Science, Aalto University School of Science, Finland

e-mail: firstname.lastname@aalto.fi

1



2 Kyunghyun Cho, Tapani Raiko, Alexander Ilin, and Juha Karhunen

we train an RBM that learns a distribution over a combination of data samples and

their corresponding posterior distributions over the hidden units. It is then trivial to

finetune the model as one only needs to simply free hidden variables from the fixed

approximate posterior distribution obtained in the first stage.

We show that the proposed algorithm helps learning a good generative model

which is empirically comparable to, or better than the pretraining method proposed

in [33]. Furthermore, we discuss the degrees of freedom in extending the proposed

approach.

2 Deep Boltzmann Machines

We start by describing deep Boltzmann machines (DBM) [33]. A DBM with L lay-

ers of hidden neurons is defined by the following negative energy function:

−E(v,h | θ) =
Nv

∑
i

vibi+
Nv

∑
i

N1

∑
j

vih
[1]
j wi, j+

N1

∑
j

h
[1]
j c

[1]
j +

L

∑
l=2

(
Nl

∑
j

h
[l]
j c

[l]
j +

Nl

∑
j

Nl+1

∑
k

h
[l]
j h

[l+1]
k u

[l]
j,k

)

, (1)

where v= [vi]i=1...Nv
and h[l] =

[

h
[l]
j

]

j=1...Nl

are Nv binary visible units and Nl binary

hidden units in the l-th hidden layer, where 1≤ l ≤ L.

W= [wi, j]i=1...Nv, j=1...N1
is the set of weights between the visible neurons and the

first layer hidden neurons. U[l] =
[

u
[l]
j,k

]

i=1...Nl , j=1...Nl+1

is the set of weights between

the l-th and (l+ 1)-th hidden neurons, where 1 ≤ l < L, in this case. bi and c
[l]
j are

a bias to the i-th visible neuron and the j-th hidden neuron in the l-th hidden layer,

respectively. We use θ to denote a set of all these parameters.

With the energy function, a DBM can assign a probability to each state vector

x= [v;h[1]; · · · ;h[L]]

using a Boltzmann distribution

p(x | θ) =
1

Z(θ)
exp{−E(x | θ)} ,

where

Z(θ) = ∑
∀x

exp{−E(x | θ)} .

Under this formulation, the conditional distribution of each hidden layer l is



A Two-Stage Pretraining Algorithm for Deep Boltzmann Machines 3

p(h
[l]
j = 1 | h[l−1],h[l+1]

,θ) = f

(
ql−1

∑
k=1

h
[l−1]
k u

[l−1]
k j +

ql+1

∑
i=1

h
[l+1]
i u

[l]
ji + c

[l]
j

)

, (2)

and the conditional distribution of the visible layer is

p(vi = 1 | h[1],θ) = f

(
q1

∑
j=1

h
[1]
j wi j+bi

)

, (3)

where

f (x) =
1

1+ exp{−x}
(4)

is a logistic sigmoid function.

Based on this property the parameters can be learned by maximizing the log-

likelihood

L (θ) =
N

∑
n=1

log∑
h

p(v(n),h | θ)

given N training samples {v(n)}n=1,...,N , where

h=
[

h[1]; · · · ;h[L]
]

.

The gradient is stochastically estimated by taking the partial derivative of the

log-likelihood function L with respect to each parameter θ using only a subset of

training samples. This estimate is then used to update the parameters, effectively

forming a stochastic gradient ascent method. A standard way of computing gradient

results in the following update rule for each parameter θ :

∇θ L =

〈

−
∂E(v(n),h | θ)

∂θ

〉

d

−

〈

−
∂E(v,h | θ)

∂θ

〉

m

, (5)

where 〈·〉d and 〈·〉m denote the expectation over the data distribution P(h | v,θ)D(v)
and the model distribution P(v,h | θ), respectively [7]. D denotes an empirical data

distribution.

3 Training Deep Boltzmann Machines

Although the update rule in Eq. (5) is well defined, it is intractable to compute both

terms in the update rule exactly. Hence, an approach based on variational approxi-

mation together with Markov chain Monte Carlo (MCMC) sampling was proposed

in [33].



4 Kyunghyun Cho, Tapani Raiko, Alexander Ilin, and Juha Karhunen

First, the variational approximation is used to compute the expectation over the

data distribution. It starts by approximating the posterior distribution over the hidden

variables p(h | v,θ), which is intractable unless L= 1, by a factorial distribution

Q(h) =
L

∏
l=1

Nl

∏
j=1

(

µ
[l]
j

)h
[l]
j
(

1−µ
[l]
j

)1−h
[l]
j
.

Each variational parameter µ
(l)
j can then be estimated by the following fixed-point

equation:

µ
[l]
j ← f

(
Nl−1

∑
i=1

µ
[l−1]
i w

[l−1]
i j +

Nl+1

∑
k=1

µ
[l+1]
k w

[l]
k j+ c

[l]
j

)

, (6)

where f is a logistic sigmoid function in Eq. (4). Note that µ
(0)
i is fixed to vi and

the update rule for the top layer does not contain the second summation term, that

is NL+1 = 0.

This variational approximation provides the values of variational parameters that

maximize the following variational lower-bound (right-hand side) of the true log-

probability of v with respect to the current parameters θ :

log p(v | θ)≥ EQ(h) [−E(v,h)]+H (Q)− logZ(θ), (7)

where

H (Q) =−
L

∑
l=1

Nl

∑
j=1

(

µ
[l]
j logµ

[l]
j +(1−µ

[l]
j ) log(1−µ

[l]
j )
)

is an entropy functional.

Due to the layered structure of a DBM, it is possible to analytically sum out

the odd-numbered hidden layers (see, e.g., [17]). If we denote the odd-numbered

and even-numbered hidden layers by h+ and h− respectively, we may, then, rewrite

Eq. (7) into

log p(v | θ)≥ EQ(h−)

[

−∑
h+

E(v,h+,h−)

]

+H (Q)− logZ(θ). (8)

Since the first term of the gradient in Eq. (5) is approximated in this way, each

gradient update step does not increase the true log-likelihood directly but its varia-

tional lower-bound.

Second, the expectation over the model distribution is computed by persistent

sampling (see, for example, [40]). By persistent sampling, we mean that we do not

wait for a sampling chain to converge before computing each update direction, but

run the chain for only a few steps and continue using the same chain over consecu-

tive updates. The simplest approach is to use Gibbs sampling, while there have been



A Two-Stage Pretraining Algorithm for Deep Boltzmann Machines 5

xxx

h[1]h[1]

h[1]h[1]

h[2]h[2]

h[2]

h[2]

h[3]

h[3]h[3]

Fig. 1 Illustration of the layer-wise pretraining of a deep Boltzmann machine. The dashed directed

lines indicate copying either the pretrained models or the activations of the hidden units of the

pretrained models.

some work in applying more advanced sampling methods [32, 31, 14, 8]. In this

paper, we use coupled adaptive simulated tempering (CAST) which was recently

proposed in [32].

This approach closely resembles variational expectation-maximization (EM) al-

gorithm (see, for example, [5]). Learning proceeds by alternating between finding

the variational parameters µ and updating the DBM parameters θ to maximize the

given variational lower-bound using the stochastic gradient method. However, it

has been known and will be shown in the experiments in this paper that training a

DBM using this approach starting from randomly initialized parameters is not trivial

[33, 13, 11].

3.1 Layer-wise Pretraining

In [33] a pretraining algorithm to initialize the parameters of DBMs was proposed.

The proposed pretraining algorithm greedily trains each layer of a DBM by consid-

ering each layer as an RBM, similarly to a pretraining approach used for training

deep belief networks (DBN) [19]. However, the pretraining algorithm for DBMs

differs from that for DBNs due to the undirectedness of all the edges in a DBM,

which requires that the pretraining algorithm for DBMs must take into account that

each hidden unit in a DBM receives a signal from both upper and lower layers (see

Eq. (2)).

The algorithm proposed in [33] modifies the structure of RBMs to cope with

this difference. For the bottom two layers, an RBM is modified to have two copies

of visible units with tied weights such that the additional set of visible units sup-

plies signal that compensates for the lack of signal from the second hidden layer.

Similarly, an RBM that consists of the top two layers has the two copies of hidden



6 Kyunghyun Cho, Tapani Raiko, Alexander Ilin, and Juha Karhunen

units. For any pair of intermediate hidden layers, an RBM is constructed to have two

copies of both visible and hidden units. See Fig. 1 for an illustration.

Recently, in [35] the same authors were able to show that the variational lower

bound is guaranteed to increase by adding the top hidden layer using the proposed

pretraining scheme. Their proof, however, only applies to the top layer, which means

that the guarantee only works for pretraining a DBM having two hidden layers.

4 Restricted Boltzmann Machines and Denoising Autoencoders

Here we briefly discuss restricted Boltzmann machines (RBM) and single-layer de-

noising autoencoders (DAE) which will constitute an important part of the two-stage

pretraining algorithm that will be described in the next section.

An RBM is a special case of DBMs, where the number of hidden layers is re-

stricted to one, L = 1 [39]. Due to this restriction it is possible to compute the pos-

terior distribution over the hidden units conditioned on the visible neurons exactly

and tractably. The conditional probability of each hidden unit h j = h
[1]
j is

p(h j = 1 | v,θ) = f

(

∑
i

wi jvi+ c j

)

, (9)

where f is a logistic sigmoid function from Eq. (4).

This allows the exact and efficient computation of the positive part of the gradient

in (5). However, the negative part, which is computed over the model distribution,

still relies on persistent sampling, or more approximate methods such as contrastive

divergence (CD) [17].

There have been extensive research on improving training RBMs using various

techniques. In [9, 10] the authors proposed the enhanced gradient which exploits

the fact that the gradient update of RBMs is not invariant to the bit-flipping trans-

formation and showed that it outperforms the traditional gradient. In [14, 31, 8],

advanced sampling methods for computing the negative part of the gradient based

on tempering were proposed and shown to improve and stabilize learning.

A single-layer DAE is a special form of multi-layer perception network with a

single hidden layer and a tied set of weights [42]. A DAE is a network that recon-

structs a corrupted input vector as well as possible by minimizing the following cost

function

N

∑
n=1

∥
∥
∥gv

(

Wgh

(

W⊤φ(v(n))
))

−v(n)
∥
∥
∥

2

,

where gh(·) and gv(·) are component-wise nonlinear functions. φ is a stochastic

corruption process that corrupts the input v(n) stochastically.

There is an important difference in training DAEs compared with training RBMs.

In DAEs, the objective of learning is not to learn a distribution but to minimize the



A Two-Stage Pretraining Algorithm for Deep Boltzmann Machines 7

xx

h[1] h[1] h[1]

h[2] h[2]

RBM (1st layer)

RBM (2nd layer)

Deep Belief Network

Fig. 2 Illustration of the stack of RBMs. The dashed directed lines indicate copying of either

pretrained models or the activations of the hidden units of the pretrained models.

reconstruction error. This does not require computing a computationally intractable

normalizing constant, which often leads to easier learning.1

These two models are important, because they can be stacked to form more pow-

erful hierarchical models [19, 18, 2].

A deep belief network (DBN) is constructed by stacking multiple layers of RBMs

[19], and a stacked DAE (sDAE) can be built by stacking DAEs on top of each other

[43]. With probabilistic interpretation, one may consider these stacked models as

having multiple layers of latent random variables where their posterior distributions

can be computed by recursively obtaining (approximate) posterior means of the

hidden units layer-wise. See Fig. 2 for the illustration.

5 A Two-Stage Pretraining Algorithm

In this paper, we propose an alternative way of initializing parameters of a DBM

compared with the one described in Section 3.1. Unlike the conventional pretraining

strategy we employ an approach that obtains approximate posterior distributions

over hidden units and initializes parameters separately.

Before proceeding to the description of the proposed algorithm, we first divide

the hidden layers of a DBM into two sets as we have done in Section 3. Let us

denote a vector of hidden units in the odd-numbered layers as h+ and the respective

vector in the even-numbered layers as h−. Note that due to the structure of DBMs,

it is possible to explicitly sum out h+, which halves the space of hidden variables.

Similarly we define µ+ and µ− as variational parameters of the hidden units in the

odd-numbered layers and the even-number layers, respectively.

1 Despite this difference in the learning objective, recent research such as [3] suggests that the DAE

approximates a data generating distribution as well.



8 Kyunghyun Cho, Tapani Raiko, Alexander Ilin, and Juha Karhunen

xxx x̃

h[1] h[1]

h[2]h[2]h[2]

h[3] h[3]

h[4]h[4]h[4]

Stage 1 Stage 2 Finetuning

Fig. 3 Illustration of the two-stage pretraining of a deep Boltzmann machine. The dashed directed

lines indicate copying of either pretrained models or the activations of the hidden units of the

pretrained models. In this figure, a deep autoencoder is used to learn an arbitrary approximate

posterior in the first stage. The red-colored edges indicate that the weights parameters learned in

the second stage are used as initial values when finetuning the DBM. Note that the parameters

learned in the first stage are discarded immediately after the first stage.

5.1 Stage 1

During the first stage we focus on finding a good set of variational parameters µ−
of Q(h−) that has a potential to give a reasonably high variational lower-bound in

Eq. (7). In other words, we propose to first find a good posterior distribution over

hidden units given a visible vector regardless of parameter values of a DBM.

Although it might sound unreasonable to find a good set of variational param-

eters without any fixed parameter values, we can do this by borrowing posterior

distributions over latent variables from another model.2

We propose here to utilize either a DBN or a sDAE, described in Sec. 4, to find

good approximate posterior distributions over hidden units in the even-numbered

hidden layers. However, it is possible to use any model that finds a good binary

hierarchical posterior distribution.

DBNs and sDAE’s described in Sec. 4 are natural choices to find a good approx-

imate posterior distribution over units in the even-numbered hidden layers. One jus-

tification for using either of them is that they can be trained efficiently and well (see,

e.g., [1] and references therein). It is rather a trivial task where one iteratively trains

each even-numbered layer as either an RBM or a DAE on top of each other.

5.2 Stage 2

Once a set of initial variational parameters µ− is found from a DBN or an sDAE, we

train a model that has predictive power of the variational parameters given a visible

2 A similar approach of borrowing the posterior means of hidden variables has been proposed in

[20]. The authors of that paper initialized the variational Bayesian nonlinear blind source separation

model with the posterior distribution borrowed from kernel principal component analysis.



A Two-Stage Pretraining Algorithm for Deep Boltzmann Machines 9

observation. It can be simply done by letting an RBM learn a joint distribution of v

and µ−. In other words, we train an RBM on a set of data samples, each of which is

a concatenation of v and µ−.
The structure of the RBM is directly derived from the DBM such that the visi-

ble layer of the RBM corresponds to the visible layer and the even-numbered hid-

den layers of the DBM and the hidden layer to the odd-numbered hidden layers of

the DBM. The connections between them can also follow those of the DBM. This

corresponds to finding a set of DBM parameters that fit the variational parameters

obtained in the first stage.

One way to understand what happens during the second stage is to consider what

an RBM has been trained for. If we assume that we use actual samples from Q(h−)
instead of the variational parameters µ−, training the RBM maximizes

L2(θ) = log∑
h+

EQ(h−) exp{−E(v,h−,h+)}− logZ(θ). (10)

However, since we use the variational parameters which are the mean of Q(h−), the
actual quantity being maximized is the lower-bound of Eq. (10) according to the

Jensen’s inequality and the linearity of the expectation:

L2(θ)≥∑
h+

{
−E(v,µ−,h+)

}
− logZ(θ). (11)

It is easy to see that this corresponds to maximizing the variational lower-bound

of the DBM, if we group the three terms of Eq. (8) such that

log p(v | θ)≥ EQ(h−)

[

−∑
h+

E(v,h+,h−)

]

− logZ(θ)

︸ ︷︷ ︸

(a)

+H (Q).

The two terms grouped as (a) in the above equation is equivalent to Eq. (11) which

is maximized during the second stage.3

Once the RBM has been trained, we can use the learned parameters as initial-

izations for training the DBM, which corresponds to freeing h− from its variational

posterior distribution obtained in the first stage. Finetuning of the initialized param-

eters can be performed according to the standard procedure given in Sec. 3.

The overall steps of the proposed algorithm are presented in Alg. 1, and a simple

illustration is given in Fig. 3.

3 The entropy functional in Eq. (8) can be ignored, as it is constant with respect to the parameters

θ .



10 Kyunghyun Cho, Tapani Raiko, Alexander Ilin, and Juha Karhunen

Algorithm 1 Two-Stage Pretraining Algorithm

Input Training data XN×D, the number of layers L and the number of units in each layer

N1, . . . ,NL

Q= X

X− = []
for l = 1→ L do

if odd l then

continue

end if

Train a DAE/RBM with Nl hidden units with Q

Set Q to Q(h) from the DAE/RBM

Append Q to X−
end for

Train an RBM with ∑even l Nl hidden units with X−
Return parameters θ of the trained RBM

5.3 Discussion

It is quite easy to see that the proposed algorithm has a high degree of freedom to

plug in alternative algorithms and models in both the stages.

The most noticeable flexibility can be found in Stage 1. Any other machine learn-

ing model that gives reasonable posterior distributions over multiple layers of binary

hidden units can be used instead of DBNs or sDAE’s. For instance, a stack of re-

cently proposed variants of RBMs such as spike-and-slab RBMs [12, 24] can be

used.4 Also, instead of stacking each layer at a time, one could opt to train deep

autoencoders at once using recently proposed learning algorithms for feedforward

neural networks (see, for instance, [28, 29, 38, 26]).

In Stage 2, one may use a DAE instead of an RBM. It will make learning faster

and therefore leave more time for finetuning the model afterward. Also, the use of

different algorithms for training an RBM can be considered. For quicker pretrain-

ing, one may use contrastive divergence [17] with only a small number of Gibbs

sampling steps per update, or for better initial models, tempering-based advanced

MCMC sampling methods such as parallel tempering [14, 8] or tempered transition

[31] could be used.

Another obvious possibility is to utilize the conventional pretraining algorithm

proposed in [33] during the first stage. This approach gives approximate posterior

distributions over all hidden units [h−;h+] as well as initial values of the parameters

that may be used during the second stage. In this way, one may use either an RBM

or a fully visible BM (FVBM) during the second stage starting from the initialized

parameters. When an RBM is used in the second stage, one could simply discard

µ+.

4 One potential restriction on the choice of a single-hidden-layer neural network is that it must

be computationally inexpensive and easy to compute the posterior distribution over the hidden

variables.



A Two-Stage Pretraining Algorithm for Deep Boltzmann Machines 11

Stage 1 Stage 2 Finetuning

DBM × × DBM

DBMsDAE
RBM sDAE RBM DBM

DBMDBN
RBM DBN RBM DBM

DBMS&H (S) × DBM

DBMS&H
RBM (S) RBM DBM

DBMS&H
FVBM (S) FVBM DBM

Table 1 Algorithms used in the experiment. (S) – the pretraining algorithm from [33].

One important point of the proposed algorithm is that it provides another research

perspective in training DBMs. The existing pretraining scheme developed in [33, 34]

was based on the observation that under certain assumptions the variational lower-

bound could be increased by learning weight parameters layer wise. However, the

success of the proposed scheme suggests that it may not be the set of parameters

that need to be pretrained, but the set of variational parameters that determine how

tight the variational lower-bound is and their corresponding parameters. This way

of approaching the problem of training DBMs enables us to potentially find another

explanation on why training large DBMs without pretraining is not trivial.

6 Experiments

In the experiments, we train DBMs on two datasets which are a handwritten digit

dataset (MNIST) [23] and Caltech-101 Silhouettes dataset [25]. We used theMNIST

and Caltech-101 Silhouettes datasets because experimental results of using DBMs

for both datasets are readily available for direct comparison [36, 32, 27].

We train DBMs with varying numbers of units in the hidden layers; 500-1000,

500-500-1000, 500-500-500-1000. The first two architectures were used in [36, 32],

which enables us to directly compare our proposed algorithm with the conventional

pretraining algorithm.

For learning algorithms, we extensively tried various combinations. They are

presented in Table 1. In summary, a DBM
stage 1
stage 2 denotes a deep Boltzmann machine

in which its superscript and subscript denote the algorithms used during the first and

second stages, respectively.

We used contrastive divergence (CD) to train RBMs in the first stage, and the

persistent CD [41] with coupled adaptive simulated annealing (CAST) was used

in the second stage. DAEs were trained using stochastic gradient descent (SGD)

algorithm with backpropagation [30].

When a DBMwas finetuned, we estimated the variational parameters by the vari-

ational approximation with at most 30 mean-field updates (see Eq. (6)). The model

statistics, the negative part of the gradient, was computed by CAST. When the con-

ventional pretraining algorithm is used, we do not explicitly make duplicate copies

of visible or hidden units, but only double the corresponding weight parameters

[34].



12 Kyunghyun Cho, Tapani Raiko, Alexander Ilin, and Juha Karhunen

Model (a) MNIST (b) Caltech-101 Silhouettes

1000

|
500

|
784

−100 −95 −90 −85 −80 −75

10
−1.9

10
−1.8

10
−1.7

10
−1.6

C
la
ss
ifi
ca
ti
o
n
E
rr
o
r

Lower-bound
−145 −140 −135 −130 −125 −120 −115 −110 −105

10
−0.59

10
−0.57

10
−0.55

10
−0.53

10
−0.51

10
−0.49

C
la
ss
ifi
ca
ti
o
n
E
rr
o
r

Lower-bound

1000

|
500

|
500

|
784

−100 −95 −90 −85 −80 −75

10
−1.9

10
−1.8

10
−1.7

10
−1.6

C
la
ss
ifi
ca
ti
o
n
E
rr
o
r

Lower-bound
−145 −140 −135 −130 −125 −120 −115 −110 −105

10
−0.59

10
−0.57

10
−0.55

10
−0.53

10
−0.51

10
−0.49

C
la
ss
ifi
ca
ti
o
n
E
rr
o
r

Lower-bound

1000

|
500

|
500

|
500

|
784

−100 −95 −90 −85 −80 −75

10
−1.9

10
−1.8

10
−1.7

10
−1.6

C
la
ss
ifi
ca
ti
o
n
E
rr
o
r

Lower-bound
−145 −140 −135 −130 −125 −120 −115 −110 −105

10
−0.59

10
−0.57

10
−0.55

10
−0.53

10
−0.51

10
−0.49

C
la
ss
ifi
ca
ti
o
n
E
rr
o
r

Lower-bound

 

 

DBM DBMsDAE
RBM DBMDBN

RBM DBMS&H
RBMDBMS&H

FVBMDBMS&H

Fig. 4 Performance of the trained DBMs. Best performing models are in the bottom right corners.



A Two-Stage Pretraining Algorithm for Deep Boltzmann Machines 13

We trained each model for 200 epochs in the case of MNIST and 2000 epochs

in the case of Caltech-101 Silhouettes with a learning rate scheduled by
η0

1+ n
5000

where n is the number of updates. η0 was set to 0.01 and 0.0005 for pretraining and

finetuning, respectively. When we did not pretrain a DBM, we trained each DBM

for twice more epochs and set η0 to 0.001. In all cases, we used a minibatch of size

128.

When training RBMs with CAST, we used equally spaced 21 tempered fast

chains from 0.9 to 1 with a single sampling step each update. When DAEs were

trained, at every update we dropped off a randomly chosen set of hidden units with

probability 0.1 [16]. During the finetuning stage, we used CAST with the equally

spaced 21 tempered chains from 0.9 to 1.

We evaluated the resulting models with the variational lower-bound of log-

probabilities and the classification errors of test samples. The variational lower-

bounds reflect the generative performance of the model. We trained a linear SVM

for each hidden layer l using µ l as its features to compute the classification errors.

This is expected to show how much discriminative information about input samples

is captured by each hidden layer of the model.

The intractable normalization constant (logZ(θ) in Eq. (7)) required when com-

puting the variational lower-bound was approximated using annealed importance

sampling (AIS) [37]. For each model, we used 20001 equally spaced tempered

chains from 0 to 1 with 128 independent runs.

All models were trained five times starting from different random initializations.

We report the medians over these random trials.

6.1 Result and Analysis

Fig. 4 presents the result using both the lower-bound of log-probabilities and the

classification error of the test samples. As has already been expected, none of the

models trained without pretraining have been able to perform well enough to be

presented inside the boundaries of the boxes in Fig. 4.

It is clear from the figures that the proposed two-stage pretraining algorithm

outperforms, in all cases, the conventional pretraining algorithm (DBMS&H). On

MNIST, the DBMs pretrained with the proposed algorithm using the conventional

pretraining algorithm in the first stage achieved the best performance. In the case

of Caltech-101 Silhouettes, DBMsDAE
RBMwas able to achieve superior performance in

both generative and discriminative modeling. It is notable that without any pretrain-

ing (DBM) we were not able to achieve any reasonable performance.

Fig. 5 presents layer-wise classification errors. It is clear from the significantly

lower accuracies in the higher hidden layers of the DBMs trained without pretrain-

ing that pretraining is essential to allow upper layers to capture discriminative struc-



14 Kyunghyun Cho, Tapani Raiko, Alexander Ilin, and Juha Karhunen

Model (a) MNIST (b) Caltech-101 Silhouettes

1000

|
500

|
784

1 2

10
−1

C
la
ss
ifi
ca
ti
o
n
E
rr
o
r

Hidden Layer
1 2

10
−0.6

10
−0.5

10
−0.4

C
la
ss
ifi
ca
ti
o
n
E
rr
o
r

Hidden Layer

1000

|
500

|
500

|
784

1 2 3

10
−1

C
la
ss
ifi
ca
ti
o
n
E
rr
o
r

Hidden Layer
1 2 3

10
−0.6

10
−0.5

10
−0.4

C
la
ss
ifi
ca
ti
o
n
E
rr
o
r

Hidden Layer

1000

|
500

|
500

|
500

|
784

1 2 3 4

10
−1

C
la
ss
ifi
ca
ti
o
n
E
rr
o
r

Hidden Layer
1 2 3 4

10
−0.6

10
−0.5

10
−0.4

C
la
ss
ifi
ca
ti
o
n
E
rr
o
r

Hidden Layer

 

 

DBM DBMsDAE
RBM DBMDBN

RBM DBMS&H
RBMDBMS&H

FVBMDBMS&H

Fig. 5 Layer-wise Discriminative Performance. Lower is better.



A Two-Stage Pretraining Algorithm for Deep Boltzmann Machines 15

tures of data. DBMDBN
RBMand DBM

S&H
RBMwere most effective in ensuring the upper hid-

den layers to have better discriminative property.5

7 Conclusions

The experimental success of the proposed two-stage pretraining algorithm in train-

ing DBMs suggests that the difficulty of DBM learning might be due to the fact that

the estimated variational lower-bound at the initial stage of learning is too crude, or

too loose. Once the variational parameters are initialized well with another deep hi-

erarchical model, the parameters of a DBMmay be fitted to give a tighter variational

lower-bound which facilitates jointly estimating all parameters.

The proposed two-stage pretraining algorithm provides a general framework in

which many hierarchical deep learning models can be used. It even makes possible

to include the conventional pretraining algorithm as a part of the proposed algorithm

and improve upon it. This is a significant step in developing and improving a training

algorithm for DBMs, as it allows us to fully utilize other learning algorithms that

have been extensively studied previously.

7.1 Future Work

Recently, two additional algorithms for training DBMs have been proposed. In [27]

the authors proposed to center the activations of the neurons in a DBM, which is

closely related to the previously proposed method of the enhanced gradient for

RBMs [9, 10]. They showed that this simply method allows training a DBMwithout

any pretraining, though, without any direct comparison to the method of pretraining.

The authors of [15] and [6] proposed an alternative learning criterion based on

the idea of generalized pseudo-likelihood [21]. The alternative criterion does not

maximize the log-likelihood but maximizes the predictive conditional probabilities

among all the visible variables of a DBM.

It is important in the future to compare these recently proposed algorithms to-

gether with the two-stage pretraining algorithm as well as the conventional pretrain-

ing algorithm against each other. In the case of RBMs, in [25], the authors compared

various learning criteria such as maximum-likelihood, contrastive divergence, ratio

matching [22] and maximum pseudo-likelihood [4], and they found that each algo-

rithm resulted in solutions that are different in multiple aspects. A similar approach

of comparing different learning criteria for the DBM will reveal their inductive bi-

ases and allow us to choose an appropriate learning algorithm.

5 It should be noted that these accuracies were computed purely to illustrate the effect of generative

training of DBMs , and the reported accuracies are lower than other state-of-the-art accuracies (see,

[15] for state-of-the-art accuracies for MNIST and [9] for Caltech-101 Silhouettes).



16 Kyunghyun Cho, Tapani Raiko, Alexander Ilin, and Juha Karhunen

Acknowledgements This work was supported by “the Academy of Finland (Finnish Centre of

Excellence in Computational Inference Research COIN, 251170)”.

References

1. Bengio, Y., Courville, A., Vincent, P.: Representation learning: A review and new perspectives.

IEEE Transactions on Pattern Analysis and Machine Intelligence 35(8), 1798–1828 (2013)
2. Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H.: Greedy layer-wise training of deep

networks. In: Schölkopf, B., Platt, J., Hoffman, T. (eds.) Advances in Neural Information

Processing Systems 19, pp. 153–160. MIT Press, Cambridge, MA (2007)
3. Bengio, Y., Yao, L., Alain, G., Vincent, P.: Generalized denoising auto-encoders as genera-

tive models. In: Burges, C., Bottou, L., Welling, M., Ghahramani, Z., Weinberger, K. (eds.)

Advances in Neural Information Processing Systems 26, pp. 899–907 (2013)
4. Besag, J.: Statistical Analysis of Non-Lattice Data. Journal of the Royal Statistical Society.

Series D (The Statistician) 24(3), 179–195 (1975)
5. Bishop, C.M.: Pattern Recognition and Machine Learning (Information Science and Statis-

tics). Springer-Verlag New York, Inc., Secaucus, NJ, USA (2006)
6. Brakel, P., Stroobandt, D., Schrauwen, B.: Training energy-based models for time-series im-

putation. Journal of Machine Learning Research 14, 2771–2797 (2013)
7. Cho, K.: Improved Learning Algorithms for Restricted Boltzmann Machines. Master’s thesis,

Aalto University School of Science (2011)
8. Cho, K., Raiko, T., Ilin, A.: Parallel tempering is efficient for learning restricted boltzmann

machines. In: Proceedings of the 2010 International Joint Conference on Neural Networks

(IJCNN 2010). pp. 1–8 (Jul 2010)
9. Cho, K., Raiko, T., Ilin, A.: Enhanced gradient and adaptive learning rate for training restricted

Boltzmann machines. In: Proceedings of the 28th International Conference onMachine Learn-

ing (ICML 2011). pp. 105–112. ACM, New York, NY, USA (Jun 2011)
10. Cho, K., Raiko, T., Ilin, A.: Enhanced gradient for training restricted Boltzmann machines.

Neural Computation 25(3), 805–831 (Mar 2013)
11. Cho, K., Raiko, T., Ilin, A.: Gaussian-bernoulli deep boltzmann machines. In: Proceedings of

the International Joint Conference on Neural Networks (IJCNN 2013). Texas, USA (August

2013)
12. Courville, A., Bergstra, J., Bengio, Y.: A spike and slab restricted Boltzmann machine. In:

Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics

(AISTATS 2011) (2011)
13. Desjardins, G., Courville, A., Bengio, Y.: On training deep Boltzmann machines.

arXiv:1203.4416 [cs.NE] (Mar 2012)
14. Desjardins, G., Courville, A., Bengio, Y., Vincent, P., Delalleau, O.: Parallel tempering for

training of restricted Boltzmann machines. In: Teh, Y.W., Titterington, M. (eds.) Proceedings

of the Thirteenth International Conference on Artificial Intelligence and Statistics (AISTATS

2010). JMLR Workshop and Conference Proceedings, vol. 9, pp. 145–152. JMLR W&CP

(2010)
15. Goodfellow, I., Miraz, M., Courville, A., Bengio, Y.: Multi-prediction deep Boltzmann ma-

chines. In: Burges, C., Bottou, L., Welling, M., Ghahramani, Z., Weinberger, K. (eds.) Ad-

vances in Neural Information Processing Systems 26. pp. 548–556 (Dec 2013)
16. Hinton, G., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Improving neural

networks by preventing co-adaptation of feature detectors. arXiv:1207.0580 [cs.NE]

(Jul 2012)
17. Hinton, G.: Training products of experts by minimizing contrastive divergence. Neural Com-

putation 14, 1771–1800 (Aug 2002)
18. Hinton, G., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural

Computation 18(7), 1527–1554 (Jul 2006)



A Two-Stage Pretraining Algorithm for Deep Boltzmann Machines 17

19. Hinton, G., Salakhutdinov, R.: Reducing the dimensionality of data with neural networks.

Science 313(5786), 504–507 (Jul 2006)

20. Honkela, A., Harmeling, S., Lundqvist, L., Valpola, H.: Using kernel PCA for initialisation

of variational Bayesian nonlinear blind source separation method. In: Puntonet, C., Prieto,

A. (eds.) Proceedings of Independent Component Analysis and Blind Signal Separation (ICA

2004). Lecture Notes in Computer Science, vol. 3195, pp. 790–797. Springer (2004)

21. Huang, F., Ogata, Y.: Generalized pseudo-likelihood estimates for markov random fields on

lattice. Annals of the Institute of Statistical Mathematics 54(1), 1–18 (2002)

22. Hyvärinen, A.: Some extensions of score matching. Computational Statistics & Data Analysis

51(5), 2499–2512 (Feb 2007)

23. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document

recognition. In: Proceedings of the IEEE. vol. 86, pp. 2278–2324 (1998)

24. Luo, H., Carrier, P., Courville, A., Bengio, Y.: Texture modeling with convolutional spike-and-

slab RBMs and deep extensions. In: Proceedings of the Sixteenth International Conference

on Artificial Intelligence and Statistics (AISTATS 2013). JMLR Workshop and Conference

Proceedings, vol. 31, pp. 415–423. JMLR W&CP (Apr 2013)

25. Marlin, B.M., Swersky, K., Chen, B., de Freitas, N.: Inductive principles for restricted Boltz-

mann machine learning. In: Proceedings of the Thirteenth Internation Conference on Artificial

Intelligence and Statistics (AISTATS 2010). JMLR Workshop and Conference Proceedings,

vol. 9, pp. 509–516. JMLR W&CP (2010)

26. Martens, J.: Deep learning via Hessian-free optimization. In: Fürnkranz, J., Joachims, T. (eds.)

Proceedings of the 27th Internation Conference on Machine Learning (ICML 2010). pp. 735–

742. Haifa, Israel (Jun 2010)

27. Montavon, G., Müller, K.R.: Deep Boltzmann machines and the centering trick. In: Mon-

tavon, G., Orr, G., Mller, K.R. (eds.) Neural Networks: Tricks of the Trade, Lecture Notes in

Computer Science, vol. 7700, pp. 621–637. Springer Berlin Heidelberg (2012)

28. Pascanu, R., Bengio, Y.: Revisiting natural gradient for deep networks. arXiv:1003.0358

[cs.NE] (2013)

29. Raiko, T., Valpola, H., LeCun, Y.: Deep learning made easier by linear transformations in

perceptrons. In: Proceedings of the Fifteenth Internation Conference on Artificial Intelligence

and Statistics (AISTATS 2012). JMLR Workshop and Conference Proceedings, vol. 22, pp.

924–932. JMLR W&CP (Apr 2012)

30. Rumelhart, D.E., Hinton, G., Williams, R.J.: Learning representations by back-propagating

errors. Nature 323(Oct), 533–536 (1986)

31. Salakhutdinov, R.: Learning in Markov random fields using tempered transitions. In: Ben-

gio, Y., Schuurmans, D., Lafferty, J., Williams, C.K.I., Culotta, A. (eds.) Advances in Neural

Information Processing Systems 22, pp. 1598–1606 (2009)

32. Salakhutdinov, R.: Learning deep Boltzmann machines using adaptive MCMC. In: Fürnkranz,

J., Joachims, T. (eds.) Proceedings of the 27th International Conference on Machine Learning

(ICML 2010). pp. 943–950. Haifa, Israel (Jun 2010)

33. Salakhutdinov, R., Hinton, G.: Deep Boltzmann machines. In: Proceedings of the Twelfth In-

ternation Conference on Artificial Intelligence and Statistics (AISTATS 2009). JMLR Work-

shop and Conference Proceedings, vol. 5, pp. 448–455. JMLR W&CP (2009)

34. Salakhutdinov, R., Hinton, G.: A better way to pretrain deep Boltzmann machines. In: Bartlett,

P., Pereira, F., Burges, C., Bottou, L., Weinberger, K. (eds.) Advances in Neural Information

Processing Systems 25, pp. 2456–2464 (2012)

35. Salakhutdinov, R., Hinton, G.: An effcient learning procedure for deep Boltzmann machines.

Neural Computation 24, 1967–2006 (2012)

36. Salakhutdinov, R., Larochelle, H.: Efficient learning of deep boltzmann machines. In: Pro-

ceedings of the 27th Conference on Uncertainty in Artificial Intelligence (2011)

37. Salakhutdinov, R., Murray, I.: On the quantatitive analysis of deep belief networks. In: Pro-

ceedings of the 25th International Conference on Machine learning (ICML 2008). pp. 872–

879. ACM, New York, NY, USA (2008)

38. Schulz, H., Behnke, S.: Learning two-layer contractive encodings. In: Proceedings of the 21st

International Conference on Artificial Neural Networks (ICANN 2012) (Sep 2012)



18 Kyunghyun Cho, Tapani Raiko, Alexander Ilin, and Juha Karhunen

39. Smolensky, P.: Information processing in dynamical systems: foundations of harmony the-

ory. In: Parallel distributed processing: explorations in the microstructure of cognition, vol. 1:

foundations, pp. 194–281. MIT Press, Cambridge, MA, USA (1986)

40. Tieleman, T.: Training restricted Boltzmann machines using approximations to the likelihood

gradient. In: Proceedings of the 25th Internation Conference on Machine Learning (ICML

2008). pp. 1064–1071. ACM, New York, NY, USA (2008)

41. Tieleman, T., Hinton, G.: Using fast weights to improve persistent contrastive divergence. In:

Proceedings of the 26th Annual International Conference on Machine Learning (ICML 2009).

pp. 1033–1040. ACM, New York, NY, USA (2009)

42. Vincent, P.: A connection between score matching and denoising autoencoders. Neural Com-

putation 23(7), 1661–1674 (Jul 2011)

43. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A.: Stacked denoising autoen-

coders: Learning useful representations in a deep network with a local denoising criterion.

Journal of Machine Learning Research 11, 3371–3408 (Dec 2010)


