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Sinusoidal Frequency Estimation by Signal Subspace 
Approximation 

Juha T. Karhunen, Member, IEEE, and Jyrki Joutsensalo 

Abstract-Eigenvector-based methods such as multiple signal 
classification (MUSIC) are currently popular in sinusoidal fre- 
quency estimation due to their high resolution. A problem with 
these methods is the often high cost of estimating the eigenvec- 
tors of the autocorrelation matrix spanning the signal (or noise) 
subspace. In this work, we propose an efficient Fourier trans- 
form-based method avoiding eigenvector computation for ap- 
proximating the signal subspace. The resulting signal subspace 
estimate can be used directly to define a MUSIC-type frequency 
estimator or as a very good initial guess in context with adap- 
tive or iterative eigenvector computation schemes. At low sig- 
nal-to-noise ratios, the approximation yields better results than 
exact MUSIC. It is also more robust than MUSIC against over- 
estimating the number of sinusoids. Some variations of the basic 
method are briefly discussed. 

I. INTRODUCTION 
N several applications, the problem of estimating the I frequencies of multiple sinusoids in additive white noise 

arises naturally. For this purpose, several spectral esti- 
mation techniques [ 131, [ 151 based on Fourier transforms 
or autoregressive modeling can be used. During the last 
few years, however, eigenvector-based methods [8], [ 131, 
[15], such as MUSIC, have received a lot of attention in 
frequency estimation and sensor array processing. These 
methods are based on a specific model of sinusoids in ad- 
ditive white noise and often provide superior resolution 
when the number of samples is small or the frequencies 
to be estimated are close to each other. On the other hand, 
they are much less complicated than the optimal nonlinear 
maximum likelihood method. 

In this paper, we concentrate on the multiple signal 
classification (MUSIC) method proposed by Schmidt [20], 
[21]. MUSIC is currently probably the most popular of 
the eigenvector-based frequency estimators. Recent the- 
oretical studies [18], [22] show that in many cases it yields 
asymptotically nearly optimal results, which provides jus- 
tification for its generally good performance. 

A problem with eigenvector-based frequency esti- 
mators is the often high cost associated with computing 
the necessary eigenvectors. This is particularly notable if 
the dimensionality of the eigenvectors is large or if one 
tries to track slow changes in the frequencies. Since most 
eigenvector-based frequency estimators are defined in 
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terms of either principal (spanning the signal subspace) or 
nonprincipal eigenvectors (i.e., those corresponding to the 
smallest eigenvalues) of the autocorrelation matrix, only 
a possibly small subset of eigenvectors is needed in the 
actual computations. 

Other problems with MUSIC are that its performance 
is considerably degraded at low signal-to-noise ratios and 
that the number of sinusoids should be known in advance 
[13]. In practice, such a priori knowledge is seldom 
available. If the signal-to-noise ratio is high, relative 
magnitudes of the eigenvalues of the autocorrelation ma- 
trix often give a good indication of the number of sinu- 
soidal components, but this simple criterion becomes very 
unreliable in the case of strong noise. Better tests have 
been proposed (e.g., [ 5 ] ) ,  but these generally require a 
lot of additional computation. 

A motivation of this study was the authors’ wonder at 
the discrepancy in performance between eigenvector 
methods and Fourier transform methods in the areas of 
spectral estimation and image processing. In image cod- 
ing [ 11, the optimal (in the mean-square error sense) ei- 
genvector-based Karhunen-Lobve transform is used 
mainly as a reference only because it performs slightly 
better than such fast transforms as the discrete cosine 
transform (DCT) or discrete Fourier transform (DFT) for 
most practical images (e.g., [16]). On the other hand, in 
sinusoidal frequency estimation, eigenvector-based meth- 
ods generally provide clearly higher resolution and better 
accuracy than classical Fourier-based spectral estimators. 

In this paper, we propose methods for approximating 
the signal subspace in terms of a generalization of the DFT 
(or DCT) transform. The resulting signal subspace esti- 
mate yields very similar results as the standard one de- 
fined by the estimated principal eigenvectors in context 
with MUSIC. This shows that the high resolution of MU- 
SIC (and other eigenvector-based methods) stems mainly 
from the form of the estimator. By using Fourier trans- 
form like eigenvectors, one can achieve high resolution. 
This is the main result of this paper. Furthermore, the 
proposed version of MUSIC seems to be more robust than 
the standard one and has certain computational advan- 
tages. 

The problem of approximating the signal subspace 
without eigendecomposition has not been dealt much in 
the literature. Kay and Shaw [14] propose a functional 
approximation method quite different from ours. At the 
end of this paper, the possibility of designing “crude” 
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eigenfilters is conjectured but not studied. The work by 
Tufts and Melissinos [23] seems to be most closely re- 
lated to ours. They use prior information from nonpara- 
metric spectrum analysis or beamforming to generate a 
starting vector, from which the signal eigenvectors are es- 
timated using the Prony-Lanczos algorithm. This proce- 
dure improves the signal subspace estimates at low SNR’s, 
but is less general than our approach. 

This paper is arranged as follows. In Section 11, the 
necessary background for eigenanalysis-based frequency 
estimation is shortly presented. In the next section, the 
new signal subspace approximation is introduced and jus- 
tified. Section IV consists of experimental results, fol- 
lowed by a more general discussion in the next section. 
The last section contains the main conclusions and some 
remarks. 

11. EIGENANALYSIS-BASED FREQUENCY ESTIMATION 
A. MUSIC Frequency Estimator 

The basic theory of eigenvector-based frequency esti- 
mation and the MUSIC method is well represented in, 
e.g., [8], [13], [ l5].  In the following, the results needed 
later in this paper are reviewed. 

The data are assumed to consist of M complex sinu- 
soids in additive white noise. The N available data sam- 
ples x[O], * - , x [ N  - 11 are thus modeled as 

M 

+ W[kl (1) x[k~ = ~ , ~ i ( 2 * f m k + M  
m =  I 

where the amplitudes A, and frequencies f, of the sinu- 
soids are unknown constants. The phases 8, are assumed 
to be uniformly distributed on the interval [0, 2 ~ ) .  The 
complex white noise term w[k] has zero mean and vari- 
ance u2. 

In practical estimation data vectors 

xk = (x[k], x [ k  + 11, ’ * , x [ k  + L - (2) 
formed of L successive samples are used. Their L x L 
autocorrelation matrix can be shown to be 

M 

R, = E(x& = Aie,eE + u2Z. (3) 

Here the signal (or frequency information) vectors e,, 
corresponding to the frequencies of the sinusoids, are de- 
fined as 

m =  1 

It would be desirable to extract the signal vectors from 
(3), but this is not directly possible, even though the the- 
oretical correlation matrix R, is known exactly. How- 
ever, it can be shown that the M principal eigenvectors 
UI, - - , uM of R, span the same signal subspace as the 
signal vectors e , ,  , e M .  The remaining eigenvectors 
u M + l ,  * * * , U ,  correspond to noise, and span the so- 
called noise subspace. This decomposition is essential in 
defining various eigenvector-based frequency estimators. 

Consider now in particular the MUSIC frequency esti- 
mator. In practice, it is realized typically as follows: 

Some estimation methods are given in the next subsec- 
tion. - , tiL of the 
estimated correlation matrix R,. Choose the M principal 
eigenvectors ti,, t i2 ,  - * * , tiM (corresponding to the M 
largest eigenvalues) as the basis of the signal subspace. 

3) The sinusoidal frequencies are obtained as peak lo- 
cations of the MUSIC frequency estimator 

1) Estimate Rxx from the data vectors xo, - - 9 x K - 1 -  

2) Compute the eigenvectors ti,, ti2, * 

Here, ef is the signal vector corresponding to the fre- 
quency f. 

Alternatively, the MUSIC frequency estimator is often 
defined in terms of the (estimated) nonprincipal eigenvec- 
tors ti;, i = M + 1 ,  * * * , L: 

(6) 
1 P(f) = L 

C (efHtii12 
i = M + I  

Theoretically, both computational forms of MUSIC 
have infinite values at the exact frequencies of the sinu- 
soids. In practice, sharp peaks near the correct frequen- 
cies are the best we can have. The denominator in (5 )  or 
(6) can be evaluated effectively at a large number of fre- 
quencies in terms of the FFT algorithm. 

Knowing the correct number M of sinusoids is impor- 
tant in MUSIC. If M is underestimated, some sinusoids 
are missed and the estimated frequencies tend to be in- 
correct. If M is too large in ( 5 )  or (6 ) ,  spurious frequency 
peaks appear in addition to correct ones. 

B. Eigenvector Estimation 
In practice, the theoretical correlation matrix R, or its 

eigenvectors U ;  are not known, but must be estimated from 
the available samples. Usually this is done via an off-line 
procedure, in which R, is first estimated in terms of the 
data vectors xo, - * , xK- 1 as follows: 

(7) 
1 K - l  Rn = - c X k X F .  
K k = O  

After this, the eigenvectors ti,, t i2 ,  * - , ti, of R, are 
computed using some standard method of numerical anal- 
ysis. Here K = N - L + 1 is the number of the data 
vectors xk that can be formed from the available N scalar 
samples x[O], - * , x [ N  - 13 using ( 2 ) .  

Instead of the simple backward-only estimate (7), the 
forward-backward estimate 

, K - 1  
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is often used for vectors having the special structure (2), 
since it yields better resolution. Different ways of esti- 
mating the correlation matrix and other refinements lead 
to a number of variants of MUSIC (e.g., [3], [22]). Since 
several of these variants are rather involved, and our goal 
is to develop a computationally efficient approximation to 
MUSIC, we concentrate on the basic estimator (7). 

It is often desirable that either the signal or  noise ei- 
genvectors could be updated using incoming new sam- 
ples. To this end, several data-adaptive eigenvector esti- 
mation algorithms of different complexity and accuracy 
have been proposed. Relevant references and compari- 
sons of various algorithms can be found in [2], [3], [9], 

Theoretically, it doesn’t matter whether a frequency es- 
timator is defined in terms of signal or noise subspace. If 
the eigenvectors of the sample correlation matrix are com- 
puted with high accuracy, the results are identical in prac- 
tice, too. Using some lower accuracy gradient-type al- 
gorithm for adaptive eigenvector estimation often 
produces, however, substantially different results. In gen- 
eral, estimation of principal eigenvectors is easier, and 
they are more robust against noise and other disturbances 
[8], [9]. From (6) it is seen that the number of eigenvec- 
tors L - M needed grows linearly with the length L of the 
data vectors, if the MUSIC estimator is computed using 
the noise subspace formulation. But for the signal sub- 
space-based estimator [5], the number of eigenvectors M 
remains fixed. This allows the use of longer data vectors 
xk that have better frequency resolution properties [ 191, 
[22] without increasing the computational load too much. 
For these reasons, the signal subspace formulation (5) is 
used in this paper. 

[io], ~ 5 1 .  

111. SIGNAL SUBSPACE APPROXIMATION 
A. The Approximation Method 

Our method of approximating the signal subspace is 
based on a generalization of such well-known fast trans- 
forms as the DFT or DCT [l], [4], [7] to vectorial data. 
For the DFT, the generalization is essentially the same as 
the multichannel Fourier transform (e.g., [13, chapter 141) 
applied to data vectors (2). The approximation method is 
as follows. 

1) From the available scalar samples, construct J suc- 
cessive data vectors xo, xl, - - , x J -  I according to (2). 
Here J is often chosen as a power of two, and/or J = K. 

2) Transform the data vectors: 

J -  1 

U; = c gikxk, i = 0, 1 ,  ’ * * 9 J - 1 .  (10) 
k = O  

Here gik is the chosen forward transform kernel; for the 
DFT, it is defined as g;k = e-j2nik/J; for the DCT, gik = 
cos (?r ik /J) .  The vectors vi can be evaluated effectively 
using fast transforms; see Section V-B. 

3) Compute the squared norms \)vi I\’, i = 0,  1, - - , 
J - 1. Choose the M vi-vectors having the largest norms 

as the basis that defines the approximation to M-dimen- 
sional signal subspace. These basis vectors are denoted 

4) To simplify further processing, it is often necessary 
to orthonormalize the chosen basis. The resulting ortho- 
normal basis is denoted by ol, 02, * * - , oM. Since this 
defines the same signal subspace approximation as the 
vI-vectors, the method of orthonormalization is not im- 
portant; e.g., the well-known Gram-Schmidt procedure 
may be used. 

The proposed approximation may be used directly for 
computing the MUSIC-type frequency estimator 

by v i ,  U;, * * , vh.  

(11) 
1 P(f) = M 

L - C (efHoiI2 
;= 1 

This is the same form as (3, but the estimated principal 
eigenvectors have been replaced by the orthonormalized 
basis vectors of the signal subspace approximation. 

Even though it turns out that (1 1) is more robust than 
standard MUSIC against overestimation of the number M 
of the sinusoids, some kind of estimate of M is often 
needed. A simple estimate may be obtained by inspecting 
the relative magnitudes of the squared norms in step 3) 
above. In our approximation method, the squared norms 
have the same role as eigenvalues in MUSIC. Thus, the 
squared norms corresponding mainly to the noise are 
roughly of the same size and smaller than those corre- 
sponding to the sinusoids. A conservative estimate of M 
is the number of squared norms significantly larger than 
the smaller ones. In practice, it is better to choose at least 
a slightly larger value of M in order to avoid missing any 
sinusoids. See the experimental results in Section IV. 

In the following subsections, we present theoretical 
considerations that justify the approximation method. Be- 
fore proceeding, a few words about the assumed model 
(1). In our method, the phases 8, are fixed constants rather 
than uniformly distributed random numbers. The white 
noise assumption is not necessary, but the approximation 
method obviously works better in this case. Otherwise, 
the model is the same as in MUSIC. 

B. Connection with the Principal Eigenvectors 
The M-dimensional signal subspace is defined as the 

space spanned by the M principal eigenvectors ul, * , 
uM, corresponding to the M largest eigenvalues XI 2 X2 
2 - . *  1 AM of the theoretical autocorrelation matrix 
R,. The defining equation is 

R,ui = A;u;, I)u;\I = 1 .  (12) 

Inserting (7) into (12) yields 

. K - l  

Thus, the true eigenvectors are approximately some linear 
combinations of the data vectors xk. For the eigenvectors 
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tii of the sample correlation matrix (7), the formula (13) 
holds exactly. The first principal eigenvector ri, is the unit 
vector producing the linear combination (13) of the data 
vectors having the maximum norm (eigenvalue) f i , .  The 
second eigenvector ti2 must be orthogonal to the first one, 
and d:fines the linear combination with the maximum 
norm X2 among such orthogonal directions, and so on. 

The connection with our approximation method is clear: 
in (lo), we also form linear combinations of the data vec- 
tors and choose those linear combinations having the lar- 
gest norms. The weights in (10) are obtained from vectors 

(14) 

that are usually chosen to be mutually orthogonal: gyg ,  
= 0, i # j. It is not essential that the vectors gi are nor- 
malized to unity, but they should have equal norms. 

To find good approximations to the principal eigenvec- 
tors, one should, in general, make a complete search over 
the L-dimensional hypersphere defined by llgll = constant 
in (10). This is computationally prohibitive, even though 
iterative refinement could be applied. The proposed ap- 
proximation method is based on the fact that the vectors 
xk contain information about the frequencies of the sinu- 
soids according to the assumed model (1). The vectors go, 
. . .  , g J -  are chosen in such a way that each of them 
corresponds to some frequency in the normalized fre- 
quency interval. The natural choice is to divide the nor- 
malized frequency interval [ -0.5,0.5) in J evenly spaced 
discrete values, and let the vector g, - represent the ith 
discrete frequency. 

g,  = (gi0, 811, ' * ' 3 gt(J-ldT 

C. Change in the Signal-to-Noise Ratio 

be written in the form 
Using definitions ( l ) ,  (2), and (4), the data vectors can 

M 

xk = A,eJ(2"fmkfem)e, + wk (15) 
m =  I 

where 

wk = (w[k ] ,  w [ k  + 13, , w[k + L - (16) 

is the noise vector. The signal-to-noise ratio of the orig- 
inal data samples, or the components of the vectors (15), 
is defined as 

M 

SNR (x) = 10 log m=l (17) 2a2 . 

Inserting (15) into (lo), we obtain 
J - 1  M J -  1 

vi = C C gikAmeJ(2*fd+em)e, + C g .  ik w k .  (18) 
k = O  m =  I k = O  

What is the corresponding signal-to-noise ratio for the 
components of the transformed vectors (1 8)? Assuming 
white noise here, the components of the transformed noise 

terms c z A g;k wk have zero mean and their variance is 
J -  1 

0' = lg;k(2a2 = I)gj1(2a2. (19) 
k = O  

The squares A i  = IA,ej(2rfmk+em)12 of the weights of the 
frequency information vectors em in (1  5) must be replaced 

J -  1 
by 

B i  = I g i k e j 2 r f m k  /2 A2 m* (20) 
k = O  

Thus, the new signal-to-noise ratio is 
M 

B i  
SNR ( v i )  = 10 log mil 

20' . (21) 

In the special case of equal-amplitude sinusoids: A I  = A2 
- - . . .  = AM = A ,  (21) can be simplified further 

+ SNR (x). (22) 

From (22), one can compute the effect of the transfor- 
mation to the signal-to-noise ratio at various frequencies. 
If we consider only one sinusoid (M = l) ,  the increase/ 
decrease in the SNR is 

If the vectors (14) are chosen so that each of them repre- 
sents some frequency (as is the case when the DFT or 
DCT basis vectors are used), the transformation (10) in- 
creases the signal-to-noise ratio at that frequency and near 
it, and decreases the SNR at other frequencies. For the 
DFT kernel g;k = e-J2*ik/J,  the argument of the logarithm 
in (23) simplifies to sin2 ( w J ) / [ J  sin2 (U) ] ,  w = a ( i / J  - 
f,), and the maximum value 10 log J of (23) is attained 
at f, = i/J. 

It is now evident that if we are able to select from the 
transformed vectors (10) those that reinforce the correct 
frequencies of the sinusoids, an approximation to the sig- 
nal subspace is obtained. 

The squared norms )I vi 11' of all the transformed vectors 
v i .  i = 0, * - * , J - 1, could be used directly as a spec- 
tral estimator, but the resolution of this estimator is low. 
In fact, one can rather easily show that for the DFT ker- 
nel, the squar$d norms define a Bartlett-type estimator: 
Ilvi112 = Le'RyyeT, where ei is of the form (4) with L 
replaced by J and Ryy is the estimated correlation matrix 
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ofthevectorsy,=(x*[k] ,  * . -  , x * [ k + J -  l ] ) T , k =  
1, - . -  , L .  

D. Least Squares Formulation 
Consider now more closely the selected vectors v [, 

. . .  , v h  that define the signal subspace approximation. 
For them, (18) may be rewritten in a clearer form 

M 

v l  = C a; ,e ,  + nl, i = 1, * 2 M. (24) 
m =  I 

With the definitions aim = C ~ ~ ~ g i k A , e i ' 2 u f m k f e m )  and ni 
= C i I k g i k  w,, this of course holds for all the vi-vectors. 
However, the error vectors ni are relatively smaller for 
the selected vectors. Assuming linear independence, one 
can solve the signal vectors from (24) and express them, 
in turn, as linear combinations of the vectors and an 
error vector z, 

M 

e, = ,Z prniv; + z,, m = 1, - * - , M .  (25) 

A natural way of determining the unknown coefficients 
Pmi, i = 1, * , M ,  of the expansion (25) for each e, is 
to use the well-known least squares estimation method. 
The minimum least squares error corresponding to the op- 
timal coefficients can be shown to be (e.g., [13, pp. 48- 
491) 

I =  I 

= L - e,HV(V"V)-' V",. (26) 
Here V = [ v i ,  , v h ]  is a matrix collected from the 
U: vectors. 

, v h  does 
not affect the least squares error (26) in any way. It is easy 
to see this by expressing the orthonormalized basis 0 = 
101, * * * , OM] in the form 0 = VS, where S is the non- 
singular square matrix defining the transformation. How- 
ever, orthonormalization simplifies greatly the computa- 
tions since OHO = I, and (26) becomes 

Orthonormalization of the vectors v i ,  * * 

M 

IIz,I12 = L - ,C l eEoiJ2 .  (27) 

But just this function appears in the denominator of (1 1). 
Since the signal vectors em are actually unknown, the least 
squares fitting must be done for each possible frequency 
(signal vector). The best matching frequencies appear then 
as the peak locations of the frequency estimator (1 1). 

From the discussion above, some important conclu- 
sions can be made: 

1) The proposed MUSIC-type estimator is optimal in 
the least squares sense for the model (24). 

2) Any basis of the same subspace yields the same 
MUSIC estimator [defined as the inverse of the error cri- 
terion (27) or (26)]. 

3) It is not necessary that each selected basis vector 
is a good approximation to some single signal vector 

or principal eigenvector. It suffices that the set v i ,  * * - , 

I =  1 

v h  of basis vectors approximates well the signal sub- 
space. 

The high-resolution properties of our method follow es- 
sentially from conclusions 1) and 3). Classical Fourier- 
based spectral estimators such as the periodogram are able 
to resolve the sinusoids provided that their frequencies are 
not too close to each other [13]. Roughly speaking, this 
corresponds to the situation where in (24) only one of the 
coefficients ai,,, is large for each i and the others are con- 
siderably smaller or negligible. Least squares fitting to the 
estimated signal subspace allows the vectors to be lin- 
ear combinations of several signal vectors, and yet it is 
often possible to resolve the corresponding sinusoids. 

IV. EXPERIMENTAL RESULTS 
A number of simulations have been made in order 

to test the ideas and compare the approximation to the 
MUSIC frequency estimator. In these simulations, the 
samples x [k] and data vectors x, were generated from (1) 
and (2), respectively. The white noise term w[k] was 
Gaussian. The MUSIC frequency estimators were com- 
puted from (5 )  using either the backward estimate (7) or 
the forward-backward estimate (8), and the correspond- 
ing approximation was obtained from (1 1). We used the 
DFT for computing the basis vector candidates in (10); 
the resulting frequency estimator is abbreviated DFT- 
MUSIC. The resulting pseudospectra were normalized so 
that their peak value was unity or 0 dB. 

In the first test case, the data was complex and con- 
sisted of three sinusoids at normalized frequencies f, = 
0.12, f2 = 0.18, and& = 0.20 in white noise. The am- 
plitudes of the sinusoids were, respectively, A ,  = 1, A2 
= 1 ,  A3 = 2, and their phases were zero. The dimen- 
sionality of the data vectors xk was L = 15. Figs. 1-3 
show experimental results with this data. For an idea of 
the variance, frequency estimators given by three differ- 
ent data sequence realizations are depicted in each sub- 
picture. 

In Fig. 1, the number of samples was small, N = 30 
and the signal-to-noise ratio was good, 20 dB. The signal 
subspace dimensionality had the correct value M = 3. In 
this case, the forward-backward MUSIC yields the best 
resolution [Fig. l(c)] , whereas the backward-MUSIC 
[Fig. l(b)] and the DFT-MUSIC [Fig. l(a)] produce al- 
most equal curves. 

Fig. 2(a)-(c) shows the corresponding results when the 
number of samples was increased to N = 46. From Fig. 
2(e), it is seen that a slight overestimation (M = 4) of the 
number of the sinusoids has improved the resolution of 
the DFT-MUSIC clearly while keeping off the false peaks. 
The result is at least as good as that of backward-MUSIC 
with the correct dimension M = 3 [Fig. 2(b)] or overes- 
timated dimension M = 4 [Fig. 2(d)]. 

In Fig. 3, the signal-to-noise ratio was low (0 dB), and 
the number of samples was relatively large (N = 142). In 
this case, the DFT-MUSIC method yields the best fre- 
quency estimators. With the correct dimensionality M = 
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Fig. 1. Various frequency estimators. Data: three complex sinusoids at 
normalized frequencies 0.12, 0.18, and 0.20 in white noise. SNR = 20 
dB, three independent sets of 30 samples. Dimensionality of data vectors 
L = 15: (a) DFT-MUSIC, correct signal subspace dimensionality M = 3; 
(b) MUSIC, backward estimator, correct dimensionality M = 3; and (c) 
MUSIC, forward-backward estimator, correct dimensionality M = 3. 

NORMALIZED FREQUENCY 

(a) 

NORMALIZED FREQUENCY 

(b) 

NORMALIZED FREQUENCY 

(C) 

Fig. 2. Various frequency estimators. Data: three complex sinusoids at 
normalized frequencies 0.12, 0.18, and 0.20 in white noise. SNR = 20 
dB, three independent sets of 46 samples. Dimensionality of data vectors 
L = 15: (a) DFT-MUSIC, correct signal subspace dimensionality M = 3; 
(b) MUSIC, backward estimator, correct dimensionality M = 3; (c) MU- 
SIC, forward-backward estimator, correct dimensionality M = 3. (Confin- 
ued on next page.)  
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NORMALIZED FREQUENCY NORMALIZED FREQUENCY 

(d) ( e )  
Fig. 2.  (Continued.) (d) MUSIC, backward estimator, overestimated dimensionality M = 4 .  (e) DFT-MUSIC, overestimated 

dimensionality M = 4 .  

104 3 

n 

t 
100 

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 

NORMALIZED FREQUENCY 

(a) 
Fig. 3 .  Various frequency estimators. Data: three complex sinusoids at normalized frequencies 0 . 1 2 ,  0 .18 ,  and 0.20 in white 
noise. SNR = 0 dB, three independent sets of 142 samples. Dimensionality of data vectors L = 15: (a) Squared norms of  DFT 
transformed data vectors. (Confinued on next p a g e . )  

3, it cannot yet resolve the frequenciesfi = 0.18 andf3 
= 0.20 [Fig. 3(b)] but does not show any false frequen- 
cies as is the case with the MUSIC estimators [Fig. 3(c) 
and (d)] . Again, a slight overestimation of the signal sub- 
space dimensionality leads to an excellent result [Fig. 
3(f)]. The reason of this improvement is that a fourth 
vi-vector corresponding roughly to the frequencyf = 0.18 
has been included into the computation of DFT-MUSIC. 
This is seen by inspecting the squared norms of the ten- 
tative basis vectors in Fig. 3(a). When the dimensionality 
of the signal subspace is increased to M = 8, the MUSIC 
estimator becomes very unreliable but anyway cannot re- 

solve the close frequencies [Fig. 3(g)], while the DFT- 
MUSIC estimator is still rather reliable and useful [Fig. 

In these experiments, the dimensionality of the data 
vectors was held in a fixed moderate value L = 15 without 
trying to optimize it. Especially in the strong noise case, 
resolution is possible using less samples if L is taken 
larger. However, this increases the computational load 
rapidly; see Section V-B. 

A numerical performance comparison is given in Ta- 
bles I-IV. For these simulations, 100 independent real- 
izations of 40 samples of two complex sinusoids in white 

3(h)i. 
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Fig. 3 .  (Continued.) (b) DFT-MUSIC, correct signal subspace dimensionality M = 3 .  ( c )  MUSIC, backward estimator, correct 
dimensionality M = 3. (d) MUSIC, forward-backward estimator, correct dimensionality M = 3 .  (e) MUSIC, backward esti- 
mator, overestimated dimensionality M = 4. (f) DFT-MUSIC, overestimated dimensionality M = 4. (9 )  MUSIC, backward 
estimator, overestimated dimensionality M = 8 .  (Continued on next page . )  

noise were generated. The normalized frequencies of the 
sinusoids were chosen otherwise randomly but so that the 
constraint 1 fi - f21 = 0.02 was satisfied. Thus, the two 
sinusoids were spaced closer than 1/N = 0.025, the 
Fourier resolution. The phases of the sinusoids were cho- 

sen randomly and their amplitudes were random numbers 
in the interval (1, 4). The signal subspace had the correct 
dimensionality M = 2 in Tables 1-111, and the length L = 
17 of the data vectors was chosen so that it was roughly 
optimal for all the methods tested. The frequency spacing 
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Fig. 3. (Continued.) (h) DFT-MUSIC, overestimated dimensionality M = 8. 
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TABLE I 
NUMBER OF SUCCESSFUL EXPERIMENTS (RESOLVED CASES) AT VARIOUS 
SIGNAL-TO-NOISE RATIOS OUT OF 100 EXPERIMENTS WITH THE VARIOUS 
METHODS. DATA: 40 SAMPLES OF TWO COMPLEX SINUSOIDS IN WHITE 

NOISE, NORMALIZED FREQUENCIES SEPARATED BY 0.02. CORRECT 
SIGNAL SUBSPACE DIMENSIONALITY M = 2 

Signal-to-Noise Ratio (dB) -4 0 4 8 12 16 20 

MUSIC (forward-backward) 4 13 37 67 89 100 100 
MUSIC (backward) 5 8 16 27 69 92 100 
DFT-MUSIC (norm) 1 1  25 30 46 65 80 95 
DFT-MUSIC (periodogram) 13 18 25 38 69 92 98 
ACM-MUSIC (norm) 24 46 61 77 90 98 I 0 0  
ACM-MUSIC (periodogram) 18 31 60 83 90 99 100 

TABLE I1 
RMSE x lo4 FOR THE SUCCESSFUL EXPERIMENTS IN THE CASE OF TABLE I 

Signal-to-Noise Ratio (dB) -4 0 4 8 12 16 20 

MUSIC (forward-backward) 108 109 70 34 33 16 9 
MUSIC (backward) 96 94 85 65 46 25 15 
DFT-MUSIC (norm) 108 98 82 71 48 28 20 
DFT-MUSIC (periodogram) 103 90 79 68 44 25 13 
ACM-MUSIC (norm) 134 110 81 51 32 23 11 
ACM-MUSIC (periodogram) 107 92 62 42 26 15 9 

TABLE I11 
RMSE x 10’ FOR ALL THE EXPERIMENTS I N  THE CASE OF TABLE 1 

Signal-to-Noise Ratio (dB) 8 12 16 20 

MUSIC (forward-backward) 82 23 1.6 0.9 
MUSIC (backward) 109 48 18 1.5 
DFT-MUSIC (norm) 51 38 30 14 
DFT-MUSIC (periodogram) 56 39 18 7.8 
ACM-MUSIC (norm) 32 20 8.0 1.1 
ACM-MUSIC (periodogram) 29 19 3.7 0.9 

used in evaluating ( 5 )  or (11) was Af = 0.0005. The sig- 
nal-to-noise ratio varied from -4 to 20 dB. 

The last three rows in the tables give results for some 
variations of the basic approximation method to be de- 

Table I shows the number of experiments considered 
successful, i.e., those in which each method could, in 
practice, resolve the two sinusoids. The exact condition 
for this is that the root-mean-square error (RMSE) 
JOS[(f, - A)’ + (A - &)’I of the estimated frequen- 
cies f, , [the two highest peaks of ( 5 )  or (1 l ) ]  is at most 
0.02. 

Tables I1 and I11 give the root-mean-square error for the 
successful and all the 100 experiments. Because of many 
failures, the RMSE values for all the experiments are not 
very meaningful at lower SNR’s and have therefore been 
omitted. 

In Table IV, the dimensionality M = 3 of the signal 
subspace was purposely taken too large. The table shows 
the average number of peaks in each frequency estimator. 
The peak was here defined as a maximum whose value 
was at most -30 dB below the global maximum. 

Table I shows clearly that DFT-MUSIC is a high-res- 
olution method. It performs somewhat better than stan- 
dard MUSIC at low signal-to-noise ratios. Table IV shows 
that DFT-MUSIC produces clearly less false peaks espe- 
cially at higher signal-to-noise ratios. From the tables, one 
can see that for this relatively general data set some vari- 
ations of DFT-MUSIC, especially computationally some- 
what more demanding ACM-MUSIC, actually perform 
better than the basic version. 

The experimental results are summarized next. 

V. DISCUSSION 
A .  Properties of the Approximation Compared to 
MUSIC 

Here, we present conclusions from all the experiments 
and compare the properties of the DFT-MUSIC to the 
basic (backward) MUSIC. In certain sense, this compar- 
ison is fair since these two methods use exactly the same 
set of data vectors. The conclusions are as follows: 

The approximation method is consistent in the sense 
that the more samples are used, the better the quality _ _  

scribed in Section V-D. of the DFT-MUSIC frequency estimator. 
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TABLE IV 
AVERAGE NUMBER OF PEAKS IN EACH FREQUENCY ESTIMATOR. OVERESTIMATED DIMENSIONAL IT^ 

M = 3 OF THE SIGNAL SUBSPACE. DATA: SEE TABLE I 
~~ 

Signal-to-Noise Ratio (dB) -4 0 4 8 12 16 20 

MUSIC (forward-backward) 2.89 2.83 2.75 2.56 2.57 2.49 2.39 
MUSIC (backward) 2.88 2.85 2.84 2.76 2.79 2.71 2.61 
DFT-MUSIC (norm) 2.82 2.78 2.70 2.46 2.17 2.04 2.11 
DFT-MUSIC (periodogram) 2.78 2.70 2.60 2.42 2.15 1.89 1.99 
ACM-MUSIC (norm) 2.85 2.80 2.49 2.20 2.20 2.17 2.07 
ACM-MUSIC (periodogram) 2.79 2.69 2.34 2.02 1.91 2.02 2.02 

The frequency estimates seem to be essentially un- 
biased. 
Resolution of DFT-MUSIC depends clearly on the 
signal-to-noise ratio. However, this dependence is 
even stronger in MUSIC. 
DFT-MUSIC provides, in most cases, a very good 
approximation to MUSIC. At high signal-to-noise 
ratios (over 10 dB), MUSIC is generally slightly bet- 
ter, producing sharper peaks. At low SNR’s (e.g., 
0 dB), DFT-MUSIC yields superior results. A pos- 
sible explanation is given below. 
DFT-MUSIC is computationally less expensive than 
MUSIC. This is dealt in more detail in the next sub- 
section. 
The DFT approximation is more robust against over- 
estimating the number of sinusoids. In fact, some 
overestimation often clearly improves the resolution 
of DFT-MUSIC while keeping the problem of spu- 
rious peaks tolerable or even negligible. In the MU- 
SIC method, this overestimation does not help but 
only causes spurious frequency peaks. 
Longer data vectors provide better resolution in both 
the methods up to a certain point. For DFT-MUSIC, 
the optimal length L of the data vectors seems to be 
slightly less than half of the number of samples N .  
In the simulations, this did not depend prominently 
on the SNR. For MUSIC, the optimal value of L is 
often the same as in DFT-MUSIC. Small deviations 
from the optimum affect the performance only 
slightly. 
A drawback of DFT-MUSIC is that it is not directly 
applicable to sensor array processing. However, it is 
easy to modify the method so that it can also be used 
in this area. The modified version (ACM-MUSIC) is 
shortly introduced in Section V-D. 

An obvious question that comes into the mind is: how 
is it possible that DFT-MUSIC yields better results than 
backward-MUSIC at low SNR’s even though it has orig- 
inally been introduced as an approximation only? Since 
the estimators ( 5 )  and (11) are similar in form, and both 
use the same data vectors. MUSIC must miss some infor- 

formation) vectors (4) is not explicitly exploited. At high 
SNR’s, this does not matter so much, since the sigpal part 
dominates in the estimated correlation matrix R,. But 
when the nymber of samples is small or moderate and the 
SNR low, R, may be a rather poor estimate of the theo- 
retical form (3). Consequently, the estimated principal ei- 
genvectors ti l ,  * , ti,,, do not approximate well the true 
signal subspace. On the other hand, in DFT-MUSIC the 
basis vectors of the signal subspace are sought as maxi- 
mum responses of the data vectors to tentative frequen- 
cies. We believe that this additional constraint in fact im- 
proves the estimation results at low SNR’s and is the basic 
reason of better performance of DFT-MUSIC in these sit- 
uations. 

The different robustness of the methods against over- 
estimation of the number M of sinusoids can be explained 
as follows. MUSIC is computed from the principal eigen- 
vectors that have the well-known optimality property 
(e.g., [ l ] ,  [7]): they span the linear subspace that fits the 
data vectors best in the mean-square-error sense. If the 
number of principal eigenvectors is chosen correctly to 
M, this is good. But in the case of overestimation, the 
optimality property is bad, since the extra principal ei- 
genvectors are such vectors that describe the noise best. 
In DFT-MUSIC, overestimation means that additional 
vectors uh+ ,, * * , are accepted to the basis of the sig- 
nal subspace approximation. These additional vectors are 
usually not purely noise but contain some signal portion. 
What remains of them after orthonormalization is not 
known; generally not vectors oM + * , that fit the 
noise optimally. 

B. Computational Considerations 
If the number J of the data vectors xk in (10) is chosen 

so that it is a power of two (e.g., by taking a suitable 
number N of samples or adjusting the dimensionality L = 
N - J + 1 of the data vectors xk) ,  the transformed vectors 
vi can be computed effectively using fast transforms. 
Considering in particular the discrete Fourier transform, 
one first forms L sets 

s1 = {x[O], x[13, * * * , x [ J  - l l}  
mation. Looking at the practical realization of MUSIC in s 2  = {x[ll, - - * 7 x[JI) 
Section 11-A, it is seen that the principal eigenvectors of 
the autocorrelation matrix (3) are estimated in quite a sim- 
ilar way as for arbitrary data vectors. The fact that they 
must be linear combinations of the signal (frequency in- SL = {x [N  - J ] ,  , x [ N  - l]} 

__ 
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of the J successive samples, where the set Sj contains the 
jth components of the data vectors xo, - , x J P 1 .  Then, 
the FFT algorithm is applied to each set separately. The 
transformed vectors vo, * * * , vJ-  are now obtained 
simply by taking as the jth component of the vector vi the 
(i + 1)th transformed value of the set Sj . 

A similar procedure can be applied to other fast trans- 
forms. We note that fast algorithms exist for other values 
of J than merely powers of two; see, e.g., [4]. More ef- 
ficient algorithms could probably be designed by utilizing 
the high overlapping of the sets SI, * - - , S,. In fact, a 
recursive algorithm [ 171 exists for computing the DFT of 
the set Sj + efficiently in terms of the DFT of the set Sj . 

The use of fast transform reduces the amount of mul- 
tiplications needed in (10) from W 2  to about W log, J. 
Computation of the squared norms of the vi-vectors re- 
quires W multiplications (and additions), and orthonor- 
malization of the chosen M vectors using, e.g., the mod- 
ified Gram-Schmidt procedure [6] takes a further ML2 
operations. 

For computing the eigenvectors of a L x L matrix, there 
exist several well-established and studied algorithms that 
have a computational complexity of order O(L3)  [6]. If 
only a small subset of eigenvectors are needed, special 
algorithms can be used that reduce this amount somewhat. 
Before computing the eigenvectors, the correlation matrix 
(7) or (8) must be estimated from the available data sam- 
ples. This requires about L2K operations, even though the 
number of multiplications can be reduced by exploiting 
the special structure of the data vectors xk. 

From the above considerations, one can conclude that 
using the transform method to estimate the signal sub- 
space becomes computationally especially advantageous 
if the dimensionality L of the data vectors is large. But 
just this is desirable because of improved resolution and 
often smaller variance. 

C. Ways of Using the Approximation 
Except for directly defining a MUSIC-type frequency 

estimator, the proposed signal subspace approximation 
can be used as a very good initial estimate in context with 
various iterative or adaptive eigenvector computation/es- 
timation algorithms. This application has been considered 
in a preliminary report [ 101. It turned out that even a rather 
crude approximation of the signal subspace based on a 
small number of data vectors often improved radically the 
convergence speed of simple LMS-type eigenvector esti- 
mation algorithms compared to using the standard random 
initial guess. The importance of choosing good initial es- 
timators to the principal eigenvectors in context with such 
iterative methods as the power method or Lanczos method 
has been stressed in [24]; if the initial estimates of the 
eigenvectors are good, only one iteration is needed to 
achieve an accuracy adequate in practice. 

D. Variations of the Basic Approximation Method 
The choice of the M vi-vectors defining the approxi- 

mation of the signal subspace can be based on other cri- 

teria than selecting the vectors with the largest norms. An 
especially interesting feature of the proposed method is 
the possibility of using prior information for constructing 
the signal subspace approximation. If one has a rough 
knowledge of the locations of the frequencies of the sin- 
usoids, one can directly compute the vi-vectors corre- 
sponding to the guessed frequencies by using in (10) vec- 
tors (14) representing these frequencies as weights. The 
MUSIC pseudospectrum computed from the resulting sig- 
nal subspace approximation is then used for extracting 
more accurate frequency information. For example, the 
periodogram can be used for obtaining such prior infor- 
mation by applying the technique described in [13, pp. 
434-4351. We have made some experiments of this by 
evaluating the basis vectors at the frequencies of the M 
highest peaks of the data periodogram. The results for this 
version are given in Tables I-IV, and are actually slightly 
better than for the norm-based DFT-MUSIC. 

A recently found promising related method is to apply 
the same idea of tentative frequencies to the estimated data 
autocorrelation matrix. More specifically, (10) is replaced 
by 

ui = RueJ, i = 0, 1 ,  - - - , L - 1. (28) 

Here, eh, - - , efL-,  are frequency information vectors 
of the form (4) defined at L evenly spaced frequencies fo, 
- , fL- This method (called ACM-MUSIC) is com- 
putationally somewhat more complex than DFT-MUSIC; 
but, on the other hand, it can take advantage of the for- 
ward-backward estimate (8). For comparison purposes, 
both the norm-based and periodogram-based version of 
ACM-MUSIC have been included in Tables I-IV. ACM- 
MUSIC performs actually best of all the methods and has 
similar properties with respect to the forward-backward 
MUSIC as DFT-MUSIC with respect to the backward 
MUSIC. It is applicable to sensor array processing too. 
The assumptions on phases are essentially the same as in 
MUSIC. For more results and theoretical justifications, 
see [ 111 and [ 121. 

Instead of the DFT kernel, we have used the discrete 
cosine and Hadamard transform kernels in (10). The dis- 
crete cosine transform performs much the same as the 
DFT, but seems to be somewhat more sensitive to ap- 
pearance of spurious frequency peaks when the number of 
sinusoids is overestimated. With real data, it may provide 
a MUSIC estimator that has slightly better resolution than 
DFT-MUSIC when the number of samples is small. 

The sequency-ordered Hadamard transform [ 13, [7] is 
interesting since its kernel values are either + 1’s or - l’s, 
turning the multiplications in (10) to simple additions. The 
Hadamard basis vectors are, however, too crude approx- 
imations of frequency information vectors, and the method 
does not produce consistent results. Even this method 
yields a far better estimate of the signal subspace than a 
random guess and can be used successfully to initialize 
adaptive eigenvector estimation algorithms [ 101. 
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