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Abstract

In this paper, we consider a linear supervised dimension reduction method for
classification settings: Stochastic Discriminant Analysis (SDA). This method
matches similarities between points in the projection space with those in a
response space. The similarities are represented by transforming distances
between points to joint probabilities using a transformation which resembles
Student’s t-distribution. The matching is done by minimizing the Kullback-
Leibler divergence between the two probability distributions. We compare
the performance of our SDA method against several state-of-the-art meth-
ods for supervised linear dimension reduction. In our experiments, we found
that the performance of the SDA method is often better and typically at least
equal to the compared methods. We have made experiments with various
types of data sets having low, medium, or high dimensions and quite different
numbers of samples, and with both sparse and dense data sets. If there are
several classes in the studied data set, the low-dimensional projections com-
puted using our SDA method provide often higher classification accuracies
than the compared methods.

Keywords: dimension reduction, classification, linear projection,
Kullback-Leibler divergence, information visualization, distance based
probabilities

1. Introduction

Dimension reduction is an old research topic but in the current era of big
data it is at least as relevant as earlier. There are several reasons for studying
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and using it. First, the data vectors may have quite high dimensions, which
prevents applying poorly scalable and computationally demanding methods
to them even with the current high computer processing power. The compu-
tational load of such methods can be proportional for example to the third
power of the dimension, and grows rapidly intolerably high with increasing
dimensionality. Second, dimension reduction reduces the amount of storage
needed. Third, it can remove irrelevant information and noise from the data,
and may lead for these reasons in practice to improved results. Fourth, the
data is often projected to two-dimensional or sometimes to three-dimensional
images for understanding its properties better. This information visualiza-
tion aspect is important, because it is very difficult for humans to imagine
what the data looks like in high dimensions.

We call the components xi of the data vectors x = [x1, x2, . . . , xN ]T as vari-
ables in this paper. Thus the data vectors are N -dimensional column vectors.
We do not consider variable selection methods in which the dimensionality
is reduced by trying to select the most relevant components of the data vec-
tors for further processing. Instead, we consider feature extraction where the
data vectors x are transformed to feature vectors z = [z1, z2, . . . , zM ]T whose
components are some mixtures of the components of the original data vec-
tors. Thus the feature vectors are M -dimensional column vectors, and their
dimension M is generally clearly or much smaller than the dimension N of
the original data vectors x. We call the components of these feature vectors
features. It is at least preferable that when applying feature extraction, the
variables should be similar type quantities such as pixel intensities in digital
images. If the variables are different quantities, for example the age, sex,
yearly income etc. of a person, the scaling of these quantities affects greatly
the results, and one can question the meaningfulness of computing a mixture
of completely different types of variables.

The goal of dimension reduction can be simply information visualization,
or achieving good results after dimension reduction in clustering, regression,
or classification tasks. The dimension reduction methods can be divided
into unsupervised and supervised ones. In unsupervised methods such as
principal component analysis (PCA) [1, 2, 3], the only available information
are the data vectors themselves. On the other hand, dimension reduction for
classification is a supervised task in which one has always some training data
set at disposal. For each data vector belonging to the training set its correct
class label is known. An example of supervised dimension reduction is linear
discriminant analysis (LDA) [2, 4]. Another important grouping of feature
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extraction and dimension reduction methods is that they can be either linear
or nonlinear, depending on whether the vector-valued mapping f(·)

z = f(x) (1)

from the data vectors x to the compressed feature vectors z is linear or
nonlinear.

The stochastic discriminant analysis (SDA) method which we introduce
and discuss in this paper is a linear supervised feature extraction method. It
is intended for classification after a mapping into a relatively small-dimensional
feature space, and for visualization of the data containing several classes in
two dimensions.

The remainder of this paper is organized as follows. In the next section
we review many related dimension reduction methods. Section 3 deals with
the SDA method and minimization of its cost function. Section 4 presents
experimental results of the proposed SDA method compared with traditional
and state-of-the-art approaches for dimension reduction with several data sets
having quite different properties. The last section contains conclusions and
remarks of this study.

2. Related work

Because our stochastic discriminant analysis method is a linear supervised
method for dimension reduction, we discuss here mainly such methods. The
most widely used dimension reduction method is still principal component
analysis (PCA) [1, 2, 3]. It is an old linear unsupervised feature extraction
and dimension reduction method which maps the N -dimensional original
data vectors x into feature vectors z which have a lower dimension M :

z = WTx (2)

The row vectors of the M ×N mapping matrix WT consist of the eigenvec-
tors of the data covariance matrix Cxx = E[xxT ] corresponding to the largest
eigenvalues, assuming that the data vectors have zero mean. If this is not
the case, the K data vectors xj, j = 1, 2, . . . , K can always be preprocessed

to have zero mean by first estimating their mean vector m = 1
K

∑K
j=1 xj, and

then subtracting m from the data vectors xj. Thus PCA is easy to compute,
and it is computationally not too demanding provided that the data vectors
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x are not truly high-dimensional. PCA minimizes the mean-square represen-
tation error for all linear M ×N mappings WT , and the components of the
feature vector z have maximal variances and are uncorrelated in directions
that are mutually orthogonal [1, 2, 3]. We use PCA as a preprocessing step
in our SDA method, and as a reference method in our comparison experi-
ments. However, PCA does not often perform well in dimension reduction
in classification problems, because it does not utilize the class information
available in the training set in any way.

The oldest supervised linear dimension reduction method is linear dis-
criminant analysis (LDA) [2, 4] developed already in 1930’s. The criterion
function in LDA for the case of two classes is

J(w) =
wTSBw

wTSWw
(3)

where w is theN -dimensional projection vector for mapping the data into one
dimension by computing the inner product wTx. SB is the N ×N between-
class covariance matrix and SW is the N ×N within-class covariance matrix.
The criterion (3) is maximized in order to maximize the distance between
the two classes and minimize the distance within the same class at the same
time. The solution can be computed from a linear equation (see [2, 4] for
details), but it requires the inversion of the matrix SW . This can become
computationally prohibitive for very high-dimensional data, such as digital
images. LDA can have also problems with singular within-class covariance
matrices SW , and therefore it is often coupled with dimension reduction using
PCA in image recognition tasks [5].

LDA has two basic limitations (in addition to the linearity of the map-
ping): the probability distributions of the two classes are assumed to be
Gaussian, and these Gaussian distributions are assumed to have the same
covariance matrix SW [4]. LDA can be extended to several classes as follows.
It is assumed that each of the C classes has its own mean vector mi and
the same covariance matrix SW . Define the sample covariance matrix of the
class means as

SC =
1

C

C∑
i=1

(mi −m)(mi −m)T (4)

where m is the mean of the class means mi. Then the class separation in
the direction w is given by [4]

J(w) =
wTSCw

wTSWw
(5)
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The optimal direction w which maximizes the separation (5) is given by the
eigenvector corresponding to the largest eigenvalue of the matrix S−1

W SC .
Linear discriminant analysis (LDA) has inspired many researchers and

there exist several modifications on it. We mention here the following lin-
ear supervised dimension reduction methods based on LDA. In the paper
[6], the problem appearing in face recognition that the within-class covari-
ance matrix SW becomes always singular is solved by first mapping the face
images to a lower dimensional space. In marginal Fisher analysis [7], new
criteria that characterize intra-class compactness and inter-class separability
are developed for handling cases in which the probability distributions of the
classes are not Gaussian. A direction w which minimizes the ratio of these
criteria is then sought. Essentially the same idea has been introduced in the
paper [8]. Local Fisher discriminant analysis (LFDA) [9] introduces locality
into the LDA method, and is particularly useful for samples consisting of in-
traclass separate clusters. Maxmin distance analysis (MMDA) [10] considers
maximization of the minimum pairwise interclass samples.

In fact, a linear discriminant analysis type solution can be found by max-
imizing either a trace ratio or a ratio trace criterion which are closely related.
These two criteria are compared and studied both theoretically and experi-
mentally in [11]. The ratio trace criterion is conventionally used because it
has a closed form but inexact solution, while the trace ratio criterion requires
an iterative maximization method. Both these criteria yield qualitatively
similar results, but the trace ratio provides somewhat better classification
results, as shown by large number of experiments with various data sets
in [11]. We use the closed form solution of the ratio trace criterion in the
experiments of this paper and refer to it as LDA.

Partial least squares (PLS) regression is a supervised linear dimension
reduction technique that tries to find from the input matrix subspaces that
explain the largest amount of variance in the response matrix. When used
in supervised manner with labeled data, it is referred to as PLS-DA [12].
Kernel dimension reduction (KDR) [13] is a sufficient dimension reduction
method [14] for classification and regression data. A sufficient dimension
reduction contains all the regression information that the original space con-
tained about the response variable. KDR tries to find the central subspace
[14] for the input data, which is the intersection of all the dimension reduc-
tion subspaces. KDR does not impose any particular assumptions on the
form of the covariance matrix of the input data. However, it has high com-
putational load and memory requirements. A gradient version of the KDR
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method called gKDR has been developed in [15] for faster computation.
Supervised PCA (SPCA) introduced by Barshan et al. in [16] is a re-

gression technique that finds the principal components having the maximum
dependence on the given response variable. SPCA tries to find variables
that are orthogonal in a kernel space of the response variable. Using the
Hilbert-Schmidt independence criterion, SPCA can be computed from an
eigendecomposition. The authors have developed also a dual-space and ker-
nel variant of the SPCA method called KSPCA in [16], extending the usage
of the method.

Before proceeding, we mention briefly a few nonlinear dimension reduc-
tion methods. They are often called manifold learning methods because they
assume that the data lies at least roughly in some smaller dimensional man-
ifold which is then estimated for reducing the dimensionality. See subsection
5.11.3 in [17] for a more detailed description of this idea. Belkin and Niyogi
developed a nonlinear manifold learning technique called Laplacian eigen-
maps for projecting high-dimensional data into a low-dimensional space in
such a way that local points in the high-dimensional space are kept close
in the projection [18]. Slightly later on, they developed a linear variant of
Laplacian eigenmaps called locality preserving projections that projected the
data points using a linear transformation of the data points [19]. This tech-
nique has the benefit that the projection is not defined only for the training
data points but in the whole ambient space.

Other well-known manifold learning methods are kernel PCA [20, 2] in
which PCA is applied after a nonlinear mapping into a higher-dimensional
kernel space, and local linear embedding (LLE) [21]. For more references and
information on manifold learning methods, see [17, 22].

All the linear dimension reduction methods discussed thus far except for
PCA are supervised techniques. The following methods are unsupervised,
and hence they do not use any training data with known class labels or
outputs in computing their dimension reduction mappings. Neighborhood
embedding techniques recreate a high-dimensional neighborhood structure
in a low-dimensional space. These techniques cast the problem of finding a
low-dimensional embedding as a problem of matching two probability dis-
tributions: one modeling a complex high-dimensional structure, and one
modeling a low-dimensional manifold of the data. The methods preserve
point-to-point neighborhood relations. The low-dimensional embedding is
created by defining probability mass functions based on point-to-point dis-
tances in both high-dimensional and low-dimensional space. An information
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measure between these two joint probability distributions is then iteratively
decreased. The most common information measure is the Kullback-Leibler
divergence [23, 2, 24] which measures the difference between two probability
distributions. We shall discuss it in more detail later on.

The neighbor retrieval visualizer method (NeRV) [25] matches a con-
vex combination of divergences between the probabilities defining the high-
dimensional structure and low-dimensional reconstruction. The proportion
is hand-tuned, giving the user some control in penalizing precision and recall
errors, see [25] for more details.

The stochastic neighbor embedding (SNE) method introduced in [26] and
its various extensions have during the last years become popular in feature
extraction, inspiring several modified and improved methods. Essentially
the same method as SNE was introduced under the name informative dis-
criminative analysis in [27]. The basic principle in the SNE method is to
convert pairwise Euclidean distances into probabilities of selecting neighbors
to model pairwise similarities. However, the basic SNE method suffers from
optimization and crowding problems discussed below.

In [28], Van der Maaten and Hinton introduced the so-called t-SNE
method where t refers to the Student’s t probability distribution. The high-
dimensional structure is modeled using Gaussian radial basis function ker-
nels, where the authors use a binary search for determining appropriate ker-
nel widths. Low-dimensional reconstructions are modeled with first-order
t-distributed kernels. Both kernel values are normalized to sum to one and
are called probabilities by the authors. The motivation for the asymmetric
matchup is that it solves the crowding problem: the space available to model
distant data points is too small, compared to the space available to model
near data points. Yang et al. analyzed in [29] systematically the charac-
teristics of the heavy-tailed distribution and the solutions to the crowding
problem. Wu et al. explored in [30] how to measure similarity on a manifold
more accurately, and introduced a feature extraction method based on SNE
and t-SNE which they call manifold stochastic neighbor projection (MSNP).
Even though the MSNP method has several advantages in feature extraction,
it is still an unsupervised method that does not use the class information
available in classification problems.

For overcoming this deficiency of the MNSP method, Zheng et al. de-
veloped a supervised method called discriminative stochastic neighbor em-
bedding analysis (DSNE) in [31]. It resolves the problems mentioned above,
but it has a high computational cost and is therefore not applicable to large-
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scale classification problems where the data vectors are high-dimensional.
The same authors developed in [32] a faster version based on the DSNE
method, which they call fast discriminative stochastic neighbor embedding
analysis (FDSNE). In [32], they also introduce a nonlinear version of the
FDSNE method by applying the kernel trick.

One of the authors of this paper participated in developing a method
called supervised distance preserving projections (SDPP) in [33]. The SDPP
method minimizes the difference between pairwise distances among projected
input covariates and distances among responses locally. The SDPP method is
mainly useful in regression problems. It did not work well in all the classifica-
tion problems discussed in the experimental part of this paper, and therefore
it is not included in our comparison experiments. In SDPP certain distances
in the cost function can change the visualization to a great extent. Our new
SDA method in the next section tries to avoid these problems encountered
when applying the SDPP method to multiclass data in high-dimensional set-
tings by matching probabilities instead of distances.

With point-to-point mappings it is often not easy to place out-of-sample
data points. Parametric methods provide a mapping of the data points.
Amongst others, parametric t-SNE method learns a mapping by using a
deep neural network [34]. Out-of-sample data points can then be embedded
by running them through the network. However, this is a nonlinear dimen-
sion reduction method that is pretty complicated and difficult to train even
though it yields excellent results for the well-known MNIST data set [35] of
handwritten digits.

3. Stochastic discriminant analysis (SDA)

3.1. The SDA method

We first define the data matrix X = [x1,x2, . . . ,xK ]T ∈ RK×N as a K×N
matrix which has the K N -dimensional column data vectors xj as its row
vectors. Formally, we are reducing the number N of variables in the data
matrix X by finding a linear subspace of it:

Z = [z1, z2, . . . , zK ]T = XW (6)

where Z is a RK×M matrix, W ∈ RN×M , and M ≤ C � N where C is the
number of classes. From Eq. (6), we get for its i:th row zT

i = xT
i W, or zi

= WTxi which is equivalent to the PCA mapping (2). However, in the SDA
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method and other mapping methods than PCA the mapping matrix W is
defined in a different way.

We are using class information from the response matrix

Y = [y1,y2, . . . ,yK ]T ∈ IK×C (7)

to find this projection. For each data vector xi, the corresponding response
vector yi specifies its class label. More specifically, if the data vector xi

belongs to the class cj, the j:th element of its response vector yi is equal to
one, while the other elements of yi are zero. The matrix I on the right hand
side of equation (7) resembles unit matrix in that on each of its rows one
element equals to one while the other elements are zero.

In the SDA method, we search for a linear subspace of the data matrix
where the elements belonging to the same class are mapped close to each
other, and those belonging to different classes further away. Following van
der Maaten and Hinton [28], we cast the problem of finding low-dimensional
embeddings as a problem of matching two probability distributions: one
modeling a complex high-dimensional point-to-point structure, and another
modeling a low-dimensional manifold of the data. We denote these distribu-
tions by P and Q respectively, and their elements by pij and qij. We call the
values pij target probabilities, and values qij model probabilities. Only the
values qij are optimized in the algorithm presented in subsection 3.2, while
the values pij remain constant.

We search for a linear subspace of the data matrix by matching model
probabilities qij with target probabilities pij. Denote by

dij = ‖zi − zj‖2 (8)

the Euclidean distance between two points i and j in the transformed Z-
space, where zi = WTxi is the low-dimensional embedding coordinate. The
model probabilities characterizing the distances dij are defined by

qij(W) =
π−1 · (1 + d2ij)

−1∑K
k=1

∑K
l=1 π

−1 · (1 + d2ij)
−1

(9)

The numerator π−1 · (1 + d2ij)
−1 comes from the probability density function

of Student’s t-distribution [36] having one degree of freedom. The common
factor π−1 can be left out of the expression:

qij(W) =
(1 + d2ij)

−1∑K
k=1

∑K
l=1(1 + d2ij)

−1
. (10)
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The numbers qij are called probabilities, because they are non-negative and
their sum equals one:

K∑
i=1

K∑
j=1

qij(W) = 1 (11)

The probabilities qij(W) are inspired by the Student’s t-distribution and have
longer tails than the standard Gaussian distribution, but they are exactly not
t-distributed, despite being called so in literature [28].

Denoting the unnormalized probability in the numerator of (10) by

q̄ij = (1 + d2ij)
−1 (12)

we can write the equation (10) simply

qij = q̄ij/σq, σq =
K∑
i=1

K∑
j=1

q̄ij (13)

Figure 1 shows the profile of the unnormalized probabilities q̄ij. The maxi-
mum value is one when the distance dij between the two points zi and zj is
zero, and approaches zero when the distance dij →∞.

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

dij = ||zi − zj ||2

(1
+

d
2 ij
)−

1

t-distributed adjacencies

Figure 1: Unnormalized model probabilities q̄ij as a function of the distance dij between
two points. Their distribution has longer tail than the respective Gaussian distribution.

Unlike [28], we do not use in the SDA method high-dimensional distances
in defining target probabilities pij. We want to enforce the condition that
the data points belonging to the same class are projected close to each other
in the Z-space, and that the points belonging to different classes are mapped
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further away. In an ideal embedding, the unnormalized probability q̄ij = 1
when the points i and j belong to the same class, corresponding to zero
distance between them. Similarly, ideally q̄ij = 0 when the points i and
j belong to different classes, corresponding to an infinite distance between
them. These conditions hold also for the normalized probabilities σq in Eq.
(13).

In our SDA method, we rely only on the class information in determin-
ing the ideal embeddings. The normalized target probabilities are defined
similarly as in Eq. (13)

pij = p̄ij/σp, σp =
K∑
i=1

K∑
j=1

p̄ij (14)

where σp is the normalization term, and

p̄ij =

{
1, if yi = yj

ε, otherwise
, (15)

where ε > 0 is any small number close to zero. The target probabilities
in equation (14) define the ideal distances. Optimally both p̄ij = q̄ij and
pij = qij for all i, j ∈ [1, . . . , K]. In such a situation, all the points belonging
to the same class are mapped to one dot (point), and all points belonging to
different classes are at an equal distance from each other.

With a given ε, we can calculate the ideal point-to-point distances in
Z-space to be

d∗ij =

{
0, if yi = yj√
ε−1 − 1, otherwise.

, (16)

We can see that ε scales how close the superimposed points are to each other.
Equation (16) defines a geometric structure that has C nodes, where each
node is separated by an equal distance of

√
ε−1 − 1. This geometric structure

is called a regular simplex. Figure 2 shows target structures for two class,
three class, and four class problems. Note that the structure of the simplex
is independent of the input data X, depending only on the number classes
in Y.

Given sufficiently many target dimensions, and by setting ε→ 0, the op-
timality criterions of SDA and LDA could yield similar embeddings, because
both methods try to construct linear projections whose within-class vari-
ances are zero and between-class variances are infinite. Both methods define
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Figure 2: From left: target manifolds of two, three, and four classes.

an embedding structure that has an intrinsic dimensionality of C − 1 dimen-
sions. However, the SDA and LDA methods deal with the shortcomings in
the target dimensionality differently, as is explained later on in Figure 3 and
subsection 3.3.

The Kullback-Leibler (KL) divergence [2, 24] measures the difference be-
tween two probability distributions. Here we consider for clarity first two
discrete probability densities A and B which both have J possible discrete
values a1, a2, . . . , aJ and b1, b2, . . . , bJ respectively. Their KL divergence is

DKL(A||B) =
J∑

j=1

aj log(aj/bj) (17)

The KL divergence is zero only when the two probability distributions are
the same, that is A = B. However, it is theoretically not a true distance
because the KL divergence does not fulfill the triangle inequality, and it is
not symmetric: DKL(A||B) 6= DKL(B||A). For the two probability densities
A and B, one can define two Kullback-Leibler divergences DKL(A||B) and
DKL(B||A), which have different properties as discussed in section 21.2.2 in
[24]. The version (17) which we are using is called M-projection and zero-
avoiding, because it becomes infinite if one of the probabilities bj is zero.

Using the KL divergence (17) for the probabilities pij and qij defined
respectively in equations (14) and (10), we can write the cost function of our
SDA method which is minimized:

J(W) =
K∑
i=1

K∑
j=1

pij log
pij

qij(W)
+ λ

N∑
i=1

M∑
j=1

w2
ij (18)

The second term is the usual weight decay (Tikhonov) type regularizer [2, 24]
which penalizes for large values of the elements wij of the N × M weight
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matrix W. The parameter λ determines how much one takes into account
regularization compared with the first part of the cost function, the Kullback-
Leibler divergence, which is the actual cost.

We are searching for the thin linear projection matrix W that minimizes
the Kullback-Leibler divergence in which the target probability distribution
P is approximated with the model probability distribution Q. The ineffi-
ciency of encoding ideal distances in the response space using realized dis-
tances in the embedding space is measured. The probability distribution (10)
causes asymmetric distance penalties: the cost function is more sensitive to
deviations in within-class distances than to deviations in between-class dis-
tances. Deviations from the ideal within-class distances incur a relatively
large cost, but deviations from ideal between-class distances incur a much
smaller cost.

If we use regularization and the value of the regularization parameter λ
in (18) is searched by cross-validation, we refer to our method as Regular-
ized SDA, abbreviated as RSDA. Normally λ is set to zero. Weight decay
(Tikhonov) regularization is often applied to ill-posed problems. In SDA, we
have local solutions that depend on the initialization. The initial solution in
SDA is obtained with PCA, giving orthogonal vectors with maximum vari-
ance. High-dimensional problems with many non-singular dimensions have
a high degree of freedom, and they can in principle have infinite parameters
choices (by convex combinations) that produce the optimal solution. The KL
criterion is insensitive to the weights used to find the projection. Applying
Tikhonov regularization changes the optimization criteria so that optimal
solutions are ranked in order of the least Frobenius norm. Additionally, the
optimization process can also be made smoother by constraining the size of
the elements of weight matrix W.

3.2. Minimization of the cost function

We consider now the minimization of the cost function (18). First, we
compute its gradient with respect to the weight matrix W. Then we use this
gradient in various gradient type minimization methods which are discussed
later on in this subsection.

The essential steps in obtaining the gradient are as follows. We use the
shorthand notation qij = qij(W). We also write the squared distance in the
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embedding space as

Dij = Dij(W) = d2ij = ‖zi − zj‖2

= τ T
ijWWTτ ij = (xi − xj)

TWWT (xi − xj)
(19)

where τ ij = xi − xj is the difference between the i:th and j:th original data
vectors xi and xj, respectively.The matrices P, Q, Q̄ and D are K × K
real-valued matrices, whose elements are respectively pij, qij, q̄ij, and Dij.

The gradient of the first part of the cost function (18) which is the
Kullback-Leibler divergence KL(P ||Q(W)), is

dKL(P ||Q(W))

dW
=

K∑
i=1

K∑
j=1

pij
1

qij
(−1)

dqij
dW

=
K∑
i=1

K∑
j=1

pij(−1)
[ K∑
k=1

K∑
l=1

qklq̄kl
dDkl

dW
− q̄ij

dDij

dW

]
=

K∑
i=1

K∑
j=1

pij q̄ij
dDij

dW
−

K∑
k=1

K∑
l=1

qklq̄kl
dDkl

dW

=
K∑
i=1

K∑
j=1

(pij − qij)q̄ij
dDij

dW

=
K∑
i=1

K∑
j=1

(pij − qij)q̄ijτ T
ijτ ijW,

(20)

since
K∑
i=1

K∑
j=1

pijk = (
K∑
i=1

K∑
j=1

pij)k = k (21)

where k is an arbitrary constant. Here (1 +Dij)
−1 = q̄ij denotes the unnor-

malized probability in (12).
Adding the gradient 2λW of the second regularization term to the cost

function (18), we get for its total gradient

∇WJ =
dJ

dW
=

K∑
i=1

K∑
j=1

(pij − qij)q̄ijτ T
ijτ ijW + 2λW (22)
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This expression can be written in matrix form:

∇WJ = 2XTLXW + 2λW, (23)

where the matrix
L = G+ −Λ ∈ RK×K (24)

is calculated as

G = (P−Q)� Q̄

G+ = G + GT

Λ =
∑
j

G+
ij

(25)

Here � denotes the Hadamard product, and G+ is a symmetrized version
of the matrix of G ∈ RK×K . The matrix Λ ∈ RK×K is a diagonal matrix
containing the row sum of G+. The matrix L is the difference between two
Laplacian matrices:

L = LP − LQ, (26)

where LP and LQ are calculated from the adjacency matrices GP = P� Q̄
and GQ = Q� Q̄. A Laplacian matrix is a symmetric diagonally dominant
matrix and therefore positive semi-definite, but the matrix L need not be
positive semi-definite.

There are many ways of optimizing the cost function (18) based on the
gradient information. Algorithm 1 presents the pseudo-code for obtaining
a projection matrix W using stochastic discriminant analysis. First, the
target probabilities P and model probabilities Q collected in these matrices
are calculated. Then the cost function is evaluated, and its gradient (23) is
computed. The projection matrix W and its gradient must be vectorized
in the optimization algorithm 1. Note that the target probabilities pij are
determined based on the labeling of the elements in the beginnning of the
algorithm, but the model probabilities qij depend on the low-dimensional
coordinates, and they must be recalculated at each iteration. The initial
projection matrix is obtained using PCA.
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Algorithm 1: Gradient-based minimization for stochastic discrimi-
nant analysis (SDA).

Input: Input matrix X ∈ RK×N , response matrix Y ∈ IK×C , target
dimensionality M , regularization term λ, and optimal tolerance δ.
Output: Projection matrix W.
1. Calculate the target probabilities P ∈ RK×K from Eq. (15).
2. Initialize W using PCA, by putting as its rows the M principal
eigenvectors of the covariance matrix of the data X.
3. Calculate the model probabilities Q from Eq. (10).
4. Evaluate the cost function J(W) from Eq. (18).
5. Assign t = 0, δJ =∞.
while δJ > δ do
6. Compute the gradient (23).
7. Vectorize the projection matrix: wt = vec(W).
8. Vectorize the gradient: gt = vec(∇WJ).
9. Determine the descent direction dt.
10. Determine step size ηt.
11. Update the solution vector: wt = wt−1 + ηtdt .
12. Convert the vector wt back into the matrix Wt.
13. New iteration t← t+ 1.
14. Update the model probabilities Q using Eq. (10).
15. Calculate the new cost J(W) from Equation (18).
16. Update the change δJ = Jt − Jt−1 of the cost function.
end while
17. Orthogonalize Wt using thin singular value decomposition (SVD):
ÛŜV = Wt.
18. Return W = ÛŜ.

The vectorized projection matrix w and its vectorized gradient g can be
plugged into any gradient-based optimization method. The basic method
is the usual steepest descent method, but different versions of the conjugate
gradient method [37, 38, 39] and the limited-memory BFGS algorithm [40, 38]
are more efficient in solving problems with a large number of variables, and
converge faster.

The evaluation of the gradient is the most time consuming part of the
optimization. The applied optimization method determines the descent di-
rection, and a line search method can be used for determining the optimal
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step size ηt which minimizes the cost function J(W) as much as possible in
the direction of the gradient. The optimization and line search methods may
require additional function evaluations. At the end, the search directions are
orthogonalized using singular value decomposition (SVD). The use of thin
SVD saves computational time.

3.3. Low-dimensional projections

Recall that the target embedding depends on the response space Y only,
not on the input space X. The optimal embedding for a response space with
C classes is a simplex with C nodes, with an inherent dimensionality of C−1
dimensions. Thus, embedding dimensionalities M larger or equal to C − 1
produce simplex manifolds with inherent dimensionalities of C − 1. But in
case the embedding dimensionality M is smaller than C − 1, the solution
is not intuitive to imagine. In such a case the interplay between ε and the
shape of the t-distribution plays a role. We evaluate ε which is a parameter
in our system.

The most important property to consider is whether it becomes pro-
hibitively expensive to embed nodes further away than the optimal embed-
ding. We argue that at a certain εt it becomes too expensive to embed nodes
further away, so that the nodes are embedded too close to each other, which
may hurt subsequent classification accuracy. However, very low values of ε
may be slow to optimize.

Small values such as ε→ 0 cause an optimal embedding similar to the one
in Figure 3 (left). Too large values of ε cause a different type of compromise
similar to the one in Figure 3 (right). The difference is clear, and we call these
embeddings with different names to avoid confusion. We call the former case
SDA and the latter case hypersphere embedding (HSE). The discrepancy in
the shapes of the SDA and HSE embeddings results from how deviations
from the ideal distances are treated: in SDA, the distances d > dideal occur
at a small cost, while in HSE the distances d > dideal occur at an increasingly
high cost.

Embeddings with SDA utilize a larger volume to separate classes and have
more freedom in separating classes given a specific target dimension. How-
ever, the superiority is not obvious when we notice that embeddings with HSE
are ideally embedded on a (C−1)-dimensional manifold in the C-dimensional
space (the radius of the sphere is a constant). In certain cases, we notice that
in very high-dimensional cases with extremely low-dimensional embeddings,

17



5

1 2

34 1

2

3

4

5

Figure 3: Two ideal embeddings of 5 classes into two dimensions, using SDA (low ε, left)
and HSE (high ε, right). With low ε, too small between-class distances incur a large penalty
and the embedding results in the utilization of the whole volume of the hypersphere. With
high ε, too large between-class distances incur a large penalty and the ideal embedding
results in utilization of the surface of the target hypersphere.

the reward for embedding classes at the ideal distance is so strong that sep-
arate classes might be embedded on top of each other, for maximizing the
number of fulfilled ideal class-to-class distances. This is contrary to our goal
of separating maximally different classes. By default we choose ε = 1/C, the
inverse of the number C of classes, since the optimization criterion converges
slowly with small values of ε. We verify the found embeddings experimentally
below.

The optimization process described in Algorithm 1 decreases the KL di-
vergence step by step towards a minimum cost structure until no significant
further process can be made, measured by the tolerance δ in Algorithm 1.
Recall that the optimal embedding does not depend on the dataset X. For il-
lustrative purposes we use a smaller dataset, since the clustering behaviour is
clearer in a smaller dataset. Using larger datasets exhibits similar behaviour,
although the linearity constraint restricts the cleanness of the class clusters.
The reader is advised to compare the figures below with large datasets in
Figure 11.

Figure 4 shows the optimal two-dimensional embeddings (top row) and
corresponding costs (bottom row) of projections of a 100 sample subset of the
USPS dataset for the hyperparameter values ε = 0.01 and 0.1, and Figure 5
for ε = 0.5 and 0.9. Notice that because the USPS dataset has C = 10
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Figure 4: Upper row: Embeddings of a subset of 100 samples of the USPS dataset for
the hyperparameters ε = 0.01 (left), and 0.1 (right). Lower row: the normalized KL
divergences obtained by varying all the between-class distances and the normalized his-
tograms of the realized within-class (blue) distances and the between-class distances (or-
ange). There are ten classes in the dataset.
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Figure 5: Upper row: different embeddings of a subset of 100 samples of the USPS dataset
for the hyperparameters ε = 0.5 (left), and 0.9 (right). Lower row: the normalized KL
divergences obtained by varying all the between-class distances and the normalized his-
tograms of the realized within-class (blue) distances and the between-class distances (or-
ange). There are ten classes in the dataset.
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classes, ε = 1/C = 0.1. The black curve shows the cost of the hypothetical
KL criteria, evaluated by keeping within-class distances zero and varying
all the between-class distances. The vertical dashed line shows the ideal
distance, obtained with the Student’s t probability distribution formula as
dideal =

√
(1− ε)/ε. The cost of the KL criteria is minimized when the

between-class distances precisely equal dideal, but this would require a target
dimensionality of M = C − 1 = 9. The cost curves are normalized in each
subimage.

The blue and orange histograms are the within-class and between-class
realized distances, evaluated at the found optimal solution in two dimensions.
The histograms are normalized in each image. The blue histogram shows that
near zero within-class distances are achieved in the solution, meaning the
assumption that the within-class distances are zero is valid in our analysis.
The realized distances vary in each embedding. In the two subimages of
Figure 4, the distances are scattered around the ideal distance dideal, while
in the two subimages of Figure 5 the realized distances all fall short of the
ideal distance dideal.

We can see that the cost function is nearly symmetric and locally convex
in the region of the ideal distance when ε = 0.1 and ε = 0.5, translating into
a speedy optimization. The subfigures in Figure 4 show a lenient penalty for
realized distances larger than the ideal distance. The penalty function makes
it possible to embed points over the whole volume of a hypersphere. The two
subimages in Figure 5 show a harsh threshold for embedding distances too far
from the optimal distance, and produce embeddings where the central area
in the hypersphere remains unused. Note that when ε = 0.9, the penalty for
between-class distances becomes so large that certain classes are embedded
almost on top of each other.

Overall, the choice of ε = 1/C (0.1 in this experiment) produces well-
separated embeddings which are nearly identical to the case where ε → 0,
while still presenting a smooth, near-convex optimization surface with respect
to the target distances near the optimal solution. In the experiments that
follow, we set ε = 1/C.

3.4. Outliers

Our paper focuses on the general principle behind SDA and its numeri-
cal solution, assuming that the data points are correctly labelled. However,
outliers by which we mean wrong labels in the target space of a classification
problem can be taken into account in the SDA formulation. More explicitly,
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the observed class labels are used as sure variables only in the assignment of
the terms pij in the definition of the target probabilities. That is, whenever
two points have the same or a different label, they are assigned some fixed
distance. Since we assume no label noise, this assignment is fixed and done
with probability one. To take into account label noise, this fact can be ad-
justed to quantify the probability of two observations actually be of the same
class, given which labels are observed. A rather straightforward probabilistic
model of four random variables of the discrete type (two per data point, the
observed and the actual class labels) would allow to compute such probabil-
ities. Given a measure of uncertainty, the pij could then be assigned in such
a way that the distance in modulated accordingly. This outlier treatment
can be considered in more detail mathematically, but it leads to a lengthy
discussion, and would require new experiments. We feel that this is outside
the scope of our paper.

4. Experimental results

The experimental evaluation is divided into two parts. First, our SDA
method and comparison methods are applied to three different datasets in
the three first subsections of the section 4.1. In these case studies, the classi-
fication accuracies for a range of target dimensionality values are calculated,
and two-dimensional projections are visualized. We also describe a regular-
ization parameter search scheme for our SDA method in subsection 4.1.1,
and compare the runtime with different optimization algorithms in subsec-
tion 4.1.4. In subsection 4.2, a comparison of the two-dimensional projection
qualities of state-of-the-art methods is carried out for several datasets. The
datasets used in our experiments are summarized in Table 1.

We define the hyperparameters used in various methods here. Our pro-
posed method SDA is initialized using standard PCA in all experiments. In
SPCA, we chose the delta kernel [16] for the response space. In the ker-
nel version of SPCA, we selected the delta kernel for response space and a
Gaussian kernel for the input space, setting the width of the Gaussian to the
median value of the squared interpoint distances. The gKDR method [15]
was run in the partitioning mode (v) to reduce its memory requirements.
The variables of each dataset were standardized by making them to have
zero mean and unit variance.
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Data set Samples Variables Classes
USPS 9298 256 10
MNIST-5000 5000 784 10
Phoneme 4509 256 5
Olivetti faces 400 4096 40
COIL-20 1440 16384 20
COIL-100 7200 16384 100
Iris 150 4 3
Wisconsin Breast cancer 683 9 2
Wine 178 13 3

Table 1: Data sets used in this paper.

4.1. Case studies with three high-dimensional datasets

Three image datasets were chosen and analyzed: Olivetti faces, USPS
and COIL-20. All the data sets have multiple classes. The Olivetti face
dataset [35] studied in subsection 4.1.1 contains images of 40 persons, each
photographed in ten pictures with both normal and unusual facial expres-
sions. The input dimensionality is quite high, 4096. The USPS dataset [35]
used in the subsection 4.1.2 contains a large number of hand-written digits of
ten classes in a smaller 256-dimensional space. The COIL-20 data set [41] in
subsection 4.1.3 consists of very high-dimensional (dimension 16384) images
of 20 rotating objects photographed at fixed angle intervals.

4.1.1. The Olivetti faces data set

Each of the 10 sample images on 40 persons in the Olivetti faces data set
[35] is a 64-by-64 pixel image, leading to 4096 variables. In our tests, two
thirds of the Olivetti face images were randomly selected to the training set
and the remaining one third formed the test set. This random selection was
repeated ten times for getting error bars.

In the Olivetti dataset, Tikhonov regularization was applied to guide the
optimization process. The appropriate amount of regularization was searched
by cross-validation. A random selection of 80% of the training data set was
used for training and the remaining 20% were used for cross-validation. The
best value was searched by trying six logarithmically spaced values of the
regularization parameter λ from 102 to 10−8. This basic search was then
refined near the optimum. In total, ten regularization values were explored
in the cross-validation search. Among these values, the optimal one that
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Figure 6: Tikhonov regularization parameter search for a two-dimensional embedding.
Some learned point embeddings are displayed.

gives the smallest 1-NN classification error is denoted by λ∗. It was used in
the tests that follow.

Figure 6 shows one regularization term search procedure. The classifi-
cation error is plotted against the logarithm log10(λ) of the regularization
parameter λ. For four values of this logarithm marked by dots in Figure
6, the respective two-dimensional embeddings are also shown. We can ob-
serve that the search is magnified twice in the region λ = 100. Finally, the
1-NN classification error on the cross-validation data set was found to be the
smallest when λ = 10−0.5 ≈ 0.32. This search was continued until no fur-
ther progress could be made with the tolerance 10−4. The search procedure
was fast, requiring approximately 3-4 seconds time per value explored. The
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Figure 7: Olivetti dataset. Classification accuracies after projection with different dimen-
sionality reduction methods. The baseline is the classification accuracy in the original
high-dimensional data set.
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tolerance for optimality in the main algorithm was set at 10−5.
Figure 7 shows the classification accuracy when learning the dimension

reduction, using the λ search scheme described earlier. The error bars show
the mean and standard deviation. The regularized algorithm has the best
performance. Its mean accuracy is the highest among the compared methods
and moreover its error bars are among the narrowest. The method stabilizes
at 98.0% 1-NN classification accuracy at 10 dimensions, above the 90.1%
accuracy obtained when using the whole input space for classification.

A two-dimensional embedding of the Olivetti faces using our regularized
stochastic discriminant (RDSA) method is shown Figure 8. The correct
classifications and misclassifications have been highlighted in the figure. One
can see for example that the face projected at (3, 6) is projected a bit off as it
should in fact have been projected at (0.5, 4.5). We can see an overall division
to dark images on the left hand side and light images appearing in the right
hand side of this image. Similarly, bearded people can be found in the top
part of Figure 8. The three best performing two-dimensional projections in
the Olivetti faces dataset have been compared in Figure 9. All the figures
show the 266 learning points and 134 test points for the same permutation.
The same embedding is shown in both Figure 8 and Figure 9.

4.1.2. The USPS data set

The US Postal Service data set [35] contains 9298 handwritten images of
digits. Each handwritten digit is represented by a 16 × 16 pixel grey-scale
image, yielding 256-dimensional data vectors. In our tests, two thirds of the
images were randomly selected to the training data set, and the remaining
one third to the test data set. This random selection was repeated ten times
for obtaining error bars.

The 1-NN classification accuracies are shown in Figure 10. SDA pro-
vides the highest accuracies for small dimension reduction tasks. One can
observe a saturation in the performance of the linear discriminant analysis
(LDA), supervised PCA (SPCA), and our SDA methods. This saturation
is related to the fact that the defined optimal simplex structure of the data
is reached already at nine dimensions. PCA, the supervised partial least-
squares method (PLS-DA), and the gKDR-v method approach or exceed the
initial classification accuracy 96.3% in higher target dimensions.

The three best performing two-dimensional linear embeddings of the data
points are compared in Figure 11. We can see that the LDA and PLS-
DA methods provide embeddings that resemble multidimensional simplexes
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Figure 8: A representative linear embedding of the Olivetti faces dataset using regularized
SDA. Colored borders denote projected test points. Red borders denote a misclassification,
while blue borders denote a correct classification.
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Figure 9: Three linear embeddings of the Olivetti faces dataset. Dots denote projected
learning points. Stars denote projected test points. The 1-NN classification accuracy
provided by each embedding is shown above each subfigure. Samples belonging to different
classes are depicted using different colors.

projected onto a subspace with too many classes crowding near the origin
and overlapping each other. Such projections are not ideal in the presence of
multiple classes. On the contrary, SDA tends to fill a two-dimensional circle,
leading to better class discrimination and higher classification accuracy.

4.1.3. COIL-20 Object Images

The Columbia Object Image Library contains rotated images of 20 ob-
jects, photographed at 5 degree intervals [41]. The images are 128-by-128
pixel grey-scale images. These images include such objects as rubber ducks,
toy cars, and jars. In total, there are 1440 sample images which are 16384-
dimensional when represented as vectors.

The test set and the cross-validation set were generated differently for
the COIL-20 images when compared with Olivetti and USPS images for
exploiting the structure in the dataset. The test data set was generated
with 24-fold partitioning, and the cross-validation data set by selecting five
elements from the training set. This selection of test points made it easier to
analyze the scatter plots, resulting in less clutter and more expected visual
structure.

Figure 12 shows the classification accuracies for the previous techniques
calculated for the target dimensions two, three, four, and five. The mean and
error bars were calculated by leaving three elements out of each class at each
round, and repeating the runs 24 times, thus going through the whole data.
The tolerance for the SDA algorithms was set to 10−5. SDA and RSDA can
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Figure 10: Classification accuracies for different dimension reduction methods for the
USPS data set. The baseline is the classification accuracy for the original high-dimensional
data set.
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Figure 11: Three linear embeddings of the USPS dataset. Dots denote projected learning
points and stars denote projected test points. The 1-NN classification accuracy resulting
from this embedding is shown above each subfigure. Samples belonging to different classes
are depicted using different colors.
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Figure 12: COIL-20 dataset. Classification accuracies for different dimension reduction
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Figure 13: Three linear embeddings of the COIL-20 dataset. Dots denote projected learn-
ing points and stars denote projected test points. The 1-NN classification accuracy result-
ing from this embedding is added above each subimage. Colors denote different classes.

Acronym Method
GD: Gradient descent [38]
BB: GD with Barzilai and Borwein step length [38]
CG: Conjugate gradient (Hestenes-Stiefel update) [38]
PCG: Preconditioned CG (LBFGS preconditioning )[38]
RCG: Conjugate gradient (Polak-Ribiere update) [39]
LBFGS: Limited-memory BFGS [38]
SD: Spectral direction (Modified Newton’s method) [38]

Table 2: Different optimizers compared.

on average identify over 90% of the classes with two target variables only.
When the dimensionality of the mapped data is five, most algorithms perform
similarly. The three best performing embeddings of the COIL-20 dataset are
shown in Figure 13.

4.1.4. Computational complexity and running time comparison

The computational complexity of stochastic discriminant analysis (SDA)
is largely determined by the number of times the gradient in Equation (23)
must be evaluated. The matrix evaluation has the complexity O(LK2 +
LNK), where N is the dimensionality of the input space, L is dimensionality
of target space, and K is the number of samples. As such, optimizers that
require as few function evaluations as possible would be efficient choices.

The processing times of the algorithms in Table 2 are compared on the
three tested datasets for two-dimensional SDA embeddings. Figures 14, 15,
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Figure 14: Running times of different optimization algorithms for the USPS data.

and 16 show the results for the USPS, Olivetti, and COIL20 data, respec-
tively. The fastest algorithm differs depending on the characteristics of the
dataset. The spectral direction method converges faster and at a lower level
than the other algorithms in the USPS dataset. Convergence is reached in
about two minutes. The number of variables is still small enough so that the
partial Hessian information can be utilized cost efficiently. The Olivetti and
COIL-20 datasets contain a much larger number of variables. The Hessian
is a LN -by-LN matrix, resulting in costly operations involving the Hessian.

In the COIL-20 data set, the partial Hessian is re-evaluated only at every
20 iterations for making the computations faster. We can see that the LBFGS
algorithm and different forms of the nonlinear conjugate gradient method
are faster choices when performing dimensionality reduction for very high-
dimensional data sets. The spectral gradient method works better for the
USPS data set having a smaller input dimension but larger amount of data.

4.2. Comparison over multiple data sets

In this subsection we compare the proposed method with state-of-the-
art linear embeddings especially in two-dimensional information visualiza-
tion tasks. The algorithms were run over three standard UCI datasets [42],
three large datasets having more than 4000 data points, and three very high-
dimensional datasets which were more than 4000-dimensional. In general,
the algorithms were run for different selections of training and test points
10 times to obtain the confidence intervals. The COIL-20 and COIL-100
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Figure 15: Running times of different optimization algorithms for the USPS data.
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Figure 16: Running times of different optimization algorithms for the COIL-20 data.
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Method Iris Wine W. Breast Cancer
None 0.941± 0.026 0.949± 0.026 0.957± 0.014
SDA 0.948± 0.030 0.983± 0.017 0.957± 0.008
RSDA 0.957± 0.023 0.982± 0.016 0.955± 0.011
LDA 0.962± 0.025 0.981± 0.016 0.961± 0.009
PLS-DA 0.879± 0.040 0.974± 0.021 0.957± 0.008
gKDR 0.960± 0.021 0.959± 0.030 0.956± 0.013
SPCA 0.892± 0.026 0.974± 0.018 0.961± 0.011
KSPCA 0.893± 0.047 0.971± 0.019 0.893± 0.087
PCA 0.860± 0.034 0.938± 0.024 0.961± 0.011

Table 3: The generalization accuracy (mean ± standard deviation) of the nearest neighbor
classification method on test set. The datasets were reduced to two-dimensional aside from
None, in which no dimension reduction was done.

datasets were evaluated in the principle of leave-three-out, as discussed in
subsection 4.1.3. As a preprocessing step, the original color images in COIL-
100 were transformed to gray-scale images and all datasets were normalized
[41]. In the tables that follow, a distinction is made between different di-
mension reduction types: none, supervised, and unsupervised. PCA is in
our comparison the only unsupervised method. These different types are
separated by horizontal lines.

UCI datasets

In the Iris dataset, three species of Iris flowers are identified by quanti-
tative measurements of the flowers. In the Wine dataset, wine species are
identified based on chemical test results. In the Wisconsin Breast Cancer
dataset, tumors are classified as benign or malign ones based on physical
measurements. The datasets are all standard small datasets with small di-
mensional data vectors. The results of low-dimensional projections are shown
in Table 3. For these three UCI datasets, all the compared methods perform
rather similarly. The tests were repeated 20 times for obtaining the standard
deviations of the errors.

Large high-dimensional datasets

Three large datasets were compared. Two datasets were for handwritten
digit recognition tasks (MNIST, USPS), and one was a dataset for phoneme
recognition. The phoneme dataset contains three vowel pronunciations (aa,
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Method Phoneme MNIST5k USPS
None 0.889± 0.010 0.936± 0.002 0.962± 0.002
SDA 0.875± 0.009 0.557± 0.006 0.668± 0.009
RSDA 0.877± 0.009 0.550± 0.005 0.669± 0.007
LDA 0.664± 0.010 0.461± 0.0113 0.554± 0.008
PLS-DA 0.779± 0.014 0.301± 0.006 0.490± 0.008
gKDR-v 0.809± 0.015 0.323± 0.024 0.453± 0.009
SPCA 0.780± 0.008 0.401± 0.008 0.490± 0.008
KSPCA 0.781± 0.009 0.401± 0.009 0.354± 0.010
PCA 0.765± 0.007 0.383± 0.006 0.460± 0.010

Table 4: The 1-NN generalization accuracy (mean ± std) on test set for three large high-
dimensional datasets. The datasets were reduced to two-dimensional except for None.

ao, iy), and two consonants (dcl, sh), where the vowels are difficult to separate
[43, 44]. In SDA, the optimality tolerances for the large datasets were set to
10−5, and each test was repeated ten times. The results are shown in Table 4.
The SDA method performs favorably in all these tests.

Very high-dimensional datasets

A face recognition dataset (Olivetti faces) and two object recognition
datasets (COIL-20 and COIL-100) were compared. The regularized version
RSDA of the SDA method was also computed. The 1-NN out-of-sample
classification accuracies are shown in Table 5. Our regularized algorithm
RSDA has the highest accuracy among the tested algorithms on all datasets.
The tests were repeated 10 times to obtain the error ranges. The tolerance
for optimality was set at 10−5 in Olivetti and COIL-20 and at 10−4 in COIL-
100 data sets. The tolerances for the regularization search were set one
magnitude higher (10−3) than in the final algorithm (10−4). Optimization
with RSDA, including the regularization parameter λ search procedure, was
on an average faster than using no regularization (λ = 0) in the COIL-100
data set, with the median time of 88 minutes versus 215 minutes.

5. Conclusions

We have introduced in this paper a linear supervised dimension reduc-
tion method for classification settings, which we call Stochastic Discriminant
Analysis (SDA). The SDA method matches similarities between points in the
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Method Olivetti faces COIL-20 COIL-100
None 0.908± 0.023 0.999± 0.005 0.988± 0.006
SDA 0.393± 0.056 0.904± 0.035 0.277± 0.024
RSDA 0.562± 0.047 0.944± 0.026 0.605± 0.026
LDA 0.446± 0.039 0.656± 0.079 0.300± 0.054
PLS-DA 0.310± 0.042 0.573± 0.042 0.481± 0.049
gKDR-v 0.210± 0.046 0.565± 0.057 0.142± 0.038
SPCA 0.325± 0.033 0.623± 0.152 0.437± 0.061
KSPCA 0.322± 0.037 0.567± 0.191 0.397± 0.055
PCA 0.289± 0.029 0.667± 0.046 0.288 + 0.036

Table 5: The 1-NN generalization accuracy (mean ± std) on test sets for three very high-
dimensional datasets. The datasets were reduced to two-dimensional except for None.

projection space with those in a response space. The similarities are repre-
sented by transforming distances between points to joint probabilities using
a transformation resembling Student’s t-distribution. The matching is done
by minimizing the Kullback-Leibler divergence between the two probability
distributions.

The proposed stochastic discriminant analysis (SDA) method is useful
especially when two-dimensional projections of datasets having several or
many classes are needed. In such situations, ordinary discriminant analysis
algorithms perform poorly. The generalization ability of the SDA method
increases until the optimal structure is found in C − 1 dimensions, where
C is the number of classes. It should be noted that due to the definition
of the optimization criterion, neither SDA nor closed-form solutions of lin-
ear discriminant analysis (LDA) can obtain improved results once the tar-
get dimensionality surpasses C − 1 dimensions, since both the methods try
to reconstruct an intrinsically C − 1-dimensional simplex. For combatting
overlearning in very high-dimensional datasets, Tikhonov regularization was
used. It improves the generalization ability of the SDA method, and increases
classification accuracies for very high-dimensional datasets.

In the extensive experimental part of this paper, we compare the perfor-
mance of our SDA method against several state-of-the-art methods in super-
vised linear dimension reduction. The SDA method performs in most cases
better than the compared linear projection methods when low two or three-
dimensional projections are used. We have made experiments with various
types of data sets having low, medium, or high dimensions and quite differ-
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ent numbers of samples. Our experiments with both sparse and dense data
sets confirm the good performance of the SDA method and its regularized
version.
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