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Abstract

Blind source separation problems have recently drawn a lot of attention in unsupervised
neural learning. In the current approaches, the number of sources is typically assumed to be
known in advance, but this does not usually hold in practical applications. In this paper,
various neural network architectures and associated adaptive learning algorithms are discussed
for handling the cases where the number of sources is unknown. These techniques include
estimation of the number of sources, redundancy removal among the outputs of the networks,
and extraction of the sources one at a time. Validity and performance of the described
approaches are demonstrated by extensive computer simulations for natural image and
magnetoencephalographic (MEG) data. ( 1999 Elsevier Science B.V. All rights reserved.
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Notation

R
xx
"EMxxTN covariance matrix of signal vector x(t)

u
i

the ith principal eigenvector of the matrix R
xx

j
i

the ith eigenvalue of the matrix R
xx

iL
4

the normalized kurtosis of a source signal
g(t) learning rate
m number of sources
n number of sensors
l3[1,2, n] number of outputs
s(t) m-dimensional vector of source signals
x(t) n-dimensional vector of mixed signals
y(t) n- or l-dimensional vector of separated (output) signals
z(t) n-dimensional vector of output signals after redundancy

elimination
n(t) n-dimensional vector of noise signals
�(t) m- or l-dimensional vector of pre-whitened signals
A(t)"[a

ij
]
nCm

(unknown) full rank mixing matrix
V(t)"[v

ij
]
lCn

pre-whitening matrix
W(t)"[w

ij
]
lCn

global de-mixing matrix
WK (t)"[wL

ij
]
lCl

source separation matrix after pre-whitening
W(k)(t) de-mixing matrix of the kth layer
P(t) generalized permutation matrix
J( y,W ) cost (risk) function

1. Introduction

In blind source separation (BSS), the goal is to extract statistically independent but
otherwise unknown source signals from their linear mixtures without knowing the
mixing coefficients [1—54]. This kind of blind techniques have applications in several
areas, such as data communications, speech processing, and various biomedical signal
processing problems (MEG/EEG data); see for example [34,46].

The study of BSS began about 10 years ago mainly in the area of statistical signal
processing, even though the related single channel blind deconvolution problem has
been studied already earlier. Quite recently, BSS has become a highly popular
research topic in unsupervised neural learning. Neural network researchers have
approached the BSS problem from different starting points, such as information
theory [1,4,5] and nonlinear generalizations of Hebbian/anti-Hebbian learning rules
[15—17,27,30,32,36,43]. Despite of recent advances in neural BSS, there still exist
several open questions and possible extensions of the basic mixing model that have
received only limited attention thus far [32].

Although many neural learning algorithms have been proposed for the BSS
problem, in their corresponding models and network architectures it is usually
assumed that the number of source signals is known a priori. Typically it should be
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equal to the number of sensors and outputs. However, in practice, these assumptions
do not often hold. The main objective of this paper is to study the behavior of various
network structures for a BSS problem, where the number of sources is different from
the number of outputs and where the number of sources is in general unknown. We
shall propose several alternative solutions to these problems.

The paper is organized as follows. In Section 2 we first define the general BSS
problem, and then briefly consider special but important cases that may appear in
BSS problems. In Section 3 we discuss two alternative source separation approaches
for solving the BSS problem. The first approach uses pre-whitening, while the second
approach tries to separate and to determine the source number directly from the input
data. The theoretical basics of proposed learning rules are given in an appendix.
Computer simulation results are given in Section 4, and the last Section 5 contains
discussion of the achieved results and some conclusions.

2. Problem formulation

2.1. The general blind source separation problem

Assume that there exist m zero mean source signals s
1
(t),2, s

m
(t) that are scalar-

valued and mutually (spatially) statistically independent (or as independent as pos-
sible) at each time instant or index value t. The original sources s

i
(t) are unknown to

the observer, which has to deal with n possibly noisy but different linear mixtures
x
1
(t),2, x

n
(t) of the sources (usually for n5m). The mixing coefficients are some

unknown constants. The task of blind source separation is to find the waveforms
Ms

i
(t)N of the sources, knowing only the mixtures x

j
(t) and usually the number m of

sources.
Denote by x(t)"[x

1
(t),2,x

n
(t)]T the n-dimensional tth data vector made up of the

mixtures at discrete index value (usually time) t. The BSS mixing (data) model can
then be written in the vector form

x(t)"As(t)#n(t)"
m
+
i/1

s
i
(t)a

i
#n(t). (1)

Here s(t)"[s
1
(t),2, s

m
(t)]T is the source vector consisting of the m source signals at

the index value t. Furthermore, each source signal s
i
(t) is assumed to be a stationary

zero mean stochastic process. A"[a
1
,2, a

m
] is a constant full-rank n]m mixing

matrix whose elements are the unknown coefficients of the mixtures (for n5m). The
vectors a

i
are basis vectors of independent component analysis (ICA) [19,20,32].

Besides the above general case, we also discuss the noise-free simplified mixing
model, where the additive noise n(t) is negligible so that it can be omitted from the
considerations.

We assume further that in the general case the noise signal has a Gaussian
distribution but none of the sources is Gaussian. In the simplified case at most one of
the source signals s

i
(t) is allowed to have a Gaussian distribution. These assumptions
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Fig. 1. Illustration of the mixing model and neural network for blind separation. LA means learning
algorithm.

follow from the fact that it is impossible to separate several Gaussian sources from
each other [6,48].

In standard neural and adaptive source separation approaches, an m]n separating
matrix W(t) is updated so that the m-vector

y(t)"W(t)x(t) (2)

becomes an estimate y(t)"sL (t) of the original independent source signals.
Fig. 1 shows a schematic diagram of the mixing and source separation system. In
neural realizations, y(t) is the output vector of the network and the matrix W(t) is the
total weight matrix between the input and output layers. The estimate sL

i
(t) of the ith

source signal may appear in any component y
j
(t) of y(t). The amplitudes of the source

signals s
i
(t) and their estimates y

j
(t) are typically scaled so that they have unit

variance. This ambiguity can be expressed mathematically as

y(t)"sL (t)"WAs(t)"PDs(t), (3)

where P is a permutation matrix and D is a nonsingular scaling matrix.
With a neural realization in mind, it is desirable to choose the learning algorithms

so that they are as simple as possible but yet provide sufficient performance. Many
different neural separating algorithms have been proposed recently [2—6,9—18,
24,26—38,41—46,52,54]. Their performance usually strongly depends on stochastic
properties of the source signals. These properties can be determined from higher-
order statistics (cumulants) of the sources. Especially useful is a fourth-order
cumulant called kurtosis. For the ith source signal s

i
(t), the normalized kurtosis is

defined by

iL
4
[s

i
(t)]"

EMs
i
(t)4N

E2Ms
i
(t)2N

!3. (4)

If s
i
(t) is Gaussian, its kurtosis iL

4
[s

i
(t)]"0. Source signals that have a negative

kurtosis are often called sub-Gaussian ones. Typically, their probability distribution is
“flatter” than the Gaussian distribution. Respectively, super-Gaussian sources (with
a positive kurtosis) have usually a distribution which has a longer tail and sharper
peak when compared with the Gaussian distribution.

If the sign of the kurtosis (4) is the same for all the sources s
i
(t), i"1,2, m, and the

input vectors are pre-whitened, one can use a particularly simple separating criterion,
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This is the sum of the fourth moments of the outputs [36,44]

J( y)"
m
+
i/1

EMy
i
(t)4N, (5)

usually subject to one of the constraints

EMy2
i
N"1, ∀i; Ew

i
E"1, ∀i; (6)

or w
ii
"1, ∀i; or EM f (y

i
)x(t)!f (w)EwEN"0. (7)

Here we have assumed that the number l of outputs equals to the number m of the
sources. A separating matrix W minimizes Eq. (5) for sub-Gaussian sources, and
maximizes it for super-Gaussian sources [43]. The choice of nonlinear functions in
neural separating algorithms depends on the sign of the normalized kurtoses of the
sources. This is discussed briefly later on in this paper.

2.2. Separation with estimation of the number of sources

A standard assumption in BSS is that the number m of the sources should be known
in advance. Like in most neural BSS approaches, we have assumed up to now that the
number m of the sources and outputs l are equal in the separating network. Generally,
both these assumptions may not hold in practice. In this paper we shall propose two
different approaches for neural blind separation with simultaneous determination of
the source number m. The only additional requirement in these approaches is that the
number of available mixtures is greater than or equal to the true number of the
sources, that is, n5m.

For completeness of our considerations, let us first briefly discuss the difficult case
where there are less mixtures than sources: n(m. Then the n]m mixing matrix A in
Eq. (1) has more columns than rows. In this case, complete separation is usually out of
question. This is easy to understand by considering the much simpler situation where
the mixing matrix A is known (recall that in BSS this does not hold), and there is no
noise. Even then the set of linear equations (1) has an infinite number of solutions
because there are more unknowns than equations, and the source vector s(t) cannot be
determined for arbitrary distributed sources.

However, some kind of separation may still be achievable in special instances at
least. This topic has recently been studied theoretically in [6]. The authors show that
it is possible to separate the m sources into n disjoint groups if and only if A has n
linearly independent column vectors, and the remaining m!n column vectors satisfy
the special condition that each of them is parallel to one of these n column vectors.

Before proceeding, we point out that it is not always necessary or even desirable in
BSS problems to separate all the sources contained in the mixtures. This holds for
example in situations where the number of sensors is large and only a few most
powerful sources are of interest. In particular, Hyvärinen and Oja [27,46] have
recently developed separating algorithms which estimate one source at a time.
However, the sources are extracted in somewhat arbitrary order depending on the
initial values, etc., though the first separated sources are usually among the most
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Fig. 2. The two-layer feed-forward network for pre-whitening and blind separation: (a) block diagram,
(b) detailed neural network with signal reduction during pre-whitening.

powerful ones. Instead of neural gradient rules which converge somewhat slowly and
may not be applicable to high-dimensional problems, one can use semi-neural
fixed-point algorithms [26,28,48] for separating sources. An example of extracting one
source at a time from auditory evoked fields in given in Section 4.

3. Two neural network approaches to BSS

3.1. Source separation with a pre-whitening layer

Fig. 2 shows a two-layer neural network for blind source separation, where the first
layer performs pre-whitening (sphering) and the second one separation of sources. The
respective weight matrices are denoted by V and WK . The operation of the network is
described by

y(t)"WK (t)�(t)"WK Vx(t)"W(t)x(t), (8)

where W,WK V is the total separating matrix.
The network of Fig. 2 is useful in context with such BSS algorithms that require

whitening of the input data for good performance. In whitening (sphering), the data
vectors x(t) are pre-processed using a whitening transformation

�(t)"V(t)x(t). (9)

Here �(t) denotes the whitened vector, and V(t) is an m]n whitening matrix.
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If n'm, where m is known in advance, V(t) simultaneously reduces the dimension
of the data vectors from n to m. In whitening, the matrix V(t) is chosen so that the
covariance matrix EM�(t)�(t)TN becomes the unit matrix I

m
. Thus, the components of

the whitened vectors �(t) are mutually uncorrelated and they have unit variance.
Uncorrelatedness is a necessary pre-requisite for the stronger independence condition.
After pre-whitening the separation task usually becomes easier, because the sub-
sequent separating matrix WK can be constrained to be orthogonal [36,46]:

WK WK T"I
m
, (10)

where I
m

is the m]m unit matrix. Whitening seems to be especially helpful in
large-scale problems, where separation of sources can sometimes be impossible in
practice without resorting to it.

3.1.1. Neural learning rules for pre-whitening
There exist many solutions for whitening the input data [15,32,36,47]. The

simplest adaptive, on-line learning rules for pre-whitening have the following matrix
forms [22]:

V(t#1)"V(t)#g(t)[I!�(t)�T(t)] (11)

or [10,47]

V(t#1)"V(t)#g(t)[I!�(t)�T(t)]V(t). (12)

The first algorithm is a local one, in the sense that the update of every weight v
ij

is
made on the basis of two neurons i and j only. The second algorithm is a robust one
with equivariant property [10] as the global system (in the sense that the update of
every synaptic weight v

ij
depends on outputs of all neurons), described by combined

mixing and de-correlation process

P(t#1) $&
" V(t#1)A"P(t)#g(t)[I!P(t)s(t)sT(t)PT(t)]P(t) (13)

is completely independent of the mixing matrix A. Both these pre-whitening rules can
be used in context with neural separating algorithms. The first rule (11) seems to be
more reliable than Eq. (12) if a large number of iterations or tracking of mildly
non-stationary sources is required. In these instances, the latter algorithm (12) may
sometimes suffer from stability problems.

3.1.2. Nonlinear principal subspace learning rule for the separation layer
The nonlinear PCA subspace rule developed and studied by Oja, Karhunen, Xu and

their collaborators (see [35,38,45]) employs the following update rule for the ortho-
gonal separating matrix WK :

WK (t#1)"WK (t)#g(t)u[ y(t)][�(t)!WK T(t)u [ y(t)]]T, (14)

where �(t)"V(t)x(t), x(t)"As(t), and y(t)"WK (t)�(t). Here and later on, u[ y(t)] denotes
the column vector whose ith component is g

i
[y

i
(t)], where g

i
(t) is usually an odd and
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monotonically increasing nonlinear activation function. The learning rate g(t) must be
positive for stability reasons.

A major advantage of the learning rule (14) is that it can be realized using a simple
modification of one-layer standard symmetric PCA network, allowing a relatively
simple neural implementation [35,36]. The separation properties of Eq. (14) have
been analyzed mathematically in simple cases in [45]. In a recent paper [38] it is
shown that the Nonlinear PCA rule (14) is related to several other ICA and BSS
approaches and contrast functions. Efficient recursive least-squares type algorithms
for minimizing the nonlinear PCA criterion in blind separation have been developed
in [37,38]. They provide a clearly faster convergence than the stochastic gradient rule
(14) at the expense of somewhat greater computational load.

3.2. Signal number reduction by pre-whitening

The first class of approaches for source number determination in the BSS problem
is based on the natural compression ability of the pre-whitening layer. If standard
Principal Component Analysis (PCA) is used for pre-whitening, one can then simulta-
neously compress information optimally in the mean-square error sense and filter the
possible noise [15,36]. In fact the PCA whitening matrix V can be computed as

V"JR~1
xx

"K~1@2UT, (15)

where K"diag(j
1
,2, j

n
) is a diagonal matrix of the eigenvalues and

U"[u
1
,u

2
,2, u

n
] is the orthogonal matrix of the associated eigenvectors of the

covariance matrix R
xx
"E[x(t)xT(t)]"UKUT.

If there are more mixtures than sources (n'm), it is possible to use the PCA
approach for estimating the number m of the sources. If m is estimated correctly and
the input vectors x(t) are compressed to m-dimensional vectors �(t) in the whitening
stage using the network structure in Fig. 2b, then there are usually no specific
problems in the subsequent separation stage.

In practice, the source number is determined by first estimating the eigen-
values j

i
of the data covariance matrix EMx(t)x(t)TN. Let us denote these ordered

eigenvalues by

j
1
5j

2
525j

n
50. (16)

In the ideal case where the noise term n(t) in Eq. (1) is zero, only the m largest “signal”
eigenvalues j

1
,2, j

m
are nonzero, and the rest n!m “noise” eigenvalues of the data

covariance matrix are zero. If the powers of the sources are much larger than the
power of noise, the m largest signal eigenvalues are still clearly larger than noise
eigenvalues, and it is straightforward to determine m from the breakpoint. However, if
some of the sources are weak or the power of the noise is not small, it is generally hard
to see what is the correct number m of sources just by inspecting the eigenvalues. In
[33] it is demonstrated that two well-known information-theoretic criteria, MDL and
AIC, yield in practice good estimates of the number of sources for noisy mixtures on
certain conditions.
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We have also considered a modified network structure, where the possible data
compression takes place in the separation layer instead of the pre-whitening layer. The
nonlinear PCA subspace rule (14) can well be used for learning the separating matrix
WK , because this algorithm has originally been designed for situations where data
compression takes place simultaneously with learning of the weight matrix WK [35,52].
If the number n of mixtures equals to the number m of sources, and the goal is to
extract only some sources, so that the number of outputs l(m, this alternative
structure seems to perform better. On the other hand, if n'm (the number of mixtures
is larger than that of sources), and l"m, the quality of the separation results was in
our experiments slightly better when the data compression from n to m took place in
the whitening stage instead of the separation stage.

Generally, this modified network structure is not recommendable if the power of
the noise is not small or the number of mixtures n is larger than the number m of the
sources. This is easy to understand, because in this case whitening without data
compression tends to amplify the noise by making the variances of n components of
the whitened vectors �(t) all equal to unity.

3.3. Source separation without pre-whitening

Whitening has some disadvantages, too. The most notable of these is that for
ill-conditioned mixing matrices and weak sources the separation results may be poor.
Therefore, some other neural algorithms have been developed that learn the separat-
ing matrix W directly. A single layer performs the linear transformation

y(t)"Wx(t), (17)

where W is an n]n square nonsingular matrix of synaptic weights updated
according to some on-line learning rule. In this section we discuss simple neural
network models and associated adaptive learning algorithms, which do not require
any pre-processing.

3.3.1. General (robust) global rule
The whitening algorithms discussed so far can be easily generalized for the blind

source separation problem. For example, a general form of the learning rule (12) was
proposed in [17,18], as

W(t#1)"W(t)#g(t)MI!f [ y(t)]u [ yT(t)]NW(t), (18)

which can be written in scalar form as

w
ij
(t#1)"w

ij
(t)#g(t)Cwij

(t)!f
i
[y

i
(t)]

m
+
k/1

w
kj

(t)g
k
[y

k
(t)]D, (19)

where g(t)'0 is the adaptive learning rate and I is the n]n identity matrix.
f ( y)"[ f (y

1
),2, f (y

n
)]T and u( yT)"[ g(y

1
),2, g (y

n
)] are vectors of nonlinear activa-

tion functions, where f (y), g(y) is a pair of suitably chosen nonlinear functions.
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These nonlinear functions are used in the above rule mainly for introducing
higher-order statistics or cross-cumulants into computations. The rule tries to cancel
these higher-order statistics, leading to at least approximate separation of sources (or
independent components). The choice of the activation functions f (y), g(y) depends on
the statistical distribution of the source signals (this problem is discussed in the
appendix).

The above rule is derived more rigorously in the appendix by using the concept of
Kullback—¸eibler divergence (or mutual information) and the natural gradient con-
cept developed by Amari [1,4].

3.3.2. Simplified (nearly local) rule
The learning rule (18) can be simplified by applying another generalized gradient

form [11, 12]:

W(t#1)"W(t)Gg(t)
LJ

LW
W T(t). (20)

In this case we obtain a relatively simple self-normalized local learning rule [12,16]:

W(t#1)"W(t)$g(t)MI!f [ y(t)] yT(t)N. (21)

This learning rule which can be written in scalar form as w
ij
(t#1)"

w
ij
(t)$g

i
(t)[d

ij
!f

i
(y

i
(t))y

j
(t)], is stable for both signs # and ! under zero initial

conditions. The local learning rule (21) can be regarded as a generalization of the local
whitening rule (11). Furthermore, this is the simplest on-line learning rule for the BSS
problem that to our knowledge has been proposed thus far.

3.3.3. Equivariant property
It is very interesting to observe that the learning rule (18) has a so-called equivariant

property [3,4,10,17]. This means that its performance is independent of the scaling
factors and/or mixing matrix A. Therefore, the algorithm is able to extract extremely
weak signals mixed with strong ones provided that there is no noise. Moreover, the
condition number of mixing matrix can then be even 1015, and it depends only on the
precision of the calculations [17,18].

The simplified local learning rule (21) does not have the equivariant property.
Hence, a single layer neural network with this learning rule may sometimes fail to
separate signals, especially if the problem is ill-conditioned. However, we have
discovered that by applying a multi-layer structure (feed-forward or recurrent) this
algorithm is also able to solve very ill-conditioned separation problems [11—13]. In
such a case we apply the same simple local learning rule (21) for each layer, as
illustrated by Fig. 3. However, for each layer we can use different nonlinear functions
for introducing different higher-order statistics, which usually improves the quality of
separation.
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Fig. 4. The scheme of a two-layer neural network for blind separation and redundancy elimination.

Fig. 3. A multi-layer feed-forward neural network architecture for blind source separation without pre-
whitening.

3.4. Noise-free redundancy reduction

The separation algorithms (18) and (21) presented so far for the complete (deter-
mined) source case (m"n) can be applied in the more general (over-determined) case,
when the number of sources is unknown, but not larger than the number of sensors,
that is if n5m. In this case we assume that the dimension of matrix W(t) is still n]n. If
n'm there appears a redundancy among the separated signal set, meaning that one
or more signals are extracted in more than one channel. If additive noise exist in each
sensor channel, then they appear on the redundant outputs. But consider the noise-
free case. Then some separated signals appear in different channels with different
scaling factors.

In [11] we have proposed to add a post-processing layer to the separation network
for the elimination of redundant signals. Thus the applied neural network consists of
two or more layers (Fig. 4), where the first sub-network (a single layer or a multi-layer)
simultaneously separates the sources and the last (post-processing) layer eliminates
redundant signals. The post-processing layer determines the number of active sources
in the case where the number of sensors (mixtures) n is greater than the number of
the primary sources m. Such a layer is described by the linear transformation
z(t)"WI (t)y(t), where the synaptic weights (elements of the matrix WI (t)) are updated
using the following adaptive local learning algorithm:

wJ
ii
(t)"1, ∀t ∀i,

*wJ
ij
(t)"!g(t) f [z

i
(t)]g[z

j
(t)], iOj,

(22)

where g(z) is a nonlinear odd activation function (e.g. g(z)"tanh(az)) and f (z) is either
a linear or slightly nonlinear odd function.
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Table 1
Three separation algorithms considered in the paper

Pos. Separation rule Description

1 *W"g[I!f ( y)u( y)T]W Global algorithm with equivariant property

2 *W"$g[I!f ( y)u( y)T] Simple local algorithm

3 *W"g f ( y)[�T!f ( y)TW ]K Nonlinear PCA with pre-whitening
g[ f ( y)yT!yf ( y)T]W,
y"W�, �"Vx"VAs

Constraints imposed on the matrix WI (t) ensure mutual de-correlation of the output
signals, which eliminates the redundancy of the output signals and may also improve
the separation results. However, we have found that this performance strongly
depends on the statistical distributions of the sources. If the source signals are not
completely independent, for example when the sources consist of two or more natural
images, the post-processing layer should be used for redundancy elimination only.

The learning rules for redundancy elimination given above can be derived using the
same optimization criterion which was used for source separation (Eqs. (18) and (21)),
but with some constraints for the elements of the matrix WI (t), e.g. wJ

ii
(t)"1,∀i. It

should be noted that the rule (22) is similar to the well-known Herault—Jutten rule
[30], but it is now applied to a feed-forward network with different activation
functions.

4. Computer simulation results

4.1. Experimental arrangements

In this section some illustrative experiments are presented using the proposed
approaches, in particular the three separation algorithms summarized in Table 1. In
order to estimate the quality of separation, we use in our simulations known original
source signals (images) and a known mixing matrix. Of course, these quantities are
unknown to the learning algorithms that are being tested. The separation results are
best inspected by comparing images showing the true sources and the separated
sources. This gives a good qualitative assessment of the achieved performance.

Different types of image sources are applied in a single experiment — sources with
both positive or negative kurtosis and a Gaussian noise image are mixed together
(compare Table 2). By scanning them, they can easily be transformed to 1-D signals
(see Fig. 5). It should be noted that the stochastic characteristics of a 1-D signal
corresponding to some natural image is frequently changing. Hence, in order to
achieve convergence of the weights during the learning process, we apply a descending
learning rate.
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Table 2
Statistical characteristics of normalized kurtosis iL

4
of source images used in experiments in Section 4

In experiments in Section 4.1

Source Cichocki Karhunen Kasprzak Vigário Random Sinusoid Nature
iL
4

!1.110 !1.129 !1.011 !0.595 !0.602 0.410 0.171

In experiments in Section 4.2
Source Flowers Model Waterfall Bark Blocks Marmor
iL
4

!0.759 !1.131 0.090 !0.909 !0.871 !0.836

In experiments in Section 4.3
Source Miss 1 Miss 2 Miss 3 Noise
iL
4

!0.909 !1.473 !0.604 !0.001

In most experiments, natural or synthetic grey-scale images are used; their size is
equal to 256]384 (Section 4.1) or 256]256 (Sections 4.2 and 4.3). The images have
always 256 grey levels. Before the start of the learning procedure the image signals
should be transformed to zero-mean signals, and for compatibility with the learning
rate and initial weights they are also scaled to the interval [!1.0,1.0]. For presenta-
tion, the resulting signals are mapped back to the grey-level interval of [0, 255]. Zero
signals having small amplitudes around 0.0 correspond to uniformly grey images, and
are represented by a grey image with all pixel values equal to 127.

The obtained results can be assessed quantitatively by using suitable mathematical
measure. Examples of such measures are: PSNR (peak signal-to-noise ratio) between
each reconstructed source and the corresponding original source, and an error index
EI for the whole set of separated sources. These measures are defined as follows.

1. PSNR (peak signal-to-noise ratio):

PSNR"10 log
10A

A2

MSEB. (23)

Here MSE is the mean square error of the separated source:

MSE"

1

N

N
+
k/1

(sL
jk
!s

jk
)2, (24)

and A"s
.!9

!s
.*/

is the amplitude peak of the source signal.
The PSNR factor is computed for each pair consisting of an output signal and

a source. For a given signal the highest PSNR value determines the best corre-
sponding source.

2. For the whole set of separated sources, one can calculate an average error index EI,
which is defined by

EI"
1

m C
n
+
i/1
A

m
+
j/1

Dp
ij
D2

max
i
Dp

ij
D2
!1BD#

1

n C
m
+
j/1

A
n
+
i/1

Dp
ij
D2

max
j
Dp

ij
D2
!1BD. (25)

A. Cichocki et al./Neurocomputing 24 (1999) 55–93 67



Fig. 5. Example of a noise image and a natural face image (assumed to be completely unknown to the
neural net): (a) the two source images, (b) their image histograms, (c) the source signals, i.e. the source
images after normalization and transformation to zero-mean 1-D signals.

The numbers p
ij

are entries of a normalized matrix P(t), derived from PK (t)3RnCm:

PK "WI W (k)2W (1)VA,

by normalizing every non-zero row i"1,2, n of the matrix PK in such a way that
max

i
Dp

ij
D"1. The first component of EI gives the error of the output signals,

averaged over the number of sources. The second part adds an additional penalty if
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the same source appears multiple times in the output set. This component is
averaged over the number of outputs. The row-like normalization of the matrix PK is
a necessary condition for proper estimation of the penalty value. In the ideal case of
perfect separation, the matrix P becomes a permutation matrix. Then only one of
the elements on each row and column equals to unity, and all the other elements
are zero. In this ideal case EI attains its minimum possible value zero.

The step-size g(t) depends on the expected signal amplitude and the initial values of W.
We use a descending g(t) which is the largest possible, providing a fast learning and
convergence of the algorithm. Usually for signal amplitudes in the interval [!1,1]
and initial weight values (1, g is below 0.1. The initial matrix W(0) is a non-zero
random matrix with elements scaled to the interval [!1,1].

4.2. Basic source separation

In the first experiment we tested the separation ability of the pre-whitening rule and
the three separation rules, proposed in Section 3, for the following BSS problem: the
mixing takes place without additive noise (although one of the source signals is itself
a noise signal) and the number of sources and sensors is equal (but more than two
sources are mixed). As shown in Fig. 6, seven images have been mixed by using
randomly generated, ill-conditional mixing matrices A

5C5
and A

7C7
, respectively:

A
5C5

"G
2.00 4.82 3.47 1.65 35.2

0.55 1.20 3.79 1.82 48.0

0.91 1.15 4.35 1.61 19.3

0.46 1.18 5.61 4.98 30.6

0.76 1.38 3.31 1.21 22.3H, (26)

A
7C7

"G
0.560 0.930 0.300 0.950 0.750 2.900 0.380

0.520 0.620 0.150 0.830 0.410 3.290 0.180

0.915 0.420 0.680 0.340 0.900 3.180 0.700

0.510 0.720 0.410 0.890 0.910 3.520 0.110

0.700 0.960 0.340 0.900 0.920 2.900 0.740

0.410 0.210 0.150 0.830 0.210 3.170 0.550

0.930 0.180 0.660 0.310 0.230 2.880 0.260
H . (27)

The condition numbers of these matrices are cond(A
5C5

)"1359.1,cond(A
7C7

)"443.0.
The source set consists of four natural face images with negative normalized

kurtosis i
4
, one noise image with negative i

4
, one synthetic image with positive

i
4

and one natural image with slightly positive i
4

(see Table 2). For the computation
of the signal moments k

2
,k

3
,i we use the full scan of each image.

Among the compared rules are: the pre-whitening algorithm (11), the two-layer
nonlinear PCA subspace rule (14), the one-layer global rule (18), and the multi-layer
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Fig. 6. Testing the separation ability for sources with different sign of the kurtosis. There are five
sub-Gaussian and two super-Gaussian sources (a). They are mixed together to seven input images for
separation (b). Results after: (c) pre-whitening and nonlinear PCA subspace layer, (d) one-layer global rule
separation, (e) five layers of local rule separation.
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Table 3
Error index and quality factors for the separation tests with different separation rules: (a) for five sub-
Gaussian sources, (b) for five sub-Gaussian and two super-Gaussian sources

Signal EI PSNR [dB]

S1 S2 S3 S4 S5 S6 S7

(a)
Separation with nonlinear PCA rule
� whitening 1.5727 14.17 — — 17.77 18.04
y separation 0.2436 17.69 19.61 18.02 17.90 45.07

Multi-layer separation with local rule
y(5) fifth layer 0.1900 21.23 23.37 15.26 20.65 32.56

Separation with global rule
y separation 0.0457 23.12 36.32 20.32 22.97 36.65

(b)
Separation with nonlinear PCA rule
� whitening 2.032 13.50 — — 21.53 18.93 16.89 14.50
y separation 0.209 19.12 21.80 17.88 16.98 38.96 44.02 19.49

Multi-layer separation with local rule
y(5) fifth layer 0.146 19.23 22.73 17.55 18.82 42.80 30.57 25.77

Separation with global rule
y separation 0.136 20.97 27.90 17.54 21.07 39.58 21.96 23.75

local learning rule (21). The performance factors of result signals are given in Table 3.
In every experiment the final weights ¼

-*.
are taken for computation of the quantitat-

ive results.
The source images and mixtures used in these experiments are rather demanding for

separation algorithms, because for them the assumptions made on the data model (1)
are actually not valid. This is because the applied face images are clearly correlated
(see Table 4), with locally changing stochastic properties. Thus the source signals are
not independent, but they are non-stationary also — some signal samples are more and
some less correlated to each other. During the learning process we can select less
correlated output samples than the overall correlation factor is, thus, concentrating
the learning process on approximately half amount of signal samples.

It is remarkable that we are able to achieve sufficiently good quality separation for
practical purposes, especially by the algorithms (18) and (21) which do not use
pre-whitening. Generally, algorithms applying pre-whitening are not able to separate
the clearly correlated face images. This follows from the fact that the pre-whitened
data vectors �(t) are uncorrelated: EM�(t)�(t)TN"I. In the separation phase, this
property is preserved by requiring that also the output vectors y(t)"WK (t)�(t) must be
uncorrelated: EMy(t)y(t)TN"I, leading to the orthogonality condition WK (t)WK (t)T"I for
the separating matrix WK . It is just this strict requirement of uncorrelatedness that
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makes good quality separation impossible for algorithms employing pre-whitening if
the original sources are markedly correlated. The nonlinear PCA subspace rule (14) is
a notable exception among learning algorithms employing pre-whitening, because it
can provide a separating matrix WK (t) that is not orthogonal [32]. This is actually
a benefit in the case of correlated sources, allowing the algorithm to adopt to such
situations in a certain degree.

But also the output images found by the algorithms (18) and (21) are in fact more
independent than the original correlated sources, in any case they are less correlated
than the original sources (see Table 4). For the global algorithm (18), an obvious
explanation is that it can be derived by minimizing the Kullback—Leibler divergence
(see the appendix); the minimum is achieved for independent outputs. It is especially
noteworthy that the same derivation holds irrespective of whether true independent
components exist or not. This is because the product of distributions of individual
outputs, corresponding to the situation where the outputs are truly independent, is the
“target” distribution to which the “distance” of the true joint distribution is mini-
mized. The distance or difference measure between these two distribution is the
Kullback—Leibler divergence (see the appendix for details). A preliminary conclusion
on these considerations is that the global rule (18) in fact tries to provide a best
approximate solution to the ICA problem, in the sense of minimizing the Kullback—
Leibler divergence.

On the other hand, after convergence the algorithm (18) tries to satisfy the condition

EM f [ y(t)]u[ yT(t)]N"I. (28)

This can be derived by setting W(t#1)"W(t)"W and taking expectations from the
both sides of Eq. (18). Eq. (28) is a generalized decorrelating condition which does not
force uncorrelated outputs, E[ y(t) y(t)T]"I (unless both f (t) and u(t) are linear
functions in which case separation is impossible). If for example f [ y(t)]"tanh[y(t)]
and u[ yT(t)]"yT(t), one can see by inserting the Taylor series expansion tanh(t)"
t!t3/3#2t5/152 that Eq. (28) leads to a condition which tries to make the sum of
the correlation matrix E[ y(t) y(t)T] and higher-order moment matrices of y(t) equal to
the unit matrix I. Note that the same condition (28) (with u[ yT(t)]"yT(t)) is valid for
the local algorithm (21), too, explaining why it also is able to roughly separate
moderately correlated sources.

Even though the algorithms discussed here provide in practice good separation for
correlated sources, they do not separate the original correlated sources perfectly. This
can be seen both by inspecting the correlation values in Table 4 and the Fig. 6. Some
errors appear especially around the heads in face images. If the sources are even more
correlated than in Fig. 6, the errors become more pronounced. The basic reason seems
to be that for correlated source signals, solutions to the BSS and best approximate
ICA problems are in fact different.

The choice of the activation function (nonlinearity) depends on the sign of nor-
malized kurtosis (4) of the source signals. It has recently been shown [9,10] that this is
sufficient for successful separation, though the knowledge of the probability densities
of the sources would help to achieve a better accuracy (see the appendix). In blind
separation, these densities are usually unknown.
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Table 4
Correlation values (]100) between pairs of sources, i.e. EMs

i
s
j
N, and between pairs of signals after mixing,

pre-whitening and separation in the experiments in Fig. 6

Signals Signal-pair correlations (]100)

Sources
S1-2 S1-3 S1-4 S1-5 S2-3 S2-4 S2-5 S3-4 S3-5 S4-5

s 21.3 44.9 32.7 1.27 35.5 21.5 0.75 41.5 0.39 0.84

Sensor (mixed) signals
X1-2 X1-3 X1-4 X1-5 X2-3 X2-4 X2-5 X3-4 X3-5 X4-5

x 98.6 98.8 98.4 99.6 97.3 97.5 99.2 99.6 99.4 99.2

Separated (output) signals
y1-2 y1-3 y1-4 y1-5 y2-3 y2-4 y2-5 y3-4 y3-5 y4-5

After pre-whitening and nonlinear PCA separation
y !0.26 10.0 !0.28 1.04 !1.60 !1.68 !1.78 !2.84 !9.593 !9.36

After local rule separation
y(5) !7.84 5.37 !2.52 6.47 2.99 3.99 !0.93 !2.70 !3.17 !3.88

After global rule separation
y 10.2 14.3 13.0 !0.61 12.1 10.2 0.25 19.7 !0.98 !0.24

If the source signals are expected to have negative kurtosis values, that is, they are
sub-Gaussian signals, we choose in the global algorithm (18)

f (y
j
)"y3

j
and g(y

j
)"y

j
, (29)

or

f (y
j
)"y3

j
and g(y

j
)"tanh(ay

j
). (30)

On the other hand, for super-Gaussian sources with positive kurtosis, we choose

f (y
j
)"tanh(ay

j
) and g(y

j
)"y

j
, (31)

or

f (y
j
)"tanh(ay

j
) and g(y

j
)"y3

j
, (32)

for obtaining successful separation (see the appendix).
When the source signals have both positive and negative kurtosis values, a combi-

nation of above functions can be applied. If the signs of the kurtosises are unknown,
one can estimate them adaptively fairly easily in context with all separation algo-
rithms, see for example [25]. The global rule may separate the sources on different
outputs than it is expected by the kind of applied activation function.

In the case of local rule, the first choices of the nonlinearities given above are
applied for both types of sources. For the nonlinear PCA rule (14), g

i
[y

i
]"tanh(ay

i
)
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for sub-Gaussian sources, and g
i
[y

i
]"y

i
#tanh(ay

i
) (or g

i
(y

i
)"y3

i
) for super-

Gaussian sources [36,38].

4.3. Data compression in the pre-whitening stage

An example of using the two-layer NN of Fig. 2b for BSS with source number
estimation is shown in Fig. 7. There are six source images shown on the first row:
S1—S3 are natural scenes and S4—S6 are textures. All the sources were sub-Gaussian
except S3 which had a small positive kurtosis value (compare Table 2). The images
labeled X1—X8 show eight mixtures formed of these sources, and V1—V6 are the six
pre-whitened images. The separated sources Y1—Y6 are shown on the bottom row
— they are very close to the original. In this experiment, the nonlinear PCA subspace
rule was used for learning the orthogonal separating matrix WK . In this noiseless case,
the correct number of sources is obtained directly as a by-product of the PCA-based
whitening, and it equals to the number of nonzero eigenvalues of the data covariance
matrix.

However, in practical situations it may happen that we estimate m incorrectly.
In another experiment the same source images S1—S6 as in Fig. 7 were used,
the number of different mixtures was n"m"6, but the number of pre-whitened
signals p was smaller than the number of sources, p(m. Conceptually, in the
separation layer this situation corresponds to the difficult case, where there are less
mixtures than sources. Again the nonlinear PCA subspace rule (14) was applied in the
separation layer. In the case of five outputs the outputs were still fairly close to
original sources, but one of them was already missing. When the underestimation of
m becomes more severe (p"4, 3, or 2), the outputs were usually some mixtures of the
source images S1—S6, and it seems also that some of the sources were lost almost
completely.

For comparison, Fig. 8 shows the results for the same source images S1—S6 as
before, but when the data compression takes place in the separating layer instead of
the pre-whitening layer. In the simulation of Fig. 8, the number of mixtures n was
equal to the number of sources m"6. It can be seen that the network always yielded
output signals, which were very close to some original sources. However, the particu-
lar sources separated in this experiment depend on the chosen initial values, mixing
matrix, and learning parameters.

In spite of these fairly good results, the basic structure (Fig. 2b) where the data
compression takes place already in the pre-whitening layer, yields better results if the
number of mixtures n'm, and l"m sources are separated.

4.4. Separation and redundancy reduction

We present here two experiments for the second class of architectures which do not
use pre-whitening. In these networks, either the global single-layer rule (18) or the
local multi-layer rule (21) are used for over-determined separation. Moreover, in the
noise-free case an additional post-processing layer, using the learning rule (22), is
applied for redundancy reduction.
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Fig. 7. Example of correct source number determination in context with PCA based pre-whitening: (a) six
sources S1—S6, (b) eight mixtures X1—X8, (c) six uncorrelated (pre-whitened) signals V1—V6 and (d) six
separated signals Y1—Y6.
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Fig. 8. Examples of source separation using a modified network with non-square matrix W. There are both
six mixtures and pre-whitened signals. Data compression takes place in the separation layer: (a) six
mixtures, (b—f ) separation signals for different reduction ratios, i.e. if there are 5, 4, 3 or 2 output signals,
respectively.
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Three original images were mixed by a randomly chosen matrix, which is assumed
to be completely unknown to the separation network. This matrix A

5C3
has a condi-

tion number of 43.1:

A
5C5

"G
1.11 1.12 1.09

1.55 1.11 1.20

1.10 1.088 1.31

0.99 0.980 0.97

1.20 0.960 1.30H . (33)

In the first experiment no noise was assumed, whereas in the second case additional
additive noise were added to every sensor image (mixture). The results of processing
the first set of mixtures (noise-free) are given in Fig. 9, whereas the results for the noisy
case are provided in Fig. 10.

The local learning rule used in the multi-layer network structure estimates the
sources in a sequential order — the first source after one processing cycle, the second
source after the second processing cycle, etc.

The global learning rule determines all the sources simultaneously using a single-
layer network. If there are more outputs and mixtures than sources (n'm), the
separation quality is usually slightly worse than in the case where the number of
mixtures is correct (n"m). The final redundancy elimination layer suppresses redund-
ant signals and does not switch between channel signals.

In the noisy case even no redundancy among the sources occur. On the “free”
output channels the noise signals appear instead (compare the bottom row in
Fig. 10). The separated images are already of high quality. Hence, the redundancy
elimination layer may even lead to slight decrease in the quality of separation.
Then it is better to choose as outputs of the network those signals y

i
(t) from

the separation layer which correspond to non-suppressed channels in the reduction
layer.

4.5. Sequential separation of sources

In this last example, we show that it is also possible to extract one independent
component or source signal at a time from the available mixtures. This technique has
turned out to be very useful in practical applications where the number of sources or
independent components is completely unknown.

The real-world data used in these experiments consisted of auditory and
somatosensory evoked fields (AEFs and SEFs, respectively), measured by means of
magnetoencephalography (MEG). MEG is a non-invasive brain mapping technique,
related to the electroencephalography (EEG), sensitive to the net magnetic flux arising
from the post-synaptic currents of thousands of neurons, acting synchronously. We
used a 122-channel whole-scalp Neuromag-122TM neuromagnetometer, thus the
original data vector sequence was 122-dimensional. The AEFs and SEFs are cortical
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Fig. 9. Example of blind separation with redundancy reduction using the model in Fig. 4 (no noise). There
are five mixtures (b) of three unknown sources (a) available. After a single layer with global rule (c) two
redundant images always appear. After applying the post-processing layer both these signals are suppressed
(d), as required.

responses to auditory and somatosensory simulation, time-locked to the respective
stimuli, presenting minimal inter-individual differences to a particular set of stimulus
parameters (see [29,51] for more detailed description).

For practical extraction of the most powerful independent components, we used
a computationally efficient fixed-point algorithm [28,26,46]. One iteration of the
generalized fixed-point algorithm for finding a row vector wT

i
of the orthogonal
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Fig. 10. Example of blind separation with more sensors than sources and with additive noise (app. 10%) — the
first stage of the model in Fig. 4 is applied. At first three sources (a) are mixed to five sensor images (b). Then five
convolutive noise signals of the noise image (c) are added to the mixed images — 10% of one noise signal to one
sensor image (d). After a single layer with global rule (e) two noise images appear, but the three others correspond
clearly to the three source images. In this case the redundancy reduction layer need not to be applied.
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Fig. 11. (a) A subset of the 122-MEG channels. (b) Principal and (c) independent components of the data.
(d) Field patterns corresponding to the first two independent components. In (e) the superposition of the
localizations of the dipole originating IC1 (black circles, corresponding to the auditory cortex activation)
and IC2 (white circles, corresponding to the SI cortex activation) onto magnetic resonance images (MRI) of
the subject. The bars illustrate the orientation of the source net current.

separating matrix WK after pre-whitening is [26,46]

wH
i
"EM�g(wT

i
�)N!EMg@(wT

i
�)Nw

i
,

w
i
"wH

i
/EwH

i
E.

(34)

Here g(y) is again a suitable nonlinearity, typically g(y)"y3 or g(y)"tanh(y), and
g@(y) is its derivative. If the cubic nonlinearity g(y)"y3 is used, EMg@(wT

i
�)N"3EwE2.

This choice yields the standard fixed-point algorithm [28], which is somewhat simpler
and was used in these experiments. The expectations are in practice replaced by their
sample means. Hence, the fixed-point algorithm is not a truly neural adaptive
algorithm. However, we want to emphasize that neural separating algorithms could
have been used instead of the fixed-point algorithm here, too. The vectors w

i
must be

orthogonalized against each other; this can be done either sequentially or symmetric-
ally [26]. Usually the algorithm (34) converges after 5—20 iterations.

It should be added that a suitable data compression, made during the whitening
process as discussed in previous sections, may be required in order to avoid overfit-
ting, typical of ICA methods. Choosing a mild compression rate, or no compression at
all, may lead to solutions that are practically zero almost everywhere, except at the
point of a single spike or bump.

As seen earlier, ICA solutions are defined up to a scaling and permutation.
Nevertheless, it is expectable that solutions corresponding to the most powerful
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sources represent stronger attractors that the others, so that the first independent
components found usually correspond to the strongest sources.

Fig. 11 presents a subset of MEG channels with the strongest responses, together
with the first eight principal and independent components. It depicts as well the field
patterns associated to the first two ICs, superimposed onto helmet-shaped sensory
array of the neuromagnetometer, viewed from the left, top and right (note that these
patterns are columns of the estimated mixing matrix A). The arrows inserted corres-
pond to the equivalent current dipoles (ECDs) used to model the experimental data.
Both the patterns and the ECDs agree with the physiological conventions for these
type of evoked fields [29] (in IC1 the direction of the dipoles is inverted, but this
corresponds to a negative scaling factor over the IC, which is still a valid ICA
solution). The corresponding locations (black circles for AEFs, white circles for SEFs)
are shown in e), superimposed onto MRI of the subject. These locations are respec-
tively over the auditory, and primary somatosensory cortices, as expected from the
experimental setting. The bars, indicating the orientation of the source net current,
agree with the orientation expected for such cortical signals (perpendicular to the
outer border of the cortex).

The results given by ICA are physiologically clearly more meaningful than
those given by PCA in this experiment. In earlier papers, we have got very en-
couraging results on using ICA in removing artifacts from EEG and MEG data
[49,50], indicating that ICA is a valuable and promising tool in biomedical signal
processing.

5. Discussion and conclusions

The main topic of this paper is to study experimentally what happens in typical
feed-forward neural networks proposed for blind source separation when the number
of sources is different from the number of sensors and/or outputs of the networks. This
is an important practical issue which is usually skipped by assuming that the number
of sources is known and equals to the number of mixtures. We have presented both
qualitative and quantitative results for the two dominant classes of such networks
which differ with respect to the need of pre-whitening.

Two promising neural network approaches are presented for the problem of blind
separation of unknown number of sources, where only the maximum possible number
of active sources is known in advance. In such a case the number of sensors is usually
larger than the number of source signals.

The main results of this paper can be summarized as follows:

1. A brief analysis and discussion of two pre-whitening rules, local and global
(equivariant), is given. It is shown how they can be derived rigorously.

2. A generalization of the nonlinear PCA rule with two different nonlinear functions
is proposed.

3. It is pointed out that some of the presented blind separation rules are nonlinear
extensions and/or generalizations of the pre-whitening rules.

A. Cichocki et al./Neurocomputing 24 (1999) 55–93 81



4. Recommendations of various pre-processing and post-processing methods are
given for solving BSS problems with more sensors than sources.

5. The validity and performance of proposed solutions are illustrated by several
computer simulations. It is demonstrated that all the discussed algorithms work
properly for complex source signals like natural images, although their complexi-
ties and properties are different.

6. The main advantages of the proposed methods are their simplicity, adaptivity (the
algorithms can be used on-line), and in some cases locality and/or robustness for
badly scaled and ill-conditioned mixing matrices.

7. In large-scale real-world problems the number of source signals is generally
unknown. Then it is possible to extract the most powerful sources one at a time
using an efficient semi-neural fixed-point algorithm. We demonstrate the usefulness
of this approach by extracting independent components from real-world auditory
evoked fields where the original data vectors were 122-dimensional.

Some new issues arose from the results of our experiments. In the basic ICA/BSS
model it is assumed that the source signals are mutually independent. For example,
for the face images this does not generally hold even as an approximation, because
they are usually clearly correlated. Due to this fact clear differences in the behavior of
separation methods can be observed. In the methods applying pre-whitening, the
orthogonality constraint set on the separating matrix forces the output signals to be
mutually uncorrelated (except for the nonlinear PCA rule). The second class of
learning algorithms tries to perform whitening and separation simultaneously in one
or more layers. Thus, they respond to higher-order statistics of the source signals at
the same time as the sources are de-correlated. As a result, the outputs of these
networks are not necessarily uncorrelated for correlated source signals.

It is interesting to note that the algorithms discussed in this paper (with the
exception of the fixed-point rule) can roughly retrieve the original source signals even
though they are not completely independent or not even uncorrelated (which is
a considerably milder condition than independence). Thus, they can achieve in the
BSS problem more than the current theory promises. On the other hand, the output
images given by these algorithms are in fact more independent than the original
correlated source images. Hence, we expect that they are better estimates of the true
independent components of the mixed data than the original sources. This is espe-
cially true for the natural/relative gradient rule which tries to minimize a measure of
independence, namely the Kullback—Leibler divergence [1,10].

It seems that if the statistical independence assumptions made customarily in the
BSS/ICA data model do not hold, the solutions of the ICA and BSS problems are in
fact different. This is a very fundamental and interesting issue that needs to be studied
in the future. Another topic is to study the behavior of the separating networks
in the case where the amount of additive and/or multiplicative noise is not insigni-
ficant. Also a challenging and in practice important task is to investigate various
possible generalizations of the proposed algorithms, like multichannel blind decon-
volution/equalization, or separation of convolved and delayed sources with unknown
delays.

82 A. Cichocki et al./Neurocomputing 24 (1999) 55–93



Acknowledgements

The authors are grateful to Profs. Shun-ichi Amari and Erkki Oja for useful
comments and discussions, to Markus Peltonen for making preliminary experiments
for Section 4.2 and Jaakko Särelä for help in the experiments of Section 4.5. The
authors thank as well Prof. Riitta Hari and Veikko Jousmäki for the original MEG
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Appendix A. Analysis of the whitening rule

A.1. Derivation of the whitening rule

The learning rule (12) can be easily derived by minimizing the following loss (cost)
function:

J(V)"1
4
ER

vv
!IE

F
, (A.1)

where E.E
F

means the Frobenius norm and R
vv
"E[�(t)�T(t)] is the correlation matrix

of output vector �(t).
It is interesting to notice that this correlation matrix can be expressed as

R
vv
"E[Vx(t)xT(t)V T]"VR

xx
V T"VAR

ss
ATV T. (A.2)

Hence, without loss of generality, assuming that R
ss
"E[s(t)sT(t)]"I we have

R
vv
"P(t)PT(t), (A.3)

where matrix P(t)"V(t)A describes the global system of mixing and whitening
operations.

Multiplying Eq. (12) by the mixing matrix A from the right-hand side we get

V(t#1)A $&
" P(t#1)"P(t)#g(t)[I!P(t)s(t)sT(t)PT(t)]P(t). (A.4)

Taking the expectation value of both sides of the above equation and assuming,
without loss of generality, that the autocorrelation matrix is a unit matrix, i.e.

R
ss

$&
" EMs(t)sT(t)N"I, (A.5)

it is evident that a learning algorithm, employing the above rule (12), achieves
equilibrium when the matrix P(t) becomes orthogonal, i.e. P~1"PT. In this derivation
we have made the simplifying assumption that P(t) is independent of the current
source vector s(t). This holds at least as a good approximation, because P(t) depends
through the whitening matrix V(t) only on the previous values s(i), i(t, of the source
vector s(t).
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A.2. Convergence analysis of the whitening rule

The algorithms which iteratively apply either the rule (11) or (12) achieve the
equilibrium point when the output signal covariance matrix achieves

R
vv
"E[��T]"E[VxxTV T]"VE[xxT]V T"VR

xx
V T"I. (A.6)

In other words, for any non-singular matrix V we can write

VR
xx

V T!I"(VR
xx

V T!I)V"V T(VR
xx

V T!I)"0. (A.7)

Hence

V TV"R~1
xx

. (A.8)

Taking into account that matrix V is symmetrical, i.e. V T"V, we get the equilibrium
point

V"R~1@2
xx

. (A.9)

On the other hand, R
vv

can be decomposed as

R
vv
"UI KUI T, (A.10)

where K is a diagonal matrix of eigenvalues and UI is an orthogonal matrix of
corresponding eigenvectors of R

vv
. As R

vv
tends to the unit matrix I and the matrix UI is

orthogonal, the matrix K must also tend to the unit matrix. This means that output
signals v

i
(t) will be orthogonal signals with unit variances.

Appendix B. Derivation of adaptive learning algorithms for BSS

In this section we consider feed-forward neural networks of simple form which need
not pre-whitening. Let us consider a single layer neural network described by

y(t)"W(t)x(t), (B.1)

where W is a square n]n non-singular matrix of synaptic weights.
It should be noted that in this model we assume that the number of outputs is equal

to the number of sensors (l"m), although the number of sources can be less than the
number of sensors (n4m). Such neural network model is justified by two facts. First,
the number of sources can change over the time and it is generally unknown. Second,
in practice, we expect that additive noise exists in each sensor. Such noise signals can
itself be considered as auxiliary unknown sources. Thus, it is reasonable to use extra
outputs in order to extract (if possible) also these noise signals.

In an ideal noiseless case our objective is to develop such a learning algorithm,
which provides a decay to zero of all redundant (m!n) output signals y

i
, while the

remaining n output signals correspond to single recovered sources.
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B.1. Cost functions

Stochastic independence of random variables is a more general concept than
uncorrelatedness or whiteness. Independence can be expressed by the relationship
q(s

i
, s

j
)"q

i
(s
i
)q(s

j
), where q(s) denotes the probability density function (p.d.f.) of

random variable s. More generally, a set of signals s consists of independent signals if
their joint p.d.f. can be decomposed as

q(s)"
m
<
i/1

q
i
(s
i
), (B.2)

where q
i
(s
i
) is the p.d.f. of the ith source signal.

In this paper we assume for simplicity that all variables are real-valued and the
number of source signals is equal or less to the number of sensors and that the source
signals are of zero mean (E[s

i
(t)]"0).

We also assume that additive noises are reduced in the pre-processing stage to
a small level. Most learning algorithms are derived from heuristic considerations
based on minimization or maximization of a loss or performance function
[1,4,30,16,17,19]. It is remarkable that entropy maximization (infomax) [5], indepen-
dent component analysis (ICA) [4,19], and maximization of likelihood (ML) [10] lead
to a formulation based on the same type of loss functions [8].

The Kullback—¸eibler divergence (relative entropy) between two probability density
functions (p.d.f.s) f

y
( y) and q( y) on Rn is defined as [1,2,8]:

J( y,W )"D
pq

(p
y
( y)Eq( y))"P

=

~=

p
y
( y)log

p
y
( y)

q( y)
dy, (B.3)

whenever the integral exists. The Kullback—Leibler divergence always take non-
negative values, achieving zero if and only if p

y
( y) and q( y) have the same distribution.

It is invariant with respect to an invertible (monotonic) nonlinear transformation of
variables, including amplitude rescaling and permutation, in which the variables y

i
are

rearranged. For the independent component analysis problem, we assume that q(y) is
the product of the distribution of independent variables y

i
. It can be the product of the

marginal p.d.f.s of y, in particular,

q( y)"f
M
( y)"

n
<
i/1

p
i
(y

i
), (B.4)

where p
i
(y

i
) are the marginal probability density functions of y

i
(i"1,2,2, n). The

marginal p.d.f. is defined as

p
i
(y

i
)"P

=

~=

p
y
( y\ i) dy\ i, (B.5)

where the integration is taken over y\ i"[y
12

y
i~1

y
i`12

y
n
]T, i.e. the vector re-

maining after removing the variable y
i
. The natural measure of independence can be

formulated as

J( y,W )"P
=

~=

p
y
( y)log

p
y
( y)

<n
i/1

p
i
(y

i
)
dy. (B.6)
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The above Kullback—Leibler divergence can be expressed in terms of the mutual
information as

D
pq
"!H( y)!

n
+
i/1
P

=

~=

p
y
( y)logp

i
(y

i
) dy, (B.7)

where the differential entropy of output signals y"Wx is defined as

H( y)"!P
=

~=

p
y
( y)logp

y
( y) dy. (B.8)

Taking into account that dy"dy\ i dy
i
the second part in Eq. (B.7) can be expressed by

the marginal entropies as

P
=

~=

p
y
( y)log p

i
(y

i
) dy"P

=

~=

log p
i
(y

i
)P

=

~=

p
y
( y)dy\ idy

i
"P

=

~=

p
i
(y

i
)log p

i
(y

i
) dy

i

"EMlog(p
i
(y

i
))N"!H

i
(y

i
). (B.9)

Hence, the Kullback—Leibler divergence can be expressed by the differential H( y) and
the marginal entropies H

i
(y

i
) as

J( y,W )"!H( y)#
n
+
i/1

H
i
(y

i
). (B.10)

Assuming y"Wx, the differential entropy can be expressed as

H( y)"H(x)#logDdet(W )D, (B.11)

where H(x)"!:=
~=

f
x
(x) log f

x
(x) dx is independent of matrix W. Hence, we obtain

a simple (cost) contrast function

J( y,W )"!logDdet(W )D!
n
+
i/1

EMlog(p
i
(y

i
))N. (B.12)

B.2. Gradient rules

The standard gradient of the cost function can be expressed as

*W"

LJ

LW
"!W~T#S f ( y)xTT, (B.13)

where f ( y)"[ f
1
(y

1
)2f

n
(y

n
)]T contains the nonlinearities:

f
i
(y

i
)"!

d log p
i
(y

i
)

dy
i

"!

dp
i
(y

i
)/ dy

i
p
i
(y

i
)

"!

p@
i
(y

i
)

p
i
(y

i
)

(B.14)

and S .T means time average (expectation) over the specified time window.
This leads to the well-known algorithm proposed by Bell and Sejnowski [5]:

*W"g(W~T!f ( y)xT)"g(I!f ( y)yT)W~T. (B.15)
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We can improve dramatically the performance of the above rule by applying the
natural gradient developed by Amari [4]:

*W"!g
LJ

LW
WTW"g[I!S f ( y)yTT]W. (B.16)

Alternatively, we can use the following filtering gradient [14]:

*W"!gWC
LJ

LWD
T
W"g[I!S yu( yT)T]W, (B.17)

where g(y) are inverse (dual) to f (y)"!p
i
(y

i
)/p

i
(y

i
). The above learning rules could be

merged (combined) together in order to build up a more general learning algorithm
[17,18]:

*W"g[K!S f ( y)u( yT)T]W, (B.18)

where K is an arbitrary diagonal positive-definite matrix.
It is interesting to note that in the special case for

u(y)"f ( y)!y and K"0 (B.19)

we have

*W"g f( y)[ yT!f ( yT)]W. (B.20)

Assuming further that the signals are pre-whitened signals, so that W TW"I, we
obtain the well-known nonlinear PCA rule (14) as

*W"g f ( y)[xT!f ( yT)W], (B.21)

which need a pre-whitening process (�"Vx).
Assuming that the constraint W TW"I is satisfied during the learning process, we

can easily prove that the above algorithm reduces approximately to the learning rule
proposed by Cardoso and Laheld [10] as

*W"g[ f (y)yT!yf ( yT)]W. (B.22)

Connections of the nonlinear PCA rule (14) to other blind separation approaches are
studied also in [38].

B.3. Generalized parameterized distribution models — Practical implementation of the
algorithm for extended ICA

The performance of the BSS learning algorithms depends on the shape of the
activation functions. Optimal selection of nonlinearities depends on the p.d.f. of
source signals.

For finding quasi-optimal nonlinear activation functions we can use parameterized
models of the probability density functions (p.d.f.s). For example for super-Gaussian
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sources with positive kurtosis we can use unimodal model of p.d.f. as

p
i
(y

i
)"

exp(!2a
i
y
i
)

1#exp(!2a
i
y
i
)2

, (B.23)

which leads to nonlinear activation functions

f
i
(y

i
)"!

L log p
i
(y

i
)

Ly
i

"tanh(a
i
y
i
), (B.24)

where a
i
'2 is a fixed or adaptively adjusted parameter. More general and flexible

p.d.f. models are generalized Gaussian, Cauchy, or Rayleigh distributions.
Let us assume, for example, that the source signals have generalized Gaussian

distributions of the form [14]

p
i
(y

i
)"

r
i

2p
i
C(1/r

i
)
expA!

1

r
i
K
y
i

p
i
K
ri

B, (B.25)

where r
i
'0 is a variable parameter, C(r)":=

0
yr~1exp(!y) dy is the gamma function

and pr
i
"EMDy

i
DrN is a generalized measure of variance, known as the dispersion of

distribution. The parameter r
i
can vary from zero, through 1 (Laplace distribution),

r
i
"2 (standard Gaussian distribution) to infinity (for uniform distribution). The

locally optimal normalized nonlinear activation functions can be expressed in such
cases as

f
i
(y

i
)"!

d log(p
i
(y

i
))

dy
i

"Dy
i
Dri~1 sign(y

i
), r

i
51. (B.26)

Taking into account that sign y"y/DyD we obtain

f
i
(y

i
)"

y
i

Dy
i
D2~ri

. (B.27)

For spiky or very impulsive signals the parameters r
i
can take the value between zero

and one. In such case we can use slightly modified activation functions:

f
i
(y

i
)"

y
i

[Dy
i
D2~ri#e

i
]
, 0(r

i
(1, (B.28)

where e
i

is a very small positive parameter (typically 10~4—10~5), avoiding the
singularity of the function for y

i
"0.

Alternatively, we can define the moving average of the instantaneous values of
nonlinear function as

f
i
(y

i
)"

y
i

SDy
i
D2~riT

"

y
i
(k)

pL (2~ri)
i

(k)
, 0(r

i
(R, (B.29)

with estimation of mL
2~ri

"pL (2~ri)
i

by the moving average as

pL (2~ri)
i

(k#1)"(1!g)pL (2~ri)
i

(k)#gDy
i
(k)D2~ri. (B.30)
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Such activation function can be considered as “linear” time-variable function
modulated in time by the fluctuating estimated moment m

2~ri
"pL (2~ri)

i
.

Moreover, when we do not have exact a priori knowledge about the source signal
distributions, we can adapt the value of r

i
(t) for each output signal y

i
(t) according to its

estimated distance from ideal Gaussian distribution. A simple gradient-based rule for
adjusting each parameter r

i
(k) is

*r
i
(k)"!g

i
(k)

LJ

Lr
i

"!gDy
i
Dri logDy

i
D. (B.31)

It is interesting to note that in the special case of very spiky signals corresponding
to r

i
K0, the optimal function is a “linear” time-variable function proposed by

Matsuoka et al. [42] for non-stationary signals:

f
i
(y

i
)"

y
i

SDy
i
D2T

"

y
i
(k)

pL 2
i
(k)

. (B.32)

Summarizing, for blind separation of source signals, which have both positive and
negative kurtosis (sub- and super-Gaussian sources) we can apply the learning rule

*W(t)"g[I!f ( y)u( y)T]W(t) (B.33)

with activation functions

g(y)"y and f (y)"
y
i

Dy
i
D2~ri#e

, (B.34)

where r
i
(2 for positive kurtosis and r

i
'2 for negative kurtosis.

Alternatively, we can use the following switching nonlinearities [14]:

f
i
(y

i
)"tanh(ay

i
) for i

4
(y

i
)'0,

f
i
(y

i
)"Dy

i
Drisign(y

i
) otherwise,

(B.35)

g
i
(y

i
)"Dy

i
Drisign(y

i
) for i

4
(y

i
)'0,

g
i
(y

i
)"tanh(ay

i
) otherwise,

(B.36)

with r
i
51, a52, where i

4
(y

i
)"EMy4

i
N/E2My2

i
N!3 is the normalized kurtosis value.

The value of the kurtosis can be estimated on-line from the formula

EMyq
i
(k#1)N"(1!g)EMyq(k)N#gDy

i
(k)Dq (q"2,4). (B.37)

The above learning algorithm (B.33), (B.35)—(B.36) monitors and estimates the statis-
tics of each output signal and depending on the sign or value of its normalized
kurtosis (which is the measure of distance from the Gaussianity) automatically selects
(or switches) suitable nonlinear activation functions, such that successful (stable)
separation of all non-Gaussian source signals is possible. The same on-line kurtosis
estimation algorithm can be applied in context with other neural or adaptive blind
separation algorithms as well.
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