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Abstract

In this paper, we introduce some methods for finding mutually corresponding dependent components from two different but related

data sets in an unsupervised (blind) manner. The basic idea is to generalize cross-correlation analysis by taking into account higher-order

statistics. We propose independent component analysis (ICA) type extensions for the singular value decomposition of the cross-

correlation matrix. They extend cross-correlation analysis in a similar manner as ICA extends standard principal component analysis for

covariance matrices. We present experimental results demonstrating the usefulness of the proposed methods both for artificially

generated data and for a cryptographic problem.

r 2006 Published by Elsevier B.V.
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1. Introduction

Principal component analysis (PCA) [7,5,20] and in-
dependent component analysis (ICA) [20,5] are well-known
techniques for unsupervised (blind) extraction of useful
information from vector-valued data x. While PCA is a
well-established, old statistical technique, ICA has gained a
lot of popularity during the last decade because it often
provides more meaningful results.

Standard linear PCA and ICA are both based on the
same type of simple linear latent variable model for the
observed data vector xðtÞ:

xðtÞ ¼ AsðtÞ ¼
Xn

i¼1

siðtÞai. (1)

In this model, the data vector xðtÞ is expressed as a linear
combination of scalar coefficients siðtÞ, i ¼ 1; 2; . . . ; n,
which multiply the respective constant basis vectors ai,
i ¼ 1; 2; . . . ; n. The scalar coefficients siðtÞ, i ¼ 1; 2; . . . ; n,
79
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are different for each data vector xðtÞ, depending directly
on it. They can be collectively presented as the coefficient
vector sðtÞ ¼ ½s1ðtÞ; s2ðtÞ; . . . ; snðtÞ�

T. The constant basis
vectors ai, i ¼ 1; 2; . . . ; n, are usually estimated by some
criterion from the entire data set xðtÞ, i ¼ 1; 2; . . . ;T , where
T is the number of available sample vectors. Hence they
also depend on the properties of the data, but once they
have been estimated, they are the same for all the data
vectors belonging to this data set. The basis vectors ai can
be collectively presented in terms of the basis matrix
A ¼ ½a1; a2; . . . ; an�.
The scalar coefficients siðtÞ are in different contexts called

principal components, independent components, source
signals, latent variables, (hidden) factors, or (hidden)
causes, depending on the problem and application at hand.
The index t may denote time, position, or just number of
the sample vector, again depending on the context. For
simplicity, we assume here that both the data vector xðtÞ ¼
½x1ðtÞ;x2ðtÞ; . . . ; xnðtÞ�

T and the source vector sðtÞ are zero
mean n-vectors, and that the basis matrix A is a full-rank
constant n� n matrix. The column vectors ai, i ¼

1; 2; . . . ; n of the matrix A comprise the basis vectors of
PCA or ICA, and the components siðtÞ of the source vector
83

r finding jointly dependent components from two related data sets,
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sðtÞ are, respectively, principal or independent components
corresponding to the data vector xðtÞ.

From now on, we leave the index t out, assuming that
the order of the data vectors xðtÞ is not important. This
assumption is made in standard PCA and ICA. It is valid if
the data vectors are randomly taken samples from some
statistical distribution that the data obeys. However, the
data vectors xðtÞ can have significant temporal structure, if
they are subsequent samples from a vector-valued time
series which is temporally correlated (non-white). Alter-
native methods to ICA have been developed for extracting
the source signals or independent components in such
cases. They usually utilize either temporal autocorrelations
or non-stationary of variance; see [20,4,28]. These methods
may work in cases which standard ICA is not able to
handle, for example when the source signals are Gaussian,
but on the other hand, they fail if the data does not have
any temporal structure. ICA can often be successfully
applied to temporally correlated data sets, too, but it is
then not the optimal technique in the sense that it neglects
the temporal information contained in the data.

In PCA, it is required that the basis matrix is orthogonal:
ATA ¼ I, implying that the basis vectors ai are mutually
orthonormal. In ICA, there is no such requirement, and
hence the basis matrix A, called there the mixing matrix,
and the basis vectors ai of ICA are generally non-
orthogonal. In both the expansions, the components si

must be mutually uncorrelated: Efsisjg ¼ 0; iaj. To get the
true principal components, the variances Efs2i g are in
addition sequentially maximized for i ¼ 1; 2; . . . ; n
[7,21,20,5]. Alternatively, principal components emerge
from minimization of a mean-square approximation error
criterion; see [7,21,20] for details.

In ICA, the orthogonality condition of PCA is replaced
by the strong but often realistic requirement that the
components si of the source vector s should be statistically
independent (or as independent as possible). Furthermore,
at most one of the independent components is allowed to
have a Gaussian distribution. This still leaves the sign,
order, and scaling of the independent components si

ambiguous [20]. Usually they are scaled so that their
variances Efs2i g ¼ 1.

Assuming zero mean, Efxg ¼ 0, the covariance matrix of
the data x is for both PCA and ICA

Cxx ¼ EfxxTg ¼ AEfssTgAT
¼ ACssA

T, (2)

where the covariance matrix Css ¼ EfssTg of the source
vector s is a diagonal matrix due to the uncorrelatedness of
the components si.

Because PCA considers second-order statistics (covar-
iances) only, it can be easily computed using the
eigendecomposition of the covariance matrix Cxx. The ith
basis vector ai of the PCA expansion (1) is the ith principal
eigenvector of the matrix Cxx, corresponding to its ith
largest eigenvalue. The ith coefficient siðtÞ of the PCA
expansion (1) is then the projection aTi xðtÞ of the data
vector xðtÞ onto this eigenvector. The PCA basis vectors
Please cite this article as: J. Karhunen, T. Ukkonen, Extending ICA fo
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can be computed very efficiently using standard numerical
software developed for symmetric eigenproblems. An
alternative but much less accurate and efficient way is to
apply linear PCA neural networks taught by Hebbian (and
possibly anti-Hebbian) learning rules [7,5]. Such stochastic
gradient algorithms for estimating the PCA expansion were
developed by the first author together with Prof. E. Oja in a
somewhat different context already in early 1980s [23,27].
Neural or other adaptive PCA estimation algorithms [6,5]
are mainly useful in situations where it is necessary to
adapt the PCA expansion to new incoming samples or to
track slow changes in the statistical properties of the data.
Just like PCA, one can arrive at ICA from several

different viewpoints or criteria. The most important ones
are maximization of non-Gaussianity, maximum likelihood
estimation, minimization of mutual information, and
nonlinear decorrelation [20]. The ICA expansion is some-
what more difficult to estimate than PCA, requiring higher-
order statistics in a form or another except for the case of
time-correlated signals mentioned above. However, several
good batch or adaptive neural type algorithms now exists
for estimating the ICA expansion, too [20,5]. The two most
popular ICA algorithms used currently are batch type
FastICA algorithm(s) [20,28] and adaptive neural natural
gradient algorithm [5,17,20].
Both standard PCA and ICA have been generalized into

many different directions. Generalizations of PCA are
discussed for example in [7,21,16], and generalizations of
ICA in [20,5,17,28]. In this paper, we consider a general-
ization in which one tries to find mutually dependent
corresponding components from two different but related
data sets X ¼ xð1Þ;xð2Þ; . . . ;xðTxÞ and Y ¼

yð1Þ; yð2Þ; . . . ; yðTyÞ having Tx and Ty data vectors,
respectively. For simplicity, we assume in this paper that
such dependences appear between transformed compo-
nents of the vectors x and y pairwise, while their other
component pairs are statistically fairly independent.
Possible time dependences between subsequent sample
vectors . . . ;xðt� 1Þ;xðtÞ;xðtþ 1Þ; . . . and . . . ; yðt�
1Þ; yðtÞ; yðtþ 1Þ; . . . are neglected, or we assume that the
data sets X and Y consist of randomly taken sample vectors
from the respective vector-valued data distributions.
A well-known related statistical technique is canonical

correlation analysis [26]. There one tries to find linear
combinations x� and y� of the components of the vectors x
and y, respectively, so that x� and y� have maximal
correlations. Because canonical correlation analysis resorts
to second-order statistics only, its solution can again be
found using eigenanalysis and singular value decomposi-
tion of auto- and cross-covariance matrices of x and y [26].
Fyfe and Lai have considered a neural implementation of
canonical correlation analysis in [25], and a nonlinear
generalization of it using kernels in [10]. Furthermore,
Koetsier et al. have presented in [24] an unsupervised
neural algorithm called exploratory correlation analysis for
the extraction of common features in multiple data sources.
r finding jointly dependent components from two related data sets,
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This method is closely related with canonical correlation
analysis.

In an interesting paper, Akaho and his co-authors [2]
have considered an ICA style generalization of canonical
correlation analysis which they call multimodal indepen-
dent component analysis (MICA). In their method,
standard linear ICA is first applied to both data sets x

and y separately. Then the corresponding dependent
components of the two ICA expansions are identified
using a natural gradient type learning rule. The method
may work appropriately in practice in most cases, but it has
a theoretical weakness. If two scalar variables s1 and s2 are
statistically independent and similarly t1 and t2, but s1 and
t1 depend on each other and similarly s2 and t2, one cannot
in general theoretically deduce anything on the dependence
or independence of the variable pairs s1 and t2 or s2 and t1.
For example, s1 and t2 may have a common part which
does not appear in s2 and t1, which makes them statistically
dependent.

2. Theoretical background

2.1. Removal of second-order dependencies

Consider two different but related data sets X ¼

xð1Þ;xð2Þ; . . . ;xðTxÞ and Y ¼ yð1Þ; yð2Þ; . . . ; yðTyÞ. The di-
mension m of the vectors y belonging to the data set Y is in
general different from the dimension n of the vectors x

belonging to the data set X. Assuming zero mean also for y,
the cross-covariance matrix of x and y is theoretically
defined by [20,30]

Cxy ¼ EfxyTg. (3)

The elements Efxiyjg of this matrix are the cross-
covariances between the components xi and yj of the
vectors x and y, and they are in general non-zero. In
practice, the probability distributions of the vectors x and y

are usually not known. The cross-covariance matrix Cxy

must then be estimated from the available pairs of sample
vectors:

Ĉxy ¼
1

T

XT
i¼1

xiy
T
i , (4)

where T ¼ minðTx;TyÞ [20,30].
The cross-covariance matrix Cxy (or in practice the

estimated cross-covariance matrix Ĉxy) can be diagonalized
using its singular value decomposition (SVD) (see for
example [15,7,30]):

Cxy ¼ UDstV
T. (5)

Here U and V are n� n and m�m orthogonal matrices,
respectively, and

Dst ¼ EfstTg (6)

is an n�m (pseudo)diagonal matrix (that is, a diagonal
matrix appended with zeros if man [15]). The matrices U
Please cite this article as: J. Karhunen, T. Ukkonen, Extending ICA fo
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and V and Dst are obtained from the eigendecompositions
of the symmetric matrices CxyC

T
xy and CT

xyCxy, respectively
[7,15]. Standard PCA is a special case of the SVD
expansion (5) in which x ¼ y, U ¼ V, and s ¼ t. SVD can
be estimated using neural PCA type algorithms [5], too, but
we have in this work used more efficient and accurate
standard numerical algorithms for computing it.
We can think that the diagonalization (5) of the cross-

covariance matrix Cxy is realized via two orthogonal linear
transformations U and V:

x ¼ Us; y ¼ Vt, (7)

where the corresponding components si and ti of the
vectors s and t are correlated: Efsitiga0, but their different
components are uncorrelated: Efsitjg ¼ 0 for iaj. Later on
in our experiments, to make the comparisons easier, the
variances of the components of the vectors x and y are
always normalized to unity.
The key idea in this work is to allow non-orthogonal

square transformation matrices A and B instead of U and
V:

x ¼ As; y ¼ Bt. (8)

In a similar manner as in standard linear ICA for one data
set x, we require that the transformations A and B not only
make the different components si and tj, iaj; of the vectors
s and t uncorrelated, but they should be as independent as
possible. The goal is to concentrate the dependencies
between the vectors s and t as far as possible to their
corresponding components si and ti, which are in turn
required to be as dependent as possible.
Using the transformations (8), the cross-covariance

matrix Cxy can be expressed as

Cxy ¼ ADstB
T. (9)

It should be noted that it is always possible to find
orthogonal matrices U and V which provide the SVD (5),
and make the different components of the vectors x and y

uncorrelated. By finding suitable transformations (8)
among the considerably more flexible class of non-
orthogonal matrices A and B, one should therefore in
general be able to achieve more than just decorrelation.
2.2. Removal of higher-order dependencies

Our approach for computing the matrices A and B is
based on nonlinear decorrelation and the FastICA algo-
rithm [20]. The algorithm has converged to a good solution
when

EfxgðxÞTg (10)

is a diagonal matrix, and the data vectors x have been
preprocessed to have zero mean and unit variance. The
vector gðxÞ ¼ ½gðx1Þ; gðx2Þ; . . . ; gðxnÞ�

T is a nonlinear trans-
formation of the data vector x. The nonlinearity gðtÞ must
be chosen carefully in order to get as independent signals as
r finding jointly dependent components from two related data sets,

dx.doi.org/10.1016/j.neucom.2006.10.144
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possible. Good nonlinearities for wide classes of signals are
gðtÞ ¼ tanhðtÞ or gðtÞ ¼ t3.

Theoretically, statistical independence of the variables xi

and xj requires that Eff ðxiÞgðxjÞg ¼ Eff ðxiÞgEfgðxjÞg for all
continuous functions f and g that are zero outside a finite
interval. However, it can be justified (see [20, Section 12.1])
that the variables xi and xj, iaj, are usually statistically
independent when their nonlinear correlations are zero:

EfxigðxjÞg ¼ 0 or EfxjgðxiÞg ¼ 0. (11)

Here it is assumed that xi and xj have zero mean and that g

is an odd nonlinear function.
Therefore, to remove cross-dependencies between the

zero mean vectors x and y, we should diagonalize the
matrices

EfxyTg; EfxgðyÞTg; EfgðxÞyTg. (12)

We can try to roughly diagonalize all these matrices by
diagonalizing just their sum matrix

EfxyT þ xgðyÞT þ gðxÞyTg. (13)

In this respect, our method resembles ICA and blind source
separation (BSS) methods based on lagged covariance
matrices, where one also tries to simultaneously diagona-
lize several lagged covariance matrices approximately; see
for example [20, Section 18.1.3].

The matrix (13) can be further generalized to

Ef½xþ ðgðxÞ � EfgðxÞgÞ�½yþ ðgðyÞ � EfgðyÞgÞ�Tg, (14)

where the term EfðgðxÞ � EfgðxÞgÞðgðyÞ � EfgðyÞgÞTg
vanishes when the vectors x and y are independent.

We can diagonalize this form by simple use of SVD. In
general, we want to diagonalize the matrix

EffðxÞgðyÞTg ¼ USVT. (15)

We can do this nonlinearly with transforms

x0 ¼ f�1ðUTfðxÞÞ; y0 ¼ g�1ðVTgðyÞÞ (16)

provided that the inverse functions f�1ð�Þ and g�1ð�Þ exist.
Assume now that the data vectors x and y have been

whitened and cross-decorrelated. For vector-valued func-
tions fðxÞ which map their components independently, the
optimal linear mapping in the mean-square error sense is
then fðxÞ ¼ Ax ¼ aIx, and similarly for gðyÞ. This can be
used to find linear approximations to the nonlinear
diagonalizing transforms (16):

x0 ¼ a�1IUTaIx ¼ UTx, (17)

y0 ¼ b�1IVTbIy ¼ VTy. (18)

We have used these approximations in context with
Method 2, which will be described in the next section.
Although suboptimal, they turned out to provide good
results in our experiments. However, some preprocessing
involving higher-order statistics and/or nonlinearities is
required before applying them, because otherwise (17) and
(18) would give only orthogonal transformations of x and y

which cannot find independence.
Please cite this article as: J. Karhunen, T. Ukkonen, Extending ICA fo
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3. Methods

We have developed and tested several somewhat
heuristic methods based on the above ideas. We restricted
our testing to matrices which have a similar form as in Eq.
(13). Eqs. (17) and (18) could also be used iteratively to
totally or significantly reduce non-diagonal values of this
form of matrix containing nonlinear correlations. In the
following, we present the two methods which performed on
average best in our experiments.
 P
ROOF

3.1. Method 1

In the first method (Method 1), we first estimate the
independent components1 of the vectors x and y using the
FastICA method [20]. Let us denote the vectors containing
these estimated independent components by ŝx and ŝy:

x ¼ Aŝx; y ¼ Bŝy. (19)

Here A is an n� n matrix and ŝx an n-dimensional vector,
and B is an m�m matrix and ŝy an m-dimensional vector.
Furthermore, the variances of vectors ŝx and ŝy were
normalized to unity for getting suitable starting vectors.
After this, the SVD of the matrix

Fxy ¼ EfxyT þ tanhðxÞyT þ x tanhðyÞTg ¼ UFDFV
T
F (20)

containing nonlinear correlations of the vectors x and y is
computed quite similarly as for the standard cross-
correlation matrix Cxy in (5). On the right-hand side of
Eq. (20), UF and VF denote the orthogonal left and right
matrices of the SVD of the matrix Fxy, and the diagonal
matrix DF contains the respective singular values. The
nonlinearity, in (20) tanhð�Þ, is applied to each component
of the vectors x and y separately.
Finally, the estimated source (independent component)

vectors ŝx and ŝy in Eq. (19) are rotated using the singular
vector matrices UF and VF , yielding the final results

s�x ¼ UT
F ŝx; s�y ¼ VT

F ŝy. (21)

The basic idea behind this method is to include nonlinear
correlations of the components of the vectors x and y into
computation of the matrix Fxy. In (20), the sigmoidal
tanhð�Þ nonlinearity is applied to x and y to achieve this
goal.
This is a heuristic way to try to concentrate the

dependencies between x and y into their corresponding
components. That is, ideally there should exist one
component in the vector s�y which is dependent on the
selected component of the vector s�x, while these two
components are statistically independent of the other
components of the vectors s�x and s�y. But due to the
averaged nature of the expectation defining the matrix Fxy,
this is in practice usually not achieved at least perfectly.
r finding jointly dependent components from two related data sets,

dx.doi.org/10.1016/j.neucom.2006.10.144


 P

ARTICLE IN PRESS

NEUCOM : 10633

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

97

99

101

103

105

107

109

111

113

J. Karhunen, T. Ukkonen / Neurocomputing ] (]]]]) ]]]–]]] 5
UNCORRECTED

We tried several related methods in our experiments. In
some of them, preprocessing took place instead of ICA
using PCA whitening. We tried also the cubic nonlinearities
x3yT and xðyTÞ3, but they seem to be sensitive to noise and
did not provide as good results as Method 1. Method 1 was
selected to this paper because it provided on average the
best results and is computationally sufficiently efficient.

3.2. Method 2

The just described Method 1 tries to find one-dimen-
sional signal pairs si; ti where all the relevant information
about the ith component ti of the vector t has been
concentrated onto the corresponding component si of the
vector s and vise versa. These ideas can be also used to find
a linear mapping between two sets of signals.

Method 2 extends the linear mean-square error mini-
mization to a more generic linear method. The method
relaxes assumptions about distributions of signals and
errors. The idea is to solve signal pairs with one of the
methods described above, and then find one-dimensional
mappings minimizing the mean-square error between si

and ti pairs. These one-dimensional mappings are sufficient
for cross-independent signal pairs, where the signals sj, jai

do not contain any information about the correct value of
ti. An optimum linear mapping minimizing the mean-
square error changes only the sign and scaling of zero mean
signals [14], and can be carried out without changing
mutual information (or independencies) between the
variables

ti ¼ rtisi
si; Iðrtisi

X ;Y Þ ¼ IðX ;Y Þ, (22)

where rtisi
is correlation between ti and si. Thus if the given

data have been sphered to have zero mean and unit
variance, and the cross-dependence matrix Gxy can be
diagonalized with mappings s ¼ UTx and t ¼ VTy then the
mapping from x to y is

W ¼ Vdiagðrt1s1
;rt2s2

; . . . ;rtN sN
ÞUT. (23)

This method can be seen as an extension of linear mean-
square error optimization which assumes Gaussian dis-
tributions. If a cross-correlation matrix Cxy is used as a
cross-dependence matrix Gxy, then the resulting mapping
becomes

W ¼ Vdiagðrt1s1
;rt2s2

; . . . ;rtN sN
ÞUT ¼ VSUT ¼ CT

xy. (24)

It can be seen that this is exactly the same as given by
linear mean-square error minimization for sphered data.
With a bit of calculus one can see that minimization of the
mean-square error criterion

E 1
2
kWx� yk2

� �
(25)

yields the optimal solution

W ¼ CyxC
�1
x ¼ CT

xy, (26)

where the last step follows from the whitening (sphering) of
the data x: Cx ¼ C�1x ¼ I. So if diagonalization of a cross-
Please cite this article as: J. Karhunen, T. Ukkonen, Extending ICA fo
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dependence matrix removes most of the correlations
between different components of the involved vectors,
then Method 2 minimizes the mean-square error and at the
same time it tries to take non-Gaussian properties of
distributions into account.
In our tests we preprocessed the data with PCA to have

zero mean and unit variance, and then used the cross-
dependence matrix

Gxy ¼ EftanhðxÞyT þ x tanhðyÞTg (27)

which was iteratively diagonalized with SVD. Brief tests
indicated that this method has about same minimum mean-
square error (25) when y ¼ Axþ �. But sometimes the
method performed considerably better than the standard
pseudoinverse based least-square error minimization (26)
when the output vectors y were generated from x with two
different matrices y ¼ Ax and y ¼ Bx. A problem with
Method 2 is that it suffers from the same theoretical
weakness as Akaho’s et al. method [2], mentioned at the
end of Introduction.
ROOF4. Measuring the dependence

Theoretically, a suitable measure of the dependence
between any two continuous scalar random variables x and
y is their mutual information [16,20]

Ixy ¼

Z þ1
�1

pxðxÞ log
pxðxÞ

pyðyÞ
dxdy, (28)

where pxðxÞ and pyðyÞ denote the probability density
functions of x and y, respectively. The mutual information
can easily be generalized for vector-valued random
variables x and y. It is actually the Kullback–Leibler
divergence (information) between x and y, and measures
the distance between the probability densities pxðxÞ and
pyðyÞ [16,20].
Mutual information Ixy is strictly speaking not a proper

distance measure because it is not symmetric for x and y.
But it has the following important theoretical property:
mutual information is always non-negative, and it is zero if
and only if x and y are statistically independent. The more
dependent they are the larger is their mutual information
Ixy.
While mutual information is in some sense a theoreti-

cally ideal dependence measure, it cannot usually be
applied in practice. The basic reason is that it is very
difficult to reliably estimate the tails of the distributions
pxðxÞ and pyðyÞ [11,20]. Therefore, one must resort to some
kind of approximations (see for example [20,5]) or to other
simpler dependence measures.
A review of dependence measures related to tests of

independence in statistics can be found in the paper [31].
However, such tests are not necessarily most suitable in
context with ICA, because they typically make specific
assumptions on the distributions of the variables to be
studied (for example, Gaussianity).
r finding jointly dependent components from two related data sets,
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In ICA and BSS, measures of statistical dependence have
been developed and studied in several papers. Bach and
Jordan [3] have introduced contrast functions based on
canonical correlations in a reproducing kernel Hilbert
space. They have shown that these contrast functions are
related to mutual information and have desirable mathe-
matical properties as measures of statistical dependence.
Their ideas have recently been developed further in [12],
where two new kernel-based functionals are introduced for
measuring the degree of independence of random variables.

Another way is to use characteristic functions for
defining statistical independence and for measuring depen-
dence. This approach has been studied in [8,9], leading to
three criteria for ICA. Dependence measures can be based
either on approximating mutual information using the
characteristic function or on applying a moment generating
function. Furthermore, simpler quadratic measures for
estimating dependence have been developed in [1,32].

We made preliminary experiments with a few of these
methods using simple test cases of three statistically
independent source signals. We chose the method based
on moment generating function because for it the
difference between the cases of independent and more or
less dependent signals was the largest. However, also the
other tested methods gave qualitatively correct results.
That is, more independent variables provided better values
of the respective performance index than more dependent
ones.

In the following, we explain the dependence measure
derived from the method based on moment generating
function [8,9] in more detail. The moment generating
function method is based on estimation of the expectation

E½expðwTxÞ� ¼ E exp
Xn

i¼1

wixi

 !" #
(29)

over the components x1;x2; . . . ;xn of the data vector x.
Here w is the weight vector whose components
w1;w2; . . . ;wn define some linear combination of the
components of x. Clearly, if wT is one of the row vectors
of the inverse A�1 of the square mixing matrix A in the
standard linear ICA model (1), wTx becomes one of the
independent components sj [20]. On the other hand, if the
components xi of x in (29) are statistically independent, Eq.
(29) decouples into

E½expðwTxÞ� ¼
Yn

i¼1

E½expðwixiÞ�. (30)

Based on this observation, one can estimate for two
scalar random variables xi and xj the quantity

dxixj
ðwi;wjÞ ¼ fE½expðwixi þ wjxjÞ�

� E½expðwixiÞ�E½expðwjxjÞ�g
2. ð31Þ

This is always non-negative, and becomes zero when the
variables xi and xj are independent. The moments and
moment generating function do not uniquely define the
Please cite this article as: J. Karhunen, T. Ukkonen, Extending ICA fo
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variables xi and xj, but a large correspondence implies that
the functions are similar.
In the experiments, we measured the independence of a

two-dimensional random variable by computing the
function [8,9]

Ixixj
½w� ¼ dxixj

ðwi;wjÞdxixj
ð�wi;�wjÞ

þ dxixj
ð�wi;wjÞdxixj

ðwi;�wjÞ. ð32Þ

This is a positive, real-valued function measuring the
dependence. We generated this function only at the point
w ¼ ð1; 1Þ. Finally, the quality of the found solution was
assessed by computing the quantity

Jðx; yÞ ¼

Pn
i¼1Ixiyi

ð1; 1ÞPn
i¼1

Pn
jaiIxiyj

ð1; 1Þ
. (33)

The higher the value of Jðx; yÞ is, the more dependent x and
y are. This is a measure of goodness which tries to take into
account both independence and dependence between the
targeted pairs xi; yi and non-pairs xi, yj, jai of the signals.
The above formulas have been derived and given for

some general vectors x and y (which have the same
dimensionality). In the experiments, they were replaced by
the estimated source vectors s�x and s�y. The targeted pairs
are the corresponding components of these vectors. The
expectations in (31) are estimated in the usual way by
replacing them with the respective sample averages.

5. Experimental results

5.1. Artificially generated data

First, we present some experimental results for artifi-
cially generated data. Such data are useful in testing
various methods, because the original source signals are
known, enabling computation of performance or error
measures and visual inspection of the quality of the results.
The original source signals were as follows:

s1ðtÞ ¼ nðtÞ,

s2ðtÞ ¼ sinð350tÞ sinð60tÞ,

s3ðtÞ ¼ triangularð70tÞ,

s4ðtÞ ¼ sinð800tÞ sinð80tÞ,

s5ðtÞ ¼ cosð400tÞ þ 4 cosð60tÞ. ð34Þ

These five sources, comprising together the source vector
sðtÞ, have been depicted in the five subfigures on the left-
hand side of Fig. 1. They have been adopted from Example
7.2 in [5]. Four of the source signals are actually
deterministic for easier visual inspection of the results,
while the first source signal s1ðtÞ ¼ nðtÞ is zero mean
Gaussian white noise with variance 1.
The five subfigures on the right-hand side of Fig. 1 show

the five related source signals tðtÞ ¼ fðsðtÞÞ. They were
generated by applying the nonlinear transformation

f ðsðtÞÞ ¼ ½sðtÞ�3 � 0:5½sðtÞ�2 (35)
r finding jointly dependent components from two related data sets,

dx.doi.org/10.1016/j.neucom.2006.10.144
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Fig. 1. The five source signals sðtÞ (left) and their nonlinear transformations tðtÞ ¼ fðsðtÞÞ (right). The horizontal axis shows the sample (time) index t.
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vector sðtÞ. The means of generated source signals sðtÞ and
tðtÞ were set to zero and their variances were normalized to
unity.

The first data set xðtÞ was obtained by mixing the
original sources sðtÞ with a non-singular mixing matrix A:
xðtÞ ¼ AsðtÞ. The second, related data set yðtÞ was
generated quite similarly by mixing the nonlinearly
transformed sources tðtÞ with another non-singular mixing
matrix B, yielding yðtÞ ¼ BtðtÞ ¼ Bf ðsðtÞÞ. The data vectors
xðtÞ and yðtÞ have been depicted in Fig. 2.

Fig. 3 shows the jointly dependent sources estimated
using the SVD (5) and (7): s ¼ UTx, t ¼ VTy. Fig. 4 depicts
the sources provided by our first method (19)–(21). A
visual inspection of the results suggests that the proposed
Method 1 performs somewhat better than linear SVD in
this example. In particular, it has managed to separate
much better than SVD the fourth pair of signals in Fig. 1.
This is confirmed by the values of the performance index
(33). It is much higher, 33.6, for the Method 1 than the
respective value 2.1 of the SVD-based basic method.

The results were qualitatively similar for the other
nonlinearities and data sets tried in our simulations. A
general conclusion of these experiments is that our Method
1 performs better than the SVD-based method. The
Please cite this article as: J. Karhunen, T. Ukkonen, Extending ICA fo

Neurocomputing (2006), doi:10.1016/j.neucom.2006.10.144
difference in performance is small for ’easy’ data sets of
three source signals, but becomes significant for more
difficult data sets have more sources. Method 2 did not
perform in these experiments as well as Method 1, and
therefore we have not shown the results for it.

5.2. Application to cryptographic data

In these experiments, we tried to find out the dependent
corresponding components from texts and their encrypted
versions. The texts were taken from the data sets made
available by Project Gutenberg [13] in ASCII form. We
picked up four books, with each ASCII letter at the same
position in the books corresponding to one component of a
four-dimensional vector. Thus, the first vector xð1Þ was the
ASCII equivalent of the four letters which appeared first in
each of the four books, the second vector xð1Þ contained
the second letters of these books, and so on. There were
288,048 such vectors xðtÞ ðt ¼ 1; 2; . . . ; 288; 048Þ. The
encrypted corresponding vectors yðtÞ ðt ¼

1; 2; . . . ; 288; 048Þ were generating by applying a 128-bit
AES-ECB encoding [29] separately to each ASCII letter
appended by zeros, so that each letter contained 128 bits.
The encrypted 128 bit long numbers were transformed to
floating point numbers having 96 bits, which we further
r finding jointly dependent components from two related data sets,
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Fig. 2. The generated input data (mixtures) xðtÞ ¼ AsðtÞ (left) and yðtÞ ¼ BtðtÞ (right). Each subfigure shows one component of the vectors xðtÞ and yðtÞ as a

function of time (sample index) t.
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UNCORRECTEDapproximated by a 32-bit floating point number in our
MATLAB experiments. The source signals were prepro-
cessed so that their mean was zero and variance unity.

We tried to estimate the source vectors s and t as well as
the mixing matrices A and B in the model (8) using the
methods developed in Section 3. That is, we tried to
determine these quantities so that the joint information
between the corresponding components of s and t is
maximized. After this, we computed the connectivity
matrix M, defined by

t ¼Ms ¼ A�1Bs (36)

assuming that the mixing matrix A is square and of full
rank and hence invertible. It is realistic to expect that the
elements of the connectivity matrix M have higher absolute
values when the encrypted message is strongly related to
the original text.

Encryption aims at blurring or mixing the information
contents of a message as much as possible, so that it cannot
be identified any more from the encrypted version [29].
Thus, the goal of encryption is a kind of opposite to what
ICA and BSS methods aim at. The nonlinearity used in
AES encoding has been designed so that it is as far as
possible from a linear function, making breaking of the
encryption difficult, especially using customary linear
statistical methods. Therefore the studied problem is
Please cite this article as: J. Karhunen, T. Ukkonen, Extending ICA fo

Neurocomputing (2006), doi:10.1016/j.neucom.2006.10.144
 Pdifficult, and the results may highlight differences between
various methods.
We tried several algorithms for this problem. A general

conclusion on these experiments is that the performance of
the suggested algorithms for estimating jointly dependent
components gradually improves. Roughly speaking, they
start to perform appropriately when the number of the
elements in the vectors xðtÞ and yðtÞ nears 200; 000. As an
example, consider Method 1. It could connect correctly two
components of the vectors xðtÞ and yðtÞ when the number
of sample vectors was t ¼ 180; 000, and all four compo-
nents for t ¼ 262; 440 and 288,048. Some other algorithms
performed slightly better, being able to find out all the four
dependent components already when t ¼ 180; 000. This
holds especially for Method 2, which was on an average the
best performing of the methods we tested in this problem.
It was able to solve the problem faster and better than the
SVD-based basic method.
For identifying the connected components, we used the

following heuristics. Consider the absolute values jmijj of
the elements mij of the connectivity matrix M. Find the
element having the largest absolute value, and mark the
corresponding components having the indices i ¼ imax and
j ¼ jmax connected. Continue the procedure by finding the
element of the matrix M having the next largest absolute
value and different indices iaimax and jajmax, and connect
r finding jointly dependent components from two related data sets,

dx.doi.org/10.1016/j.neucom.2006.10.144
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Fig. 3. The jointly dependent sources found using singular value decomposition.

J. Karhunen, T. Ukkonen / Neurocomputing ] (]]]]) ]]]–]]] 9
UNCORRECTEDthe corresponding components. The procedure is continued
until all the components of the vectors s and t have been
connected. Of course, connecting takes place so that only
one element on each row and column of the matrix M is
selected. That is, each of the components of the source
vector s is connected to one of the component of the source
vector t.

When the number t of data vectors increased, not only
the found connected components gradually became the
correct ones. Also the absolute values of correct elements in
the matrix M increased, and large erroneous values
decreased. The methods using ICA for preprocessing were
quite slow, because ICA was not usually able to find an
independent group of source signals.

The final value of the matrix M for t ¼ 288; 048 data
vectors is shown in (37) for the best performing Method 2.
For clarity, we have omitted the common multiplying
factor 1036 from the elements of M. From the results (37),
one can without doubt deduce the correct jointly depen-
dent corresponding source pairs. The corresponding largest
elements of the matrix M on its each row and column have
been boldfaced in (37).
Please cite this article as: J. Karhunen, T. Ukkonen, Extending ICA fo

Neurocomputing (2006), doi:10.1016/j.neucom.2006.10.144
M ¼

0:138 �0:225 0:939 2:889

�1:446 1:329 2:269 1:039

0:330 2:797 �1:212 �0:050

2:719 0:428 1:410 0:514

2
666664

3
777775: ð37Þ
113
6. Concluding remarks

In this paper, we have presented first result on some
novel methods for finding mutually corresponding depen-
dent components from two different but related data sets.
Our methods generalize cross-correlation analysis based on
SVD to take into account higher-order statistics in a
similar manner as in ICA. The data model is rather simple,
and could be generalized in several ways. A natural
extension would be to allow a more flexible model than
pairs of dependent components independent of other such
pairs, see for example [18,19,22]. Experimental results
demonstrating the usefulness of proposed methods have
been presented both for artificially generated and realistic
cryptography data.
r finding jointly dependent components from two related data sets,
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Fig. 4. The jointly dependent sources found using Method 1.
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