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This paper deals with stability of Oja’s symmetric algorithm for es- 
timating the principal component subspace of the input data. Exact 
conditions are derived for the gain parameter on which the discrete 
algorithm remains bounded. The result is extended for a nonlinear 
version of Oja’s algorithm. 

1 Introduction 

Principal eigenvectors of the data covariance matrix or the subspace 
spanned by them, called PCA subspace, provide optimal solutions to sev- 
eral information representation tasks. Recently, many neural approaches 
have been proposed for learning them (see, e.g., Hertz r t  a/. 1991; Oja 
1992). 

A well-known algorithm for learning the PCA subspace of the input 
vectors is so-called Op’s subspace rule (Oja 1989; Hertz et a / .  1991): 

(1.1) 

In the symmetric algorithm 1.1 the columns of the L x M-matrix Wk = 
[wk(l). . . . , wk(M)], L 2 M are the weight vectors of the M neurons after 
k iterations. A Hebbian type term xkx[wI(, product of the linear output 
xlwk(i) and the L-dimensional kth input vector XA for the ith neuron, is 
mainly responsible for the learning. The gain parameter 2 0 controls 
the learning rate. The additive nonlinear constraint WI( W[xkxlWk pre- 
vents different weight vectors from becoming too similar, and stabilizes 
the algorithm. In 1.1, the constraint roughly orthonormalizes the weight 
vectors: WiWk E I.  The special case M = 1 yields the standard Op’s 
single neuron rule. 

Several authors (e.g., Hertz et a/. 1991; Oja 1992) have shown that the 
averaged differential equation corresponding to 1.1 converges to the M- 
dimensional PCA subspace of the input vectors. This kind of asymptotic 
analysis yields the limiting values of 1.1, but is not alone sufficient for an 
exact convergence proof. One must in addition prove the convergence 
of the differential equation globally, and show that 1.1 itself is stable, 
that is, the weight vectors must remain bounded on some realistic condi- 
tions. Because of the nonlinearities, both these tasks are difficult though 

Wk+l = Wk + /rA[I - wkwl]xkxlwA 
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definitely worthwhile (Hornik and Kuan 1992). X u  (1993) has recently 
provided some such global analysis for 1.1. The only known bounded- 
ness condition for discrete PCA algorithms is given in Lemma 5 in O p  
and Karhunen (1985) for Op’s single neuron rule and is not exact. 

In the following, a stability theorem is proved for the discrete algo- 
rithm 1.1. It  is noteworthy that the analysis is accurate, yielding an exact 
upper bound for the gain parameter. This is demonstrated by a simple 
example. The theorem is extended to a nonlinear generalization of 1.1, 
and the results are discussed shortly. 

2 The Main Theorem 

Theorem 1. Oja’s subsyaccalgoritlinz 1.1 is stable, that is, the iioriii ofthe nratrix 
W& is boutidid for all k, if the gain yaranreter satisfies at e71cry iteratioii tlzc 
coiiditioii 

(2.1) 

and the iizitial zocight nratrix W1 is chosen so that the largest eigt~iiz~alue of W1 WF 
is at niost 2. 

I f  the largest eigcnvaliic. of the inatrix wlwf or imrL’ generally wAw[ is 
X I  > 2, / / A  itlust satisjij the coiiditiori 

0 5 / / L  L 2/ I1 X k  (I2 

Proof. We prove the theorem by deriving for / / , k  the conditions on which 
the norm of the matrix Wk remains bounded for all k. Note that the gain 

is the only parameter in 1.1 that can be chosen freely at each iteration 
after initialization. We use the 2-norm, which is defined as the square 
root of the largest eigenvalue XI of the matrix WTWk, and is compatible 
with the usual Euclidean vector norm. 

It seems easier to analyze the boundedness of the matrix Yk = WkWl’, 
since Yk is always a square matrix while Wk is generally an L x M ma- 
trix. From the singular value decomposition theorem it follows that the 
matrices WlWk and WkWT have the same nonzero eigenvalues X I  2 2 
. . .  AM. Denote the corresponding normalized eigenvectors of Yk by 
el.  . . . . eM. The additional zero eigenvalues AM+, . . . . . XI. o f  Yk have no sig- 
nificance in our analysis. Clearly, the norms obey the simple relationship 

We have recently shown (Karhunen and Joutsensalo 1993) that 1.1 is 
actually a stochastic gradient ascent algorithm for maximizing the cri- 
terion \(W) = tr(W’R,,W) under the constraint that the weight vectors 
of the neurons must be mutually orthonormal: WTW = I .  Here R,, = 
E(xxT) is the correlation matrix of the input vectors, I is unit matrix, and 
tr denotes trace. If the orthonormality constraint WTWk = I holds exactly, 

llYkll = X I  = llWk1I2. 
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all the nonzero eigenvalues of Yk equal to unity. Generally, W[Wk # I 
in 1.1. In its stability region, 1.1 tends then to decrease the eigenvalues 
of YI; (or equivalently the norms 1 1  wk(i) 1 1 )  that are greater than unity, 
and increase the eigenvalues that are smaller than unity. Both the cases 
must be discussed in a complete stability analysis. 

YI;, and consequently Wk, will be stable if there exists a constant H such 
that ( 1  YI; 1 1  5 H for all k. We derive the stability condition by requiring 
that 1 )  YI;+~ 1 1  5 ( 1  Yk 11 at each iteration. One method of determining the 
norm I( Yk+l 1 1  is to find the unit vector a that maximizes the quadratic 
form Q k + l  (a) = a'Yk+,a. The maximum of QI;,.~ is the largest eigenvalue of 
Yk+l, and it is achieved when a is the corresponding principal eigenvector. 
Thus, we can equivalently require that 

Qk+l(a) I XI = II Yk 11 for all I1 a I I =  1. (2.3) 

From 1.1, 

Yk+l = Yk + / / ,k [ I  - Yk]xkxlYI; + //kYI;xkxl[I - YI;] 
+ /!;[I - Yk]XkX$YyXI;XL[I - Yk] (2.4) 

and 

Qk+l(a) = a'rYka + 2//k[arxk - a'Ykxk]x[Yka 

+ ,r;[arxk - a ' ~ ~ x k ] * x , T ~ k x ~  (2.5) 

Now we will find quite generally the vectors a and xk that yield the 
possible minima and maxima of Qk+l(a). The problem is meaningful 
only if a constraint is imposed on the norms of a and x ~ .  Thus we require 
that a'a = 1 and XTXI; = c, where the constant c = and consider the 
criterion 

(2.6) 

where //1 and rl2 are Lagrange multipliers. 
The extremizing values can be found in a standard way by computing 

the gradients of JI;+l with respect to a and xk and equating the results to 
zero. This can be done exactly in a straightforward manner, but here it 
is sufficient to observe that the gradients of all the involved scalar terms 
x[x~, a'a, aTxk, a'YkxI; = x,TYka, a'Yka, and x ~ Y ~ x I ;  are proportional to the 
vectors a, Xk, Y ~ x A ,  and Yka due to the symmetry of the matrix Yk. Thus 
we end up in two nonredundant equations having the general form 

Ik+l(a.xk) = Qk+l(a) + //1(ara- 1) + / / ~ ( X ~ X I ;  - c)  

rrlYka + 02a = ct3YI;xk + 0 4 X k  (2.7) 
rt5Yka + oha = fi7YkXk + (t8xk (2.8) 

Here r t 1 .  . . . , rr8 are scalar coefficients that have in some cases a rather 
complicated form. One can always eliminate the vectors Ykxk and Yka 
from the above equations, resulting in an equivalent pair of equations 

(2.9) 
(2.10) 
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where ,j,s are again scalars depending on up.  Solving xk from 2.10 and 
inserting it into 2.9 yields finally an equation having the general form 

[-/lyZ + 2 r ~ d a  = (2.11) 

where 31, 22, and 27 are scalar coefficients. But 2.11 can hold for a # 0 
only if a is an eigenvector of + 12Yk.  Since this matrix has the same 
eigenvectors as Yk, a must be one of the (unnormalized) eigenvectors of 
Yk. Finally, the unit norm constraint yields for the possible extremizing 
values a = &el, i = 1, M. A similar procedure shows that XI. must also 
be an eigenvector of Yk with possible values xk = * 1 1  XI 1 1  e l .  

It follows easily that 

lk+i(*ef5 * 1 1  XA 1 1  el) = Qk+i(e,) = !&(el) = A, 

if I # I since then e:e, = 0. Thus I( Yn+l 11 5 1 1  Yk 1 1  holds always in 
this case. If a and xk correspond to the same eigenvector e, of Yk, a’xk = * 1 1  XI 1 1 ,  aTYkxa = &A, 1 1  xk 11 ,  aTYAa = A,, and X : Y ~ X ~  = A, 1 1  xk 11’. Inserting 
these quantities into 2.5 and 2.6 yields now 

I A +  ) (*e l .  I( XA 11 e , )  = QA+l(e,) = A,[1 t /!A(l ~ A,) II xi 11212 (2.12) 

independently of the chosen signs. The boundedness requirement 
Q ~ + l ( e , )  5 A1 must be satisfied for all nonzero A,, which gives the in- 
equalities 

We consider first the eigenvalues A, > 1. The inequality 2.13 is tightest 
for the largest eigenvalue XI, and gives the condition 2.2. This is natural, 
since it corresponds to the most critical direction e l  that yields the norm 
1 )  Yk 11 = XI. Consider then the eigenvahes A, < 1. From 2.13, we get 
other meaningful upper bounds for / /k:  

(2.14) 

Clearly, this may yield a tighter bound than 2.2 if, for example, XI is 
slightly larger than unity. We conclude that the general stability condition 
of 1.1 is 0 5 //(k) 5 /I,,,, where /(,,, is the tightest of the upper bounds 
2.2 and 2.14, which must be evaluated for all nonzero A, < 1. 

This general condition is difficult to use in a practical neural algo- 
rithm, since it requires knowledge of the eigenvalues of the matrix YA 
at every iteration k. A simpler stability condition can be derived in the 
following way. First, we seek the A, < 1 that maximizes 2.12. Differen- 
tiating 2.12 with respect to A, and equating the result to zero yields the 
roots A, = 1 + l / ( / / ~  1 1  xk 1 1 2 )  and 

A, == 1/3 f 1/(3//A 1 1  XA \ I 2 )  (2.15) 
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The first root is not interesting, since it is greater than unity and yields the 
minimum. The latter root yields the maximum of 2.12 and belongs to the 
desired interval (0.1) if / / A  > 0.5 1 1  Xk 1 1 - 2 .  Observe that if / / A  < 0.5 1 1  XI 1 1  -2, 

the maximum of 2.12 for A, 5 1 is 1 and is achieved when A, = 1. This 
means that unstability cannot occur for A, 5 1 i f  / / A  < 0.5 1 1  XA 

We continue our analysis by using the upper bound / /A  = 2/[(X1 - 1) 1 1  
XA 11’1 from 2.2 in 2.15, which yields A, = ( A 1  - 1j/6. Now the smallest 
possible value of A1 can be found by computing the maximum of 2.12 
for these values of / i k  and A, and equating the result to the norm A1 of Yk. 
This procedure leads to the third order equation 2( A1 + 1 )’ = 27x1 ( A 1  - 1 j2, 
which has the roots A1 = 2, 0.2, and 0.2. The only meaningful solution is 
x1 = 2. Hence = 2 1 1  xk 1 1 - 2  is the largest value of the gain parameter 
for which 1.1 remains bounded (provided that 1 1  Y1 115 2). For this i l k ,  

both the cases A, < 1 and A, > 1 can yield ( 1  Yk+l 11 = 1 )  Yk 11. Thus we 
have derived and justified the condition 2.1. 

From the analysis above it follows also that if A1 > 2, the upper bound 
of / i k  is given by 2.2; the conditions 2.14 need not be taken into account 

The analysis in the proof gives a good insight into the behavior of 1.1. 
The stability condition 2.1 depends on the squared norm llxk)1’ = X,’XA of 
the input vector only. This can be computed easily or replaced by a 
suitable upper bound. A fast initial convergence is usually achieved 
when / i k  is roughly in the range 0 5/11xk11’. . l/llxk11’. For improving the 
estimation accuracy, / i k  can gradually be made smaller later on. 

The upper bound 2.2 has a natural form: it is inversely proportional 
to ( 1  xk 11’ and to the ”distance” A, - 1 of the squared norm XI of Wk from 
its stable value unity. 

in this case. This concludes the proof. 0 

3 Simulation Example 

The accuracy of the stability bound 2.1 is demonstrated in a simple but 
illustrative example. In this case, the data vectors xk were generated 
randomly from the uniform distribution defined by the bounding paral- 
lelogram in Figure 1. In addition, Figure 1 shows the learning trajectories 
of the two weight vectors Wk(1) and WA(2) computed using 1.1. The final 
values of the weight vectors are marked by the straight lines starting 
from the origin. In Figure 1, the gain parameter was = 1/ I( xk [ I 2 ;  
Figures 2 and 3 show the respective trajectories for //k = 1.3,’ )I xk 11’ and 
(2 + ( 1  xk / I 2 .  In Figure 1, 1.1 converges quickly, and the weight 
vectors stay in a relatively small region after initial convergence. Figure 2 
shows that a somewhat larger gain parameter makes the weight vectors 
highly variable, and they do not actually converge to any final values 
even in the mean sense. In Figure 3, the weight vectors first move a long 
time about on the boundary of the limiting stability circle with the radius 
11 w 1 1  = a. Since the gain parameter is slightly larger than the upper 
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Figure 1: The data vectors in the example are uniformly distributed inside the 
parallelogram. The figure shows also the learning trajectories of the weight 
vectors given by oja’s subspace rule 1.1 when the gain sequence was / / A  = 
1/ 11 XI, l 1 2 .  The final values are marked by the straight lines starting from the 
origin. 

bound 2/ 1 1  XI, the weight vectors eventually escape from this circle 
and 1.1 “explodes.” If / r k  is slightly smaller than 2/ 1 1  XI ( I 2 ,  the weight 
vectors remain just inside the limiting stability circle, but the update at 
each iteration is clearly too large for achieving any kind of convergence. 

4 Stability of a Nonlinear Generalization 

O p ’ s  PCA subspace algorithm 1.1 can be modified in several ways to 
include explicit nonlinearities (Karhunen and Joutsensalo 1993). A direct 
generalization of 1.1 is 

(4.1) 

Here the function g ( t )  is applied separately to each component of the 
argument vector. For stability reasons, g( t )  is usually a monotonic odd 
function, for example, tanh( t )  suitably scaled. In Karhunen and Joutsen- 
salo (1993), we have related 4.1 to an optimization criterion, showing that 
i t  is a kind of robust PCA subspace algorithm. 

WA+1 = WA + / l A [ I  - wkw:’]xkg(x:wA) 
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Figure 2: The learning trajectories of the weight vectors given by q a ’ s  subspace 
rule 1.1 when the gain sequence was 1i.k = 1.3/ 1 1  xk 1 1 2 .  

Theorem 1 can be generalized to the nonlinear algorithm 4.1 as fol- 
lows. 

Corollary 1. The algorithm 4.1 is stable if the conditions of Theorem 1 hold and 
I g( t )  I 5 I t l for all t ,  that is, the oddfunction g( t )  grows at most lineurly. 

Proof. From 4.1, we get for the ith weight vector wk(i) the update formula 

wk+l(i) = wk(i) + - ~~~:Ix&kTwk(i)I (4.2) 

The only difference in 4.2 with the respective formula for 1.1 is the nonlin- 
earity g(t) .  If we define a new gain parameter 11; = pkg[x[wk(i)]/x[wk(i), 
the two update formulas become exactly the same. Hence we can apply 
Theorem 1 for p;, and conclude that 4.2 is stable (bounded) if 

(4.3) 0 5 /Lk 5 /1;x:wk(i)/g[xkTwk(i)] 

This is different for each wk(i). Generally, one should compute 4.3 for 
i = 1.. . . . M ,  and take the smallest interval for the stability region of the 
matrix algorithm 4.1. But if g ( t )  grows at most linearly, or Ig(t)l 5 Itl, 
the upper bound in 4.3 is always at least as high as for 1.1 and 4.1 is 
guaranteed to be stable whenever 1.1 is. This verifies Corollary 1. o 
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Figure 3: The learning trajectories of the weight vectors given by 1.1 when the 
gain sequence was = (2+10-’)/ 1 1  x i  11’. The figure shows that Oja’s subspace 
rule 1.1 becomes eventually unstable as the weight vectors grow outside the 
stability region, which is a circle with radius 1 1  w 1 )  = fi and centered at the 
origin. 

If g( t )  grows less than linearly with t ,  4.3 is actually more robust than 
1.1, for example, against impulsive noise and outliers. 

5 Concluding Remarks 

The theorem proved in this paper guarantees that O p ’ s  PCA subspace 
rule 1.1 remains stable on reasonable conditions. Combined with earlier 
results, it justifies convergence of 1.1 to the PCA subspace of the input 
vectors with standard assumptions. The piece still lacking from a strict 
convergence theorem is a complete global analysis of the corresponding 
averaged differential equation. 

The analysis presented in the proof helps to understand the properties 
of 1.1 and is therefore itself useful. The stability theorem can easily be 
generalized to a nonlinear (robust) variant of 1.1. It  would be worthwhile 
to derive similar stability results for other PCA type learning algorithms, 
but this is still an open research problem. 
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