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Abstract – In this paper, methods for detecting failures
in process sensors from the noise measurement due to
aging issues are examined. The data are acquired from the
water level and pressure measurement transmitters in the
Olkiluoto nuclear power plant in Finland: units Olkiluoto 1
and Olkiluoto 2. Methods found from the literature about
the failure indicators are presented. Changes in the sensor
response time as well as in the resonance peaks in the signal
are identified from the power spectrum of the signal.

In addition, a new method for fingerprinting the sensors
using the Principal Component Analysis (PCA) of the signal
spectra is presented. By following the changes in these fin-
gerprints and the variations between parallel measurements
of the redundant sensors, symptoms of sensor failures can
be detected. In the experiments we were able to produce
stable fingerprints for the differential pressure transmitters
used in the water level measurement. Potential failure in
one differential pressure sensor in unit Olkiluoto 2 is found
with the fingerprint method and by analyzing the changes
in the spectrum.
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I. INTRODUCTION

Aging of components is an important research issue
especially for process industry. Mechanical tearing and
other forms of erosion have influence in secure operation
of processes. It is not easy to predict how long various
components can be used safely without any effects of
degradation in their use.

This paper deals with condition monitoring with noise
signal. Information needs are mostly related to concrete
renewal needs on process operation. The aim is to improve
the usability on the plant, which includes also aspects of
economic value. Partly theoretical study includes also an
assessment of operability.

Our test case uses the reactor tank water level control
in Olkiluoto nuclear power plant (NPP) in Finland. The
pressure and differential pressure transmitters are used for
pressure and water level measurements in the Olkiluoto
plant. The aim is to develop a procedure to improve the
condition monitoring of sensors.

The Olkiluoto NPP has a need for on-line calibration
and monitoring. We try to find out what can be learned
from equipment aging–related noise measurement. It
helps to determine for how long an old component can
still be used, and in planning of maintenance intervals.

The methods for detecting and predicting failures in
process sensors are examined based on the features and
the changes in the response signal of sensors. Four parallel
signals from four redundant sensors are measured for each
measurable quantity in critical monitoring system. Simul-
taneous failure of two sensors may lead to a shutdown of
the plant. Even single failure already requires corrective
actions.

Our study includes both literature review and an experi-
mental part. In this paper we present physical background
of the process sensors and their measurement setup in this
operation environment. Then, after a glance to the related
work in the literature, we present the methodology used in
the experiments and the realization. After the experiments
and results, discussion concludes the paper. A master’s
thesis has been published from this project [1].

II. PHYSICAL BACKGROUND

The water level is one of the most important measur-
ables in a nuclear reactor pressure vessel (RPV). The
technological possibilities for the water level measure-
ments are however quite limited. Due to the extreme
radiation environment inside the RPV, technology utilized
in conventional pressure vessels is not readily usable.
This challenge can be overcome by using the principle
of merging containers. The RPV is equipped with small
pipes, sensing lines, that connect the RPV to a differ-
ential pressure sensor as depicted in Fig. 1 Thus the
measurement of water level (in the RPV) becomes the
measurement of pressure difference between the sensing
lines (to the RPV). As an additional advantage, the sensor
can be mounted to a environmentally-friendly location.

The lines sense the pressure in the RPV. The lower
line is typically connected to RPV at a level below the
normal water level, i.e. to the water volume. On the other
hand, the upper line is connected at a level above the
normal water level, i.e. to the steam volume. The absolute
pressure inside the RPV can be assumed to be constant.
Thus, pressure difference seen by these lines originates
from the weight of the water column between the lines
connection points in the RPV, i.e. the water level.
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Figure 1. Illustration of the sensing lines of the differential
pressure sensors used in RPV water level measurement at

Olkiluoto NPP. Fine and coarse pressure sensors are denoted
by F and C respectively. Ref denotes the reference vessel of

the sensing lines.

III. LITERATURE REVIEW

In addition to an outright failure of the sensor, the
two most common modes of aging related failures in
pressure sensors are changes in the sensor calibration and
response time [2]. Calibration shifts can be caused either
by various mechanical problems in the sensor, by leakages
or degradation of the fill fluid in the sensor itself or in the
sensing lines or by the aging of the electronic components
of the sensor [2]. Response time problems, on the other
hand, are not usually related to problems in the sensor
electronics [2].

On-line detection of calibration changes is possible
either by using measurements of redundant sensors or
by examining the values of interdependent measurable
variables of the process [3]. These variables include the
measurements of other sensors and the values of process
actuators. By modeling these interdependent relationships
by either analytical [3] or by machine-learning mod-
els [4]–[6], one can detect abnormal values in different
variables.

The response time of a sensor can be estimated from
the sensor output signal using a noise analysis method
described by Hashemian et al. [7]. The method is based
on monitoring the natural fluctuations in the sensor output
signal. The assumption is that the fluctuations in the input
signal of the sensor consist of white noise, with constant
power spectral density (PSD) across all the frequencies of
the spectrum. Therefore the PSD of the output signal will
be proportional to the transfer function of the sensor [7].

The PSD is the discrete-time Fourier transform of the
autocorrelation sequence φXX of a wide-sense stationary
(WSS) random signal X[n] [8].

SXX(ω) =

∞∑
l=−∞

φXX [l]e−jωl, where |ω| < π (1)

The autocorrelation function of a WSS signal satisfies
a following symmetry property:

φXX [−l] = φ∗XX [l] (2)

Where φ∗XX denotes the complex conjugate. By using
this symmetry property it can be shown that the PSD is
a real-valued function of ω [8].

If there exist a suitably accurate analytical model of
the sensor transfer function one can fit the PSD of the
observed output noise signal to that model and obtain
an estimate of the sensor response time from the model
parameters [9].

In practice the PSD can be calculated from the observed
time series signal via Fast Fourier Transform (FFT).
Alternatively one can analyze the output noise signal
in time domain using autoregressive (AR) modeling and
calculate the response time using the parameters of the
AR model [10]. Estimating the sensor response time accu-
rately using noise analysis procedures, however, requires
special expertise and experience as the procedures have to
be manually adjusted to each individual sensor type [9].

Additionally, by fitting of the PSD of the sensor output
signal to analytical models of the sensor transfer function
one can detect problems in the sensing lines. These
include voids, blockages and leaks [11]. It is also possible
to distinguish between specific modes of sensor failure
by using quaternion numbers based on the shape of the
PSD [12]. Again, this approach requires an analytical
model of the transfer function specific to the type of
sensor in question.

A second approach to the on-line detection of faulty
sensors is to compare the PSDs of healthy and failing
sensors. A real time monitoring system for detection
of anomalies in the behavior of equipment has been
developed by Ortiz-Villafuerte et al. and tested at the
Laguna Verde NPP [13]. The monitoring system is based
on storing patterns. In this context a pattern is a vector
representation of a PSD, sampled at discrete frequencies.

During the training period, a set of reference patterns
is created for each sensor. These reference patterns corre-
spond to different operational states of the plant. Then,
during plant operation new observations are compared
against the stored reference pattern. If a new observa-
tion is similar enough to an existing reference pattern
it modifies the value of that pattern, so the reference
patterns evolve over time. Anomalies are detected when
an observation does not match any reference pattern in
memory.

The method presented in this paper has goals similar
to the one used at the Laguna Verde plant. However
we do not try detect anomalies in real-time but instead



improve the prediction accuracy by concentrating on the
most strongly differing frequencies by using Principal
Component Analysis (PCA).

IV. METHODOLOGY

Generally the occurrence of failures of pressure sensors
in NPPs is very rare and the time between the successive
failures in a single NPP might be years [2]. In Olkiluoto
the last failure of a differential pressure sensor of the
reactor tank monitoring system happened in 2013. On the
other hand high frequency signal data are stored generally
only for few weeks. Therefore no high frequency data
from known failing sensors are currently available. As
such supervised methods for classification between good
and failing sensors cannot be implemented. On the other
hand no continuous online monitoring system for quality
of signal noise is currently implemented.

In this context our aim is to develop a method for
detection of abnormalities and changes indicative of im-
minent sensor failure in the PSD of the sensor signal. The
method should be possible to implement by performing
few regular high frequency signal noise measurements
during each fuel cycle of the plant.

Our approach is to improve the failure detection ac-
curacy by concentrating on the most strongly differing
frequencies. These frequencies are found by using PCA as
a dimensionality reduction method on the data consisting
of the PSDs of redundant sensors at different points in
time.

PCA also provides a two dimensional visualization of
data in which the relative differences between samples
can be estimated. This is especially useful in the early
years of acquisition of signal noise data when there are
not yet enough data points for statistical analysis.

Later, when more data are acquired, PCA transformed
data can be used as a basis for automated clustering
approach to anomaly detection and finally to classification
between good and failing sensors.

PCA transform is an unsupervised method which is
used to find principal components – the directions of the
largest variance - in the original dataset [14].

The transformation matrix of the PCA, W can be
calculated by using the covariance matrix Σ = Cov(X),
where X is a normalized zero mean matrix of the original
dataset [14].

ΣW = ΛW (3)

Here Λ is a diagonal matrix whose diagonal elements
are the eigenvalues of W. The PCA transform from the
point x in the original space to the point z in the PCA
space is then calculated as

z = Wx (4)

When selecting only the first, most important, principal
components, the PCA can be used as a dimensionality

reduction method which preserves as much as possible of
the variance of the original data.

Assume we have n different PSD samples. We then
sample from each sample the value of the PSD at m
different frequencies yielding a m-dimensional dataset
of n samples. This dataset is used as an input of the
PCA dimensionality reduction algorithm. By selecting
two most significant principal components we form a 2-
dimensional dataset of n samples.

The coordinates of the PSD of a single sensor sample
in these two new dimensions form a fingerprint. These
fingerprints are used to compare and visualize the differ-
ences and the similarities of the PSD samples and also
to monitor the changes in these differences over time.
Our hypothesis is that in normal conditions the fingerprint
for the PSD of a single sensor remains the same across
samples taken at different points in time.

We can identify which frequencies contain most of the
variance by examining the contributions of the different
frequencies in the original dataset to the primary compo-
nents.

By concentrating on the two strongest principal com-
ponents we are concentrating on the directions which are
the most interesting when looking for linear differences
between the samples. The property of concentrating to the
strongest differences is well suited to the problem of aging
related failure detection where there are various possible
failure modes and basically any of the anomalies in the
data are of interest.

A major challenge with the application of this method
is that the PSD contains noise and artifacts which are not
related to the sensor itself. These stem from the dynamic
nature of the process itself but also from other sources
such as the differences between the sensing lines of the
different sensors. It might be advisable to exclude some
frequencies from the PSD samples if they are known to
contain excessive noise.

Another problem is the linearity of the PCA transfor-
mation. Non-linear similarities and differences between
the PSD samples are not preserved in the fingerprints.

V. REALIZATION AND EXPERIMENTS

The power spectral densities are calculated using the
method presented by Welch [15]. In this method the
signal is divided into smaller segments. The segments are
filtered with some suitable window function to avoid the
distortion caused by the limited length of the segments. A
periodogram is calculated for each segment via discrete
Fourier transform and the final PSD is formed as the mean
of these periodograms.

The implementation used in this project is the pwelch
-function in the Matlab Signal Processing Toolbox [16]
and the window function is the Matlab implementation of
a four-term Blackman-Harris window. The segment length
is 2048 samples and the overlap between segments is 1945
samples.



Primary components are calculated with the pca -
function in the Matlab Statistics and Machine Learning
Toolbox [16]. The contributions of the different fre-
quencies to the principal components are calculated as
the absolute values of the component coefficient matrix
produced by the pca -function.

We examine four different types of sensors. Two of
these types are differential pressure sensors used to mea-
sure water level in the reactor tank. The types differ by the
sensitivity of measurement, which is based on the vertical
location of the nozzles of the sensing lines in the tank as
depicted in Fig. 1. Also there are two types or pressure
sensors used to measure the steam pressure in the tank.
These also differ by their sensitivity which is based on
the sensor itself.

We examine the PSD samples of the sensors of both
units Olkiluoto 1 and Olkiluoto 2 together, as the internal
structure of both units is similar, except for few minor
differences.

The measurements of the sensor signals are taken at the
following dates: 26th May 2015, 11th November 2015 and
29th February 2016. Each measurement is taken during
the normal operation of the plant. The 26th May samples
are taken only from sensors of Olkiluoto 1. Samples taken
at the other two dates include measurements from the
sensors of both units. The measurement of the fourth
sensor of Olkiluoto 2 are however missing from 11th
November samples due to technical difficulties in the data
collection system. The different samples are listed in the
Table I.

Table I. LISTING OF SENSOR NUMBERS AND DATES OF THE SAMPLES
USED IN THE EXPERIMENT

Date Sensors
Olkiluoto 1 Olkiluoto 2

26th May 2015 1, 2, 3 and 4
11th November 2015 1, 2, 3 and 4 1, 2 and 3
29th February 2016 1, 2, 3 and 4 1, 2, 3 and 4

The original sampling frequency of the data is 100Hz.
The frequencies below 0.5Hz and above 45Hz are dis-
carded to avoid unwanted noise from the actual process
and from the electric power grid resprectively.

Altogether, there are 19 PSD samples used in the
analysis for each type of sensor. From each sample the
value of the PSD is picked at 130 unique frequencies
sampled approximately logarithmically. The total input
dataset of the PCA is then a 19× 130 matrix.

VI. VERIFICATION

Due to the scarcity of the available data a rigorous
quantitative estimation of the efficiency of the proposed
method is not possible. However it is possible to evalu-
ate the fingerprinting properties of the PCA method by
examining how the different samples of the same sensor
cluster together. We compare the clustering properties of

PCA transformed samples versus samples obtained by
logarithmically sampling frequencies from a PSD graph.

The comparison is performed using k-means cluster-
ing [17], which partitions the dataset into k clusters with
each sample belonging to the cluster with the nearest
mean. The algorithm works in two-step iterations by first
updating the cluster means and then the members of the
clusters.

After clustering we calculate the number of clusters
to which the samples from single sensor belong to. The
average of these values over all the sensors is used to
measure the efficiency of the fingerprinting. Ideally all
the samples from the same sensor would cluster together
in the same cluster.

The k-means clustering is performed using the Matlab
implementation [16], which employs k-means++ algo-
rithm [18]. K-means++ uses a proportional randomization
in each iteration for improved running time and quality
of results [18].

The number of clusters k is set to 8 which is the number
of different sensors in the dataset. The distance measure
used is the squared euclidean distance. As k-means++
is a random algorithm which converges to some local
optima each clustering is repeated 5000 times to correct
for random errors.

VII. RESULTS

The experiments for the differential pressure sensors
show that the samples of the same sensor are generally
clustered together in the principal component space. The
hypothesis that the coordinates of the PSD of a sensor
sample in the principal component space could act as
a fingerprint that characterizes the sensor is supported
by these results. The clusters of the different sensors,
however, overlap each other so these sensor fingerprints
are not unique to one sensori.

Additionally, the corresponding sensors from the two
different units seem to generally cluster near each other.
This indicates that the structural differences in the place-
ment of each sensor inside the plant affect the spectra
of the sensors. Also, samples of the same sensor models
were clustered together. This would indicate that internal
structure of the sensors affect the PSD of the sensors.
On the other hand, the results of the non-differential
pressure sensors show clustering based on the date of the
measurement and the reactor unit. For these sensors the
hypothesis of the stable fingerprint for each sensor does
not hold.

An example of a representation of the fingerprints of
PSD samples in principal component space is shown in
the Fig. 2. The samples are taken from the differential
pressure sensors of the fine sensitivity water level mea-
surement. In the figure, it can be seen that the fingerprint
for 29th February sample the sensor OL2-4 differs from
all the other fingerprints in the directions of both principal
components. The PSDs of all the fine sensitivity water
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Figure 2. Coordinates of the PSD samples of the differential
pressure sensors of fine sensitivity water level measurement,

plotted in the space of two first principal components.
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Figure 3. PSD of the signal noise of the differential pressure
sensor of fine sensitivity water level measurement sensor of

Olkiluoto 2 unit taken on 29th February 2016. Sensor-4
exhibits lower spectral magnitude in the 1Hz-3Hz range and
stronger resonance peaks around 5Hz-10Hz range than other

sensors.

level measurement sensors of Olkiluoto 2 unit for the 29th
February are presented in Fig. 3. The PSD for sensor
OL2-4 exhibits lower magnitude in the peak near 1Hz
frequency. This peak can be associated with the real
pole of the transfer function and its weakening usually
indicates an increase in the sensor response time [7],
[19]. Additionally the resonance peaks around 5Hz-10Hz
range appear stronger in the sensor OL2-4 PSD.

The contributions of the different frequencies to the
primary components of fine sensitivity water level sensors
are presented in Fig. 4. These show that the main compo-
nents of the two principal components are the 1Hz region
and the 5Hz–10Hz resonance peaks mentioned above.
The PCA method successfully captures the strongest
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Figure 4. Contributions of the different frequencies to the first
two principal components of the all PSD samples of the

differential pressure sensors of the fine sensitivity water level
measurement.

linear differences in the sample space.
The 29th February is the only sample available for

the sensor OL2-4. Therefore, no definitive conclusions
can yet be made regarding the reasons for the above
mentioned anomalies in its spectrum. Also it is worth
noting that the sensor in question has been replaced in
2001 and is of a different model than other sensors of fine
sensitivity water level measurement. Other fingerprints
show no evidence of noticeable changes in the sensor
PSDs during the duration of this project.

The results of clustering performance comparison for
fine sensitivity water level sensors are presented in Fig. 5.
The figure shows the average number of clusters versus
the different number of sampling dimensions used. The
sampling dimensions are either the primary components
in the PCA transformed data or discrete frequencies in
the logarithmically sampled data.

The results show the PCA transformed samples gen-
erally clustering to fever clusters than samples sampled
logarithmically from PSD when using low number of
sampling dimensions. Also the results indicate that the
clustering performance of using only two PCA dimen-
sions is suboptimal with best clustering performance
being achieved with five primary components.

VIII. DISCUSSION

The method presented here is only a first step in
the process of detecting and predicting aging related
faults. Testing if the changes in the fingerprints over time
correspond to or indicate actual failures of the sensors
naturally requires data from sensors which are known
to be failing. Considering the relative infrequency of the
sensor failures in nuclear power plants gathering this data
at Olkiluoto will probably take years.

The fingerprinting method presented here seems to
generate reasonably stable fingerprints for differential
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pressure sensors. The clustering performance estimation
however suggests that if these fingerprints are to be used
as the basis of an automated clustering system then more
than two primary components should be used.

For non-differential pressure sensors however the fin-
gerprints are not stable over time. This might be due to
differing operational conditions in the different phases of
the fuel cycle of the plant. Repeated measurements over
multiple fuel cycles are required to confirm if fingerprint-
ing non-differential pressure sensors is at all possible with
this method.

The fingerprinting method presented here is also ap-
plicable to other types of sensors, provided that input
data of the sensor contain enough white noise so that
the differences in the sensor transfer function are visible
in the output PSD of the sensor.

IX. CONCLUSIONS

We have presented a method of generating fingerprints
of the PSDs of pressure and differential pressure sensors
used in nuclear power plants. The method uses PCA
transform to enhance the fingerprint resolution by con-
centrating on the most strongly differing frequencies in
the dataset. Changes in these fingerprints over time could
be used to detect anomalies in these PSDs and discover
possible faults related to the aging of the sensors.

Applying the method on operational pressure sensor
data produces stable fingerprints for differential pressure
sensors. However for non-differential pressure sensors the
fingerprints are not stable over time. By analyzing the
fingerprints and spectral properties one anomalous PSD
of a differential pressure sensor at Olkiluoto 2 nuclear
power plant is recognized. However the application of

the method to the proper fault recognition will need
measurements over longer time period.
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