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Abstract--We derive and discuss various generalizations of neural PCA (Principal Component Analysis)-type 
learning algorithms containing nonlinearities using optimization-based approach. Standard PCA arises as an op- 
timal solution to several different information representation problems. We justify that this is essentially due to the 
fact that the solution is based on the second-order statistics only. I f  the respective optimization problems are gen- 
eralized for nonquadratic criteria so that higher-order statistics are taken into account, their solutions will in general 
be different. The solutions define in a natural way several meaningful extensions of  PCA and give a solid foundation 
for them. In this framework, we study more closely generalizations of the problems of  variance maximization and 
mean-square error minimization. For these problems, we derive gradient-type neural learning algorithms both for 
symmetric and hierarchic PCA-type networks. As an important special case, the well-known Sanger's generalized 
Hebbian algorithm ( GHA ) is shown to emerge from natural optimization problems. 

Keywords--Principal components, Optimization, Neural network, Unsupervised learning, Nonlinearity, Robust sta- 
tistics, Generalized Hebbian algorithm, Oja's rule. 

1. I N T R O D U C T I O N  

Principal component analysis (PCA)  is a well-known, 
widely used statistical technique. Essentially, the same 
basic technique is utilized in several areas under dif- 
ferent names such as Karhunen-Loeve  transform or 
expansion, Hotelling transform, and signal subspace or 
eigenstructure approach. In pattern recognition, PCA is 
used in various forms for optimal feature extraction and 
data compression (Devijver & Kittler, 1982). In image 
processing, PCA defines the Hotelling or KL transform 
that is optimal in image data compression (Jain, 1989). 
In signal processing, a useful characterization of signals 
is to assume that they roughly lie in the signal subspace 
defined by PCA. Several modern methods of signal 
modeling, spectrum estimation, and array processing 
are based on this concept (Therrien, 1992). 

Let x be an L-dimensionai data vector coming from 
some statistical distribution centralized to zero: E { x } 
= 0. The ith principal component x re ( i )  of  x is defined 
by the normalized eigenvector c (i)  of  the data covari- 

Acknowledgements: The authors are grateful to Prof. Erkki Oja 
for useful comments and insightful discussions on the topic of the 
paper, and to a reviewer for his detailed comments. 

Requests for preprints should be sent to Dr. Juha Karhunen, Hel- 
sinki University of Technology, Laboratory of Computer and Infor- 
mation Science, Rakentajanaukio 2 C, FIN-02150 Espoo, Finland. 

ance matrix C = E { xx r } associated with the ith largest 
eigenvalue h( i ) .  The subspace spanned by the princi- 
pal eigenvectors c( 1 ) . . . . .  c (M)  (M < L) is called 
the PCA subspace (of  dimensionality M).  PCA net- 
works are neural realizations of  PCA in which the 
weight vectors w (i) of  the neurons or the weight matrix 
W = [w(1)  . . . . .  w(M)]  converge to the principal 
eigenvectors c ( i )  or to the PCA subspace during the 
learning phase. 

It is well known that standard PCA emerges as the 
optimal solution to several different information rep- 
resentation problems. These include: 
1. maximization of linearly transformed variances 

E{ [w(i)Tx] 2 } or outputs of  a linear network under 
orthonormality constraints ( w r w  = I ) ,  

2. minimization of the mean-square representation er- 
ror E{ [Ix - ill 2 }, when the input data x are approx- 
imated using a lower dimensional linear subspace 
= W W  rx; 

3. uncorrelatedness of  outputs w (i)  rx of  different neu- 
rons after an orthonormal transform (WrW = I ) ;  
and 

4. minimization of representation entropy. 
Derivations of  the optimal PCA solutions with the re- 
quired assumptions and constraint conditions can be 
found in several textbooks (see, e.g., Devijver & Kit- 
tier, 1982; Jain, 1989; Young & Calvert, 1974). The 
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criterion to be optimized can often be defined in slightly 
different forms, so that the solution is provided by ei- 
ther the PCA subspace or the principal eigenvectors 
themselves. 

In the next section, we briefly consider the relative 
merits and shortcomings of linear and nonlinear PCA 
networks and algorithms. Various robust and nonlinear 
extensions of  neural PCA are introduced by general- 
izing in the following sections each of the above-men- 
tioned quadratic optimization criteria, which lead to 
standard PCA solution. Such an approach gives a sound 
mathematical foundation to the generalizations and 
helps to understand the properties of  the corresponding 
learning algorithms. The main attention is devoted to 
the first two criterions, for which we derive several new 
learning algorithms and present experimental results. 

Another typical approach to "nonl inear"  PCA has 
been just to insert a nonlinearity somewhere in a PCA 
network and see what happens, or to propose some 
other heuristic modification. The results of  such heu- 
ristic algorithms are more difficult to interpret. A third 
approach is to start from some fixed neural network 
structure and study what kind of algorithms can be re- 
alized using it. This viewpoint has been adopted in a 
recent review report (Oja & Karhunen, 1993). Some- 
times these approaches lead to the same learning al- 
gorithms that are obtained from suitable optimization 
criteria. Such connections are pointed out in the paper. 

In this paper, we extend and generalize in several 
ways the original ideas presented in Karhunen and 
Joutsensalo (1994).  Preliminary results have been 
given in the conference papers (Karhunen & Joutsen- 
salo, 1993a, b) .  In the following, we present these re- 
sults in a unified and extended form in the general op- 
timization framework described above. Perhaps the 
most important single result is the derivation of the 
well-known generalized Hebbian algorithm (GHA)  
( Sanger, 1989b) (as well as its robust and ' 'nonlinear" 
counterparts) from the variance maximization and 
mean-square error minimization problems. 

The rest of  the paper is organized as follows. In the 
next section, we compare and discuss linear and non- 
linear neural PCA on a general level. After this, we 
discuss in the following sections generalizations of 
each of the four information representation problems 
mentioned before. The main attention is on the first two 
problems, namely variance maximization and represen- 
tation error minimization, for which we present new 
theoretical and experimental results. In the conclusions, 
we present some general comments on the results. 

2. L INEAR AND NONLINEAR NEURAL PCA 

It is now well known that relatively simple, neurobio- 
logically justified Hebbian-type learning rules can pro- 
vide PCA. This, together with the usefulness and many 
applications of  PCA, has prompted a lot of interest in 

various neural realizations of PCA (see Cichocki & 
Unbehauen, 1993a; Haykin, 1994; Hertz, Krogh, & 
Palmer, 1991; Kung, 1993; Oja, 1992). However, PCA 
networks and learning algorithms have some limita- 
tions that diminish their attractiveness: 
1. Standard PCA networks are able to realize only lin- 

ear input-output mappings. 
2. The eigenvectors needed in standard PCA can be 

computed efficiently using well-known numerical 
methods. Gradient-type neural PCA learning algo- 
rithms converge relatively slowly, and achieving a 
good accuracy requires an excessive number of it- 
erations in large problems. 

3. Principal components are defined solely by the data 
covariances (or correlations). These second-order 
statistics characterize completely only Gaussian 
data and stationary, linear processing operations. 

4. PCA networks cannot usually separate independent 
subsignals from their linear mixture. 
If  a PCA-type network contains nonlinearities, the 

situation becomes much more favorable for a neural 
realization. First, the input-output  mapping becomes 
generally nonlinear, which is a major argument for us- 
ing neural networks. Nonlinear processing of the data 
is often more efficient, and the properties of  standard 
linear methods have been explored thoroughly. 

Second, neural algorithms become much more com- 
petitive or may be the only possibility for heuristic 
learning principles. In optimizing nonquadratic criteria, 
one must resort to iterative algorithms anyway, because 
efficient closed-form solutions are usually not avail- 
able. The gradient-type neural learning algorithms are 
iterative by nature, and a suitably chosen nonlinearity 
(e.g., the sigmoid) may be implemented via analog 
hardware almost as easily as linear functions. 

Our third motivation of using nonlinearities is that 
they introduce in an implicit way higher-order statistics 
into the computations. This can be seen by expanding 
the nonlinearities into their Taylor series. Higher-order 
statistics, defined by cumulants and higher than second 
moments (see, e.g., Nikias & Mendel, 1993), are 
needed for a good characterization of non-Gaussian 
data. There exist several important problems that can- 
not adequately be solved using merely second-order 
statistics. This has prompted a lot of  recent research in 
higher-order statistics and spectra (e.g., in signal pro- 
cessing) (Nikias & Mendel, 1993). 

Fourth, the outputs of  standard PCA networks are 
usually at most mutually uncorrelated but not indepen- 
dent, which would be more desirable in many cases. 
We have demonstrated (Karhunen & Joutsensalo, 
1994) that adding nonlinearities to a PCA network in- 
creases the independence of the outputs, so that the 
original signals can sometimes be roughly separated 
from their mixture. Recently, Independent Component 
Analysis ( ICA) (Comon, 1994) has been introduced 
as an interesting extension of PCA in context with the 
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FIGURE 1. Architecture of the symmetric network. Feedback 
connections (dashed lines) are needed in the learning phase 
only. 

signal separation problem (Jutten & Herault, 1991 ). 
This will be discussed later in this paper. 

Naturally, nonlinear PCA-type networks have 
some drawbacks compared to the linear ones. The 
mathematical analysis of  the learning algorithms is 
often inherently difficult, making the properties of  
the networks less well understood. The nonlinear 
learning algorithms are more complicated and may 
sometimes be caught more easily in local minima. 
Adding nonlinearities to a neural network does not 
help automatically or in all problems. For some non- 
quadratic criteria the final input -output  mapping is 
still linear, because the nonlinearities appear in the 
learning rule only. 

In the following presentation, nonlinear PCA-type 
networks and learning algorithms are divided into sym- 
metric and hierarchic ones quite similar to those for 
standard PCA networks. In standard PCA learning al- 
gorithms, some kind of hierarchy or differentiation is 
necessary between the learning rules of different neu- 
rons to get the principal components or eigenvectors 
themselves. The completely symmetric algorithms 
yield PCA subspace and some linear combinations of 
principal components only. It seems that in nonlinear 
PCA networks hierarchy is not so important, because 
nonlinearities break the complete symmetry during 
learning, and the outputs of symmetric networks be- 
come more unique as in the linear case (Oja, Ogawa, 
& Wangviwattana, 1992; Karhunen & Joutsensalo, 
1994; Xu, 1993). 

The learning algorithms derived by considering gen- 
eralizations of the optimization problems leading to 
standard PCA can be divided into two classes in an- 
other way. We distinguish between so-called robust 
PCA algorithms (Karhunen & Joutsensalo, 1993a, b; 
Cichocki & Unbehauen, 1993b; Xu & Yuille, 1993), 

and nonlinear PCA algorithms. We define robust PCA 
so that the criterion to be optimized grows less than 
quadratically, and the constraint conditions are the 
same as for the standard PCA solution, which emerges 
from the respective quadratic criterion. Typically, the 
weight vectors of  the neurons (basis vectors of the ex- 
pansion) are required to be mutually orthonormal. Ro- 
bust PCA problems usually lead to mildly nonlinear 
algorithms, in which the nonlinearities appear at se- 
lected places only. More specifically, at least some of  
the outputs of the neurons are still their linear responses 
y(i)  = xrw( i ) ,  where w(i )  is the weight vector of ith 
neuron. In the nonlinear PCA algorithms all the outputs 
g[y(i)] of the neurons are nonlinear functions of the 
response. 

The structure of our nonlinear PCA network is 
shown in Figure 1 for the symmetric case, and in Figure 
2 for the standard hierarchic arrangement. The network 
contains input and output layers only. After learning, 
the feedback connections between outputs and inputs 
shown by dashed lines in the figures are not needed, 
and the network becomes purely feedforward. The 
same structure can be used for all the algorithms, but 
details of the realization vary. Other structures have 
been proposed in the literature (e.g., recurrent gener- 
alizations and nonlinear PCA networks with lateral 
connections ) (Palmieri, 1994). 

Finally, we note that various nonneural, nonlinear 
extensions of PCA have been introduced in statistics 
(e.g., Bekker & de Leeuw, 1988; Girl, 1990; Hastie & 
Stuetzle, 1989). These approaches are often more non- 
linear than ours in the sense that also the basis functions 
of the expansion (corresponding to the weight vectors 
of the neurons) are nonlinear, not only the coefficients 
of the expansion. 
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FIGURE 2. Architecture of the hierarchic network. Feedback 
connections (dashed lines) are needed in the learning phase 
only. 
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3. G E N E R A L I Z A T I O N  OF V A R I A N C E  
M A X I M I Z A T I O N  

In this section, we study more closely generalizations 
o f  the first information representation problem men- 
tioned in the Introduction, namely variance maximi- 
zation. 

The standard quadratic problem leading to a PCA 
solution is one of  how to maximize the output variances 
E { y ( i )  2} = E{ [w(i )Tx]  2} = w ( i ) r C w ( i )  of  the lin- 
ear network under orthonormality constraints. The 
number of  neurons M is assumed to be less than or 
equal to the dimension L of  the data vectors x. The 
maximization problem is not well defined unless the 
nonrandom L-dimensional weight vectors w( i )  o f  the 
neurons are constrained somehow. In lack of  prior 
knowledge, orthonormality constraints are the most  
natural, because they measure the variances along max- 
imally different directions. Normally,  the ith weight 
vector w ( i )  is constrained so that it must have unit 
norm and be orthogonal to the weight vectors w ( j ) ,  j 
= i . . . . .  i - 1 o f  the previous neurons. These con- 
straints take the mathematical form w (i)  rw ( j )  = 60, j 
--< i, where the Kronecker  delta 6~j = 1 for i = j and 0 
for i ~ j .  The optimal w ( i )  is then the ith principal 
eigenvector e (i)  o f  C,  and the outputs of  the PCA net- 
work become the principal components  o f  the data vec- 
tors. The PCA networks and learning algorithms are in 
this case hierarchic. In the following, we refer to this 
constraint set and case as the standard hierarchic case. 

The respective variance maximization problem can 
be solved for symmetric orthonormality constraints 
w ( i ) r w ( j )  = 6~j, j q: i, as well. It is convenient to 
define the L × M weight matrix W = [ w ( 1 )  . . . . .  
w ( M ) ] ,  for which columns are the weight vectors o f  
the M neurons. The symmetric orthonormality con- 
straints then become W r W  = I ,  where I is the unit 
matrix. Let y = Wrx denote the response vector, which 
is the output vector o f  a linear PCA network. The cri- 
terion to be maximized can then be represented com- 
pactly as E{ Ilyll 2 } = t r ( W r C W  ), where t r( . )  denotes 
the trace o f  the matrix. The optimal solution is now 
given by any orthonormal basis spanning the PCA sub- 
space, and is thus not unique. This version of  the var- 
iance maximization problem leads to PCA subspace 
networks and learning rules. We refer to this case and 
constraint set as the standard symmetr ic  case in the rest 
o f  the paper. 

Consider now generalization o f  the variance maxi- 
mization problem for robust PCA. Instead of  using the 
standard mean-square value, we can maximize a more 
general expectation E{ f [ x r w ( i ) ]  } of  the response 
x r w ( i )  o f  the ith neuron. The f u n c t i o n f ( t )  is assumed 
to be a valid cost function that grows less than quad- 
ratically, at least for large values of  t. More specifically, 
we assume t h a t f ( t )  is even, nonnegative, continuously 
differentiable almost everywhere,  and f ( t )  --< t2/2 for 

large values of  ]tl.  Furthermore, its only minimum is 
attained at t = 0, andf ( t~)  -< f ( t2 )  if I t~ I < I t2 [. Some 
of  these assumptions are not absolutely necessary. Ex- 
amples o f  such a function are f ( t )  = In cosh( t )  and 
f ( t )  = Itl (see, Cichocki & Unbehauen, 1993a; Kar- 
hunen & Joutsensalo, 1994). 

The criterion to b e  maximized is then for each neu- 
ron weight vector w ( i ) ,  i = 1 . . . . .  M of the form 

l(i) 

J,[w(i)] = E { f [ x r w ( i ) ] }  + ~ h0[w(i)rw(j) - 60]. (1) 
j=l 

Here the summation imposes via the Lagrange multi- 
pliers X 0 = Xji the necessary orthonormality constraints 
w ( i ) T w ( j )  = 60. Both the hierarchic and symmetric 
problems can be discussed under the same general cri- 
terion (1) .  In the standard symmetric case, the upper 
bound of  the summation index is l ( i )  = M for all i = 
1 . . . . .  M. In the standard hierarchic case l ( i )  = i; the 
optimal weight vector o f  the ith neuron defines then 
the robust counterpart o f  i th principal eigenvector c ( i) .  
It is possible to choose the constraints for each neuron 
in eqn ( 1 ) from an even more general set of  indices 
S ( i ) ,  provided that the index i corresponding to the 
normalization constraint w (i) rw (i) = 1 is included in 
S ( i ) .  In particular, the order of  the neurons could be 
permuted in hierarchic networks. However,  the two ba- 
sic cases described above are the most  relevant ones, 
and we concentrate on them in the following. 

The gradient of  J~[w(i ) ]  with respect to w( i )  is 

O J l ( W ( i ) )  
h ( i )  - 

0 w ( i )  

= E{xg[xrw( i ) ] }  + 2Xiiw(i) + 
I(i) 

Z h0w(j), 
j=l,j~-i 

(2) 

which  must  also be satisfied at the opt imum.  The op- 
timal values o f  the Lagrange  multipliers can be de- 
termined by mult iplying eqn (2 )  by w ( j )  r, j = 1, 
. . . .  l ( i ) ,  f rom the left, and equat ing the result to 
zero. Taking into account  eqn (3 ) ,  this yields h~j = 
- w ( j ) r E { x g [ x r w ( i ) ] }  for  i ~ j ,  and hii = 

- 0.5w ( i )  r E  { x g[ x Tw (i) ] }. Inserting these values into 
eqn (2)  we get 

if i) ] 
h ( i ) =  I -  Y~w(j)w(j)  r E { x g [ x r w ( i ) l } .  (4) 

j=l 

A practical stochastic gradient algorithm for maxi- 
mizing eqn (1)  is now obtained by inserting the esti- 
mate hk(i) o f  the gradient vector (4 )  at step k into the 
update formula 

w ( i ) r w ( j )  = 6o, j = 1 . . . . .  l ( i ) ,  (3) 

where g ( t )  is the derivative d f ( t ) / d t  o f f ( t ) .  At the 
optimum, the gradients must vanish for i = 1 . . . . .  M. 
Differentiation with respect to the Lagrange multipliers 
yields the orthonormality constraints 
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Wk+l(i) : Wk(i) + #khk(i). (5) 

Here #k is the gain parameter. Throughout  the paper, 
we use the standard instantaneous gradient estimates. 
They are obtained simply by omitting the expectations 
and using instead o f  them the instantaneous values of  
the quantities in question. The final algorithm thus be- 
comes (i = 1 . . . . .  M)  

Wk+l (i) 

] = wk(i) + #k I -- ~ Wk(j)wk( j )  r xkg[xrwk(i)]. (6) 
j=!  

The assumptions made earlier on the cost function 
f ( t )  imply that its derivative g ( t)  appearing in eqn (6)  
and the other learning algorithms in this paper should 
be an odd nondecreasing (often monotonical ly grow- 
ing)  function o f  t. For stability reasons, it is at least 
necessary to assume that g ( t )  <-- 0 for t < 0 and g ( t )  
--> 0 for t > 0 (see Oja, Ogawa,  & Wangviwattana,  
1991 ). 

Defining the instantaneous representation error vec- 
tor 

l ( i )  I ( i )  

ek(i) = Xk -- Y~ [X~Wk(j)]wk(j) = Xk -- ~ yk ( j )wk( j ) ,  (7) 
)=1 j= l  

the algorithm (6)  can be written in a simpler form 

Wk+l(i) = wk(i) + #kg[Yk(i)]ek(i). (8) 

From eqns (7)  and (8) ,  one can easily see that no ma- 
trix multiplications are needed in the actual realization. 
The representation error is discussed more closely in 
the next section. 

In the symmetric  case I (  i) = M ,  i = 1 . . . . .  M ,  the 
error vector ek(i) becomes the same ek for all the neu- 
rons. Then eqn (6)  can be expressed compact ly  in the 
matrix form 

Wk+l = Wk + #k[I -- WkWkr]xkg(xkrWk) 

= Wk + #kekg(y~), (9) 

where Yk = Wrxk is the instantaneous response vector. 
The function g ( t )  is applied separately to each com- 
ponent o f  its argument  vector. The algorithm (9)  co- 
incides with the wel l -known Oja ' s  PCA subspace rule 
(Cichocki  & Unbehauen,  1993a; Hertz et al., 1991; 
Kung, 1993; Oja, 1992) in the linear special case g ( t )  

= t. Otherwise, (9 )  defines a robust generalization of  
Oja ' s  rule that was first proposed quite heuristically at 
the end of  the paper by Oja et al. ( 1991 ). 

In the standard hierarchic case I ( i )  = i, eqn (6)  can 
be written in the matrix form 

Wk+~ = Wk + /Zk{xkg(y r) -- WkUT[ykg(yr)]} (10) 

where the upper triangular operator UT sets the ele- 
ments of  its argument matrix to zero below the diago- 
nal. In the linear special case g ( t )  = t,  eqn (10)  co- 
incides exactly with the well-known G H A  algorithm 

(Cichocki & Unbehauen, 1993a; Haykin, 1994; Kung, 
1993; Oja, 1992) proposed originally by Sanger 
(1989a, b) .  Otherwise, eqn (10)  defines a robust gen- 
eralization o f  the G H A  a lgor i thm/Another ,  more prac- 
tical formulation o f  eqn (10)  is obtained by noting that 
the error vector (7 )  can be expressed in the standard 
hierarchic case recursively as ek(i) = ek(i  -- 1) -- 
y k ( i ) w k ( i ) ,  ek(0) = xk. This shows that robust G H A  
can be implemented locally in a similar manner as stan- 
dard G H A  (Sanger, 1989b).  

In the linear case, g ( t)  = t corresponding to standard 
PCA learning the func t i on f ( t )  = t2 /2 ,  and the criterion 
to be maximized can be expressed in the natural closed 
form E { f [ x r w ( i ) ]  } = w ( i ) r C w ( i ) / 2 .  It is clear that 
the optimal solution for the robust criterion ( 1 ) will in 
general not coincide with the respective PCA solution, 
though it can be close to it. As an example, consider 
the choice f ( t )  = ]t[. The directions w ( i )  that maxi- 
mize E {Ix rw (i)l  } are for some arbitrary nonsymme-  
tric diStribution different from those maximizing the 
variances E { [ x rw (i)  ] 2 } under orthonormality con- 
straints. 

A more nonlinear generalization o f  the variance 
maximization problem is not straightforward, because 
it is not easy to decide what constraints should be im- 
posed on the weight vectors, and the respective algo- 
rithms become less practical for nonorthonormal con- 
straints (Karhunen & Joutsensalo, 1994). 

4. GENERALIZED REPRESENTATION ERROR 

4.1. Standard PCA Solutions 

Consider the linear approximation $ ( i )  o f  the data vec- 
tors x in terms of  a set of  vectors w ( j ) ,  j = 1 . . . . .  
1( i) :  

I ( i )  I ( i )  

~(i) = ~ [ x r w ( j ) ] w ( j ) =  Y~ y ( j ) w ( j ) .  (11) 
)=1 j= l  

Because the number  l ( i )  of  the basis vectors w ( j )  is 
usually smaller than the dimensionality L of  the data 
vectors, there will be some error. The instantaneous 
representation (approximation)  error ek (i) = xk - ~k (i)  
for any data vector xk is given by eqn (7) .  Here it is 
assumed that the w ( j )  vectors can be updated simul- 
taneously. 

Standard PCA-type solutions are obtained by mini- 
mizing the (quadratic) mean-square representation er- 
ror E { Ire ( i)  II z } = E { I lx - ~ ( i)  I] 2 }. Again, both the 
hierarchic and symmetric case can be considered. If  the 
error must be minimized sequentially for any number  

In Karhunen and Joutsensalo (1993b) it was claimed that a sim- 
ilar derivation using different coefficients yields robust generalization 
of the SGA algorithm (Oja, 1992). However, this is not true, because 
any scalar coefficients of the Lagrange multipliers can always be 
absorbed into them. 
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of terms l ( i )  = 1, 1(i) = 2, up to I ( i )  = M, the optimal 
basis vectors are the principal eigenvectors of  the data 
covariance matrix: w ( j )  = c ( j ) .  I f  the error must be 
minimal only for l ( i )  = M,  the optimal solution ~ = 
WWrx is given by any orthonormal (WrW = I)  basis 
of the PCA subspace spanned by c ( 1 ) . . . . .  c (M) ( Pal- 
mieri & Zhu, 1993 ). It is noteworthy that it is not nec- 
essary to impose any constraints on the weight vectors 
in the approximation ( 11 ), because minimization of the 
mean-square error will force the weight vectors mutu- 
ally orthonormal. 

Bourland and Kamp (1988) as well as Baldi and 
Hornik (1989) have shown that the same PCA sub- 
space solution minimizes the mean-square error for the 
more general approximation ~ = WQ rx, where W and 
Q are L × M matrices. This holds even if 

~ = Wh(Qrx) ,  (12) 

where h ( t )  is a smooth nonlinearity behaving linearly 
in the vicinity of  the origin (Bourland & Kamp, 1988). 
These results show that PCA subspace provides the op- 
timal solution for a linear MLP network, or if the output 
layer of  a three-layer MLP (with one hidden layer) is 
linear. In these networks, the approximation (data com- 
pression) takes place in the hidden layer, where the 
number of  units (M) is smaller than in the input and 
output layers (L).  A more general MLP network does 
not usually lead to the PCA solution and could thus be 
regarded as a nonlinear extension of PCA. In particular, 
several authors have recently proposed and studied for 
data compression and representation a specific type of 
five-layer MLP network, where the input and output 
layers have the same number of  units, and the network 
is trained using the back-propagation algorithm in the 
autoassociative mode. Usually the data compression 
achieved in the "bot t leneck" middle layer in such a 
network is somewhat better than that provided by the 
respective PCA solution (see, e.g., Kambhatla & Leen, 
1993). 

Though useful, these approaches lead to multilayer 
structures requiring several weight matrices. The back- 
propagation learning algorithms are prone to local min- 
ima and often require excessive times for convergence. 
Our approaches are simpler: the network has two layers 
and requires only one weight matrix. 

4.2. Robust  P C A  Algor i thms  for Linear  N e t w o r k s  

We first consider robust generalizations of the mean- 
square representation error E { lie (i)  II 2 }. Robust PCA- 
type algorithms can be obtained by minimizing the cri- 
terion 

J2[e(i)] = l r E { f [ e ( i ) ] }  = l r E { f [ x  - ~(i)] }. (13) 

Here the L-vector 1 r = [1 . . . . .  1], a n d f ( t )  satisfies 
the assumptions specified before. The relationship of 
eqn (13) to the mean-square error becomes clearer, if 

we define a new function h ( t )  = ~ f ( t )  and express 
J2[e(i)]  in the form E{[lh[e(i)]l l2}.  This is always 
possible, because f ( t )  is assumed to be nonnegative. 
The chosen notation is somewhat easier to handle 
mathematically. The criterion (13) coincides with the 
standard mean-square error if f (t) = t 2, and defines a 
robust generalization of it if f (t) grows less than quad- 
ratically. 

Minimizing eqn ( 13 ) with respect to the weight vec- 
tor w( i )  leads to the stochastic gradient algorithm (i = 
1 . . . . .  M)  

Wk+l(i) = wk(i) + tZk{wk(i)rg[ek(i)]xk 

+ x~wk(i)g[ek(i)l}, (14) 

/ ( i)  

ek(i) = xk - ~ [X~Wk(j)]wk(j) 
j - I  

l ( i )  

= x~ - ~ yk(j)wk(j) ,  (15) 
j= l  

The instantaneous error vector ( 15 ) in eqn (14) has the 
same form as eqn (7) in the previous section, but is 
reproduced here for convenience and completeness. 
We have given the detailed derivation of this algorithm 
in the symmetric special case in Karhunen and Jout- 
sensalo (1994). The derivation goes through quite sim- 
ilarly for the more general algorithm (14) provided that 
the ith error vector ek(i) depends on the ith weight 
vector wk(i) [i.e., the summation in eqn (15) contains 
the index i as was assumed in the previous section], 
and will not be repeated here. 

The robust PCA algorithm (14) - ( 15 ) can again be 
applied both to the symmetric and hierarchic cases as 
in the previous section. Thus, in the symmetric case 
l ( i )  = M,  the error vector (15) is the same 

ek = xk - WkWkrxk (16) 

for all the weight vectors wk(i), i = 1 . . . . .  M, and eqn 
(14) can be written compactly 

Wk+l = Wk + /Zk[xkg(e/)Wk + g(ek)xkrWk]. (17) 

In the hierarchic case l ( i )  = i, the error vectors (15) 
are different for each weight vector estimate wk(i). In 
this case, eqn (14) estimates the robust counterparts of  
the principal eigenvectors e (i) .  

The first update term wk( i ) rg[ek( i ) ]xk  in the com- 
plete algorithm (14) is proportional to the same vector 
xk for all the weight vectors wk(i). Furthermore, we 
can assume that the average value of coefficient 
wk (i) rg[ ek (i)  ] is close to zero, because the error vector 
ek(i) should be relatively small after the initial conver- 
gence and its sign can be either positive or negative. 
Hence, this term can usually be neglected without com- 
mitting much error. This approximation leads to a sim- 
pler algorithm 
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Wk+l(i) = wk(i) + mxrwk(i)g[ek(i)] 

= wk(i) + #kyk(i)g[ek(i)], (18) 

In the symmetric special case, eqn (18) becomes the 
approximation of eqn (17) • 

Wk+l = Wk + /zkg(ek)xkrWk = Wk + /zkg(ek)yk r. (19) 

It is interesting to compare the algorithms (18) and 
(8)  derived from different optimization criteria. They 
closely resemble each other, the only difference being 
that in eqn (18) the nonlinearity g( t )  is applied to the 
error ek(i), whereas in eqn (8)  it is applied to the re- 
sponse yk(i) = XkrWk(i). However, this has the impor- 
tant consequence that if the network is taught using the 
approximative algorithm (18) that tries to minimize 
robust representation error, the final input-output  map- 
ping is still linear. For the generalized variance maxi- 
mization algorithm (8) ,  the outputs of  the correspond- 
ing PCA-type network are nonlinear g[XkrWk(i)]. 
Therefore, these algorithms yield, in general, somewhat 
different weight vectors. 

4.3. Relationship to Standard PCA Learning Rules 

In this subsection, we study more closely the relation- 
ship of  the algorithms derived thus far to the well- 
known neural PCA learning rules. This can be done by 
setting g ( t )  = t in the algorithms, which leads to stan- 
dard PCA learning. 

In this special case, eqns (18)  and (8)  coincide and 
estimate the same standard PCA solution. In particular, 
the robust PCA subspace algorithms (9)  and (19) be- 
come the same as the well-known Oja 's  PCA subspace 
rule: 

Wk+~ = Wk + #kegyk r = Wk + #~[I -- wkwr]xkxkrWk. (20) 

Similarly, in the standard hierarchic case l ( i )  = i in 
both eqns (18) and (8)  coincides with the well-known 
Sanger 's  GHA algorithm: 

Wk+l = Wk + #k{ Xkyk r -- WkUT[ykYk r] }, (21) 

Yk = WkrXk- These results imply that we have actually 
derived Oja 's  PCA subspace rule and Sanger 's  GHA 
in two different ways: from the variance maximization 
problem using orthonormality constraints taken into ac- 
count via Lagrange multipliers, and by minimizing the 
mean-square representation error. The first derivation 
yields exactly Oja 's  PCA subspace rule and Sanger 's  
GHA. However, it is somewhat inaccurate in the sense 
that the expressions of  the Lagrange multipliers are 
exactly valid only in the optimum, but are then used 
everywhere in the respective stochastic gradient algo- 
rithm (8) .  

These derivations clearly show that Oja 's  PCA sub- 
space rule and GHA are approximative algorithms. 
Their relationship to the variance maximization and 
mean-square error minimization problems is exactly 

the same. The only difference is that Oja 's  PCA sub- 
space rule corresponds to a completely symmetric net- 
work structure and Sanger's GHA to the standard hi- 
erarchic structure. 

For nonlinear g ( t) ,  the "op t imal"  robust stochastic 
gradient algorithm is eqn (14) ,  which takes the form 
of eqn (17) in the symmetric case. In the linear special 
case g( t )  = t, eqn (17) reduces to the "op t imal"  stan- 
dard PCA subspace estimation algorithm 

Wk+j = Wk + #k[XkekrWk + ekxkrWk] (22) 

that has been derived independently by several authors 
(see Karhunen & Joutsensalo, 1994; Palmieri & Zhu, 
1993 ). Its theoretical properties have been explored in 
Xu (1993),  and some experimental comparisons to 
other standard PCA subspace rules are given in Pal- 
mieri and Zhu (1993). However, the respective hier- 
archic optimal algorithm and its relationship to San- 
ger 's  GHA are obviously new results, even in the linear 
special case. In fact, we have, for the first time to our 
knowledge, derived GHA and its robust generalizations 
from natural optimization criteria in Karhunen and 
Joutsensalo (1993b).  

4.4. Nonlinear PCA Algorithms 

Consider now briefly the more nonlinear versions of  
PCA-type algorithms. A heuristic way to get them is to 
require that the outputs of  the neurons are always non- 
linear g[y(i)]  = g[xrw(i)]  in the algorithms. Applied 
to eqn (8) ,  this yields the nonlinear PCA algorithm (i 
-- 1 . . . . .  M) 

Wk+l(i) = wk(i) + #kg[yk(i)]bk(i), (23) 

which is otherwise similar to algorithm (8) ,  but now 
the error vector defined by 

I(i) 

bk(i) = x, -- ~ ( i )  = xk - )-'. g[yk(j)]wk(j) (24) 
j= l  

contains nonlinearities when compared to eqn (7) .  
More formally, one can show that eqn (23) is an ap- 
proximative stochastic gradient algorithm for minimiz- 
ing the mean-square representation error E{ Ilb(i)ll~}. 
b k ( i )  is the instantaneous estimate of  the error vector 
b ( i )  at step k. We have presented a detailed derivation 
in the symmetric special case l ( i )  = M in Karhunen 
and Joutsensalo (1994).  The same algorithm is men- 
tioned in passing in Xu (1993) as a special case of  his 
more general LMSER algorithm. The derivation for the 
more general error vector (24) is quite similar and is 
therefore omitted here. 

In Karhunen and Joutsensalo (1994) we have ac- 
tually derived the respective optimal algorithm for the 
nonquadratic criterion (13) and the error vector (24) 
in the symmetric special case. The general algorithm is 
rather complex, and yields as its special cases the robust 
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PCA subspace algorithm (17)  and the nonlinear algo- 
rithm (23)  in the symmetric case. The latter algorithm 
can be written compactly 

Wk+j : Wk + #kbkg(y~), (25) 

where the error vector bk is the same for all the neurons 

bk = xk - Wkg(W[xD. (26) 

The nonlinear approximative subspace algorithm (25)  
can be regarded as a straightforward nonlinear gener- 
alization o f  Oja ' s  PCA subspace rule. It was first pro- 
posed heuristically in Oja et al. ( 1991 ) and is studied 
experimentally in Karhunen and Joutsensalo (1994) .  

The respective hierarchic algorithm is a direct non- 
linear generalization of  GHA. It is obtained from eqns 
(23)  and (24)  by choosing l ( i )  = i, and can be written 
in matrix form as 

Wk+~ = Wk + pk{xkg(yk r) -- WkUT[g(yk)g(ykr)] }. (27) 

Sanger (1989a)  proposed this algorithm as a heuristic 
nonlinear extension of  G H A  and presented experimen- 
tal results for a very specific "nonl inear i ty"  g ( t )  = O, 
t < 0; g ( t )  = t, t > 0. Now our considerations relate 
eqn (27)  clearly to the mean-square representation er- 
ror. This helps greatly in interpreting the results of  the 
experiments and in understanding the properties o f  the 
nonlinear G H A  algorithm (27) .  Again, it is possible to 
implement eqn (27)  locally, because in the standard 
hierarchic case the error vector (24)  can be computed 
from the recursion b~(i) = bk(i - 1 ) - g[yk ( i ) ]wk( i ) ,  
bk(0) = Xk. 

In eqn (24) ,  the approximation ~k(i) is linear with 
respect to the basis vectors wk(j)  of  the expansion 
(weight  vectors of  the neurons) ,  but the coefficients 
g [ Yk ( j )  ] o f  the expansion (outputs o f  the neurons)  are 
generally nonlinear. This kind of  expansion looks at 
first sight slightly cumbersome.  Its main advantage 
seems to be that the nonlinear coefficients implicitly 
take higher-order statistical information into account, 
and the outputs o f  the neurons become more indepen- 
dent than in standard PCA networks after convergence.  

It should be noted that these nonlinear PCA algo- 
rithms yield in general something else than the standard 
PCA solution. The equivalence results of  Bourlard and 
Kamp (1988)  described earlier are not applicable, be- 
cause the forward weight matrix Q in eqn (12)  is con- 
strained to be the same as the feedback matrix W.  How- 
ever, especially for mild nonlinearities, the results can 
still be close to the respective PCA solution. Similarly, 
the weight vectors of  different neurons estimated using 
these nonlinear PCA algorithms are typically not ex- 
actly orthogonal,  but not far from orthogonality. This 
property can be explained by considering the mean- 
square error criterion E{llb(i)ll2}. If  some of  the 
weight vectors wk(j)  in eqn (24)  were close to some 
other weight vector in direction, the corresponding 

term g [ y k ( j ) ] w k ( j )  would diminish only slightly the 
mean-square error. 

There exist several possibilities for obtaining results 
that differ more from the standard PCA. The first is 
naturally to use a more nonlinear back-propagation al- 
gorithm in autoassociative mode. A second possibility 
is to impose some meaningful  additional constraints, 
and the third one to use an additional learning rule that 
will " w r e s t "  the estimated weight vectors farther away 
from the PCA subspace. 

5. E X P E R I M E N T A L  RE S UL T S  

In the following, we present some experimental results 
on the performance of  the algorithms derived in the 
previous sections and compare them with standard 
PCA approaches. 

5.1. Robust  PCA Algor i thms 

We first study various robust PCA subspace algorithms 
in a simple but illustrative case where it is possible to 
compare the results with the theoretical PCA solution. 
The data vectors Xk were five-dimensional, and their 
components  were independent zero mean random vari- 
ables with different variances a 2 ( 1 ) . . . . .  0- 2 (5) .  Then 
the exact covariance matrix C becomes diagonal, and 
its eigenvalues are directly the diagonal elements (var-  
iances) a2( i ) .  The ith element o f  the principal eigen- 
vector corresponding to the eigenvalue 0- 2(i) is + 1 (or  
- 1 ), and its other elements equal to zero. 

In the first case, the random variables were purely 
Gaussian with variances ~2(1)  = 5.0, 0 - 2 ( 2 )  = 3.0, 
0-2(3) --- 1.0, 0-2(4) = 0.4, and cr2(5) = 0.2. We con- 
sider the estimation of  a two-dimensional PCA sub- 
space, which is now defined by the eigenvectors c( 1 ) 
= [1, 0, 0, 0, 0] r and c ( 2 )  = [0, 1, 0, 0, 0] r corre- 
sponding to k ( l  ) = 5.0 and h ( 2 )  = 3.0. 

In the second case, each component  of  the data vec- 
tors came from the same Gaussian distribution as be- 
fore with probability 0.9, but with probability 0.1 from 
a uniform distribution in the interval [ - 1 0 ,  10]. The 
uniform distribution can be used as a model for im- 
pulsive noise or outliers. The eigenvalues o f  C are now 
0 .9k( i )  + a ,  where a = 0 .1 (20)2 /12  ~ 3.33 is the 
additional variance due to the uniform distribution. Be- 
cause C is diagonal and the mutual order of  its eigen- 
values does not change, the theoretical principal eigen- 
vectors and PCA subspace remain the same as in the 
first case. 

In the simulations, we generated 300 data vectors in 
both the cases, and used the same data set several times 
in the gradient algorithms for achieving final conver- 
gence. The gain parameter #k was a small constant 
(0.015) in the beginning and then decreased slowly. 
The following methods were compared: 
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• The batch estimation method, in which the data co- 
variance matrix C is first estimated from the avail- 
able K (zero-mean) data vectors: C = 1/K ZX=l 
x~x~'. Then the principal eigenvectors of C are com- 
puted using standard techniques. 

• Oja's PCA subspace rule [i.e., eqn (20)] .  
• Robust variance maximization algorithm (9) with 

the nonlinearity g(t)  = tanh(t) .  
• Optimal robust error minimization algorithm (17) 

with the nonlinearity g(t) = log(1 + 5t). [This 
worked somewhat better than the tanh(t) nonlinear- 
ity.] 

• Approximative robust error minimization algorithm 
(19) using g(t) = tanh(t) .  
We compared the estimated PCA subspaces to the 

theoretical one in terms of the SVD-based procedure 
given in Section 12.4 in Golub and Van Loan (1983).  
In this method, the closeness of two subspaces is mea- 
sured by determining the principal angles between 
them. Table 1 shows the angles for purely Gaussian 
data (first case), and Table 2 for the second case of 
mixed Gaussian and uniformly distributed data. The 
estimated PCA subspace is the better the closer the re- 
spective angles are to zero. For increasing statistical 
reliability, the simulations were repeated for 100 in- 
dependent realizations of the above-described data set. 
The tables represent averages of these simulations. 

When the data were purely Gaussian (Table 1 ), all 
the methods performed well and yielded a good esti- 
mate for the theoretical PCA subspace. Table 2 shows 
that in the case of mixed Gaussian and uniformly dis- 
tributed data (modeling the existence of impulsive 
noise), the approximative robust error minimization al- 
gorithm (19) was clearly superior compared to the oth- 
ers. However, a closer examination revealed that in 
most individual simulations the corresponding optimal 
algorithm (17) performed excellently: the second prin- 
cipal angle #2 is typically less than 2 °. But in about 14% 
of the realizations w(2)  converged to a wrong (or- 
thogonal) subspace, yielding 02 ~ 90 °. The approxi- 
mation (19) is clearly more reliable, leading to better 
average results. Recently, Palmieri and Zhu (1993) 
have made similar observations about the sensitivity of 
the optimal subspace algorithm (17) to local minima 
in the linear special case. 

TABLE 1 
Principal Angles (in Degrees) Between Theoretical 

and Estimated PCA Subspace for Purely Gaussian Data 

Algorithm 01 02 

Batch method 1.5 3.8 
Oja's PCA subspace rule 1.5 3.8 
AIg. (9), g(t) = tanh(t) 1.5 4.1 
AIg. (17), g(t) = log(1 + 5t) 1.1 8.5 
AIg. (19), g(t) = tanh(t) 1.1 3.9 

TABLE 2 
Principal Angles (in Degrees) Between Theoretical 
and Estimated PCA Subspace for Mixed Gaussian 

and Uniformly Distributed Data 

Algorithm 01 02 

Batch method 4.8 22.8 
Oja's PCA subspace rule 4.6 24.1 
AIg. (9), g(t) = tanh(t) 5.8 21.8 
AIg. (17), g(t) = log(1 + 5t) 0.7 30.5 
AIg. (19), g(t) = tanh(t) 1.1 8.5 

The robust variance maximization algorithm (9) 
performed only slightly better than the batch method 
or standard Oja's PCA subspace rule in impulsive 
noise. However, comparing it with the theoretical PCA 
subspace is not quite fair, because the optimal solution 
of the variance maximization criterion ( 1 ) is not nec- 
essarily the same. An indication of this is that changing 
the parameters in eqn (9) affected only slightly the re- 
sults in our simulations. In general, scaling of the 
tanh(t) function should be done suitably so that it sup- 
presses the outliers but not too much the original data. 

The hierarchic versions of robust PCA algorithms 
behaved qualitatively similar to their subspace coun- 
terparts in the respective simulations. When the data 
vectors were purely Gaussian, robust GHA (10) with 
tanh and log-type nonlinearities g(t) and the approxi- 
mative hierarchic error minimization algorithm (18) 
with l ( i )  = i yielded equally good estimates of the 
principal eigenvectors c( i )  as the batch estimation 
method after convergence. For mixed Gaussian and 
uniformly distributed data, eqn (18) clearly performed 
best. The average normalized projections of the two 
first batch eigenvector estimates ~( 1 ) and ¢:(2) onto 
the corresponding exact PCA eigenvectors c( 1 ) and 
c (2)  were 0.952 and 0.891, respectively. When eqn 
(18) was used, the respective projections were 0.976 
and 0.965. The optimal algorithm (14) often performed 
very well but converged more easily than eqn (18) to- 
wards a wrong eigenvector. Robust GHA again yielded 
roughly equally good results as the batch method. 

If robust counterparts of the principal eigenvectors 
are not necessarily needed, it is usually better to use 
the symmetric subspace algorithms. This is because 
they give more accurate estimates of the PCA subspace 
as a whole and have somewhat better stability proper- 
ties. The stability issue is discussed in Karhunen 
(1994), where an exact stability bound is derived for 
Oja's PCA subspace rule and its robust generalization 
(9) .  In practice, robust and nonlinear PCA algorithms 
have better stability properties than the corresponding 
standard neural PCA algorithms if the (odd) nonlin- 
earity g(t) satisfies the condition ]g( t ) l  < ]t], or 
grows less than linearly. On the other hand, nonlinear- 
ities growing faster than linearly easily cause stability 
problems in the algorithms and are not recommended. 
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FIGURE 3. The test data: 100 samples of two sinusoids in 
colored Gaussian noise. 

The superiority of the approximative robust algo- 
rithm (19) [ or more generally eqn (18) ] in the exper- 
iment described above seems at first surprising, because 
the batch procedure is usually regarded the best and is 
therefore used routinely in different applications. In 
Anderson (1958),  the batch estimates of  the eigenval- 
ues and -vectors of  the data covariance matrix C are 
proved to be optimal in the maximum likelihood sense, 
if the data vectors have a Gaussian distribution. How- 
ever, the maximum likelihood estimates are distribu- 
tion dependent (Sorenson, 1980), so that this result 
generally does not hold for other types of data. The 
batch estimates correspond to the quadratic mean- 
square error criterion, which weights heavily large er- 
rors. Therefore, their quality rapidly degrades in the 
presence of impulsive noise or outliers in the data. 

The excellent performance of eqn (17) in the suc- 
cessful cases suggests that the optimal solution of the 
robust criterion eqn (13) coincides with the standard 
PCA solution on some specific conditions at least. The 
standard PCA solution is obtained by minimizing the 
mean-square error between x and its estimate ~. There 
exist theoretical results stating that the mean-square es- 
timates are in fact optimal for a larger class of error 
criteria provided that certain symmetry conditions are 
satisfied (see, e.g., Sorenson, 1980, pp. 158-165) .  It 
is obvious that these results can be applied to eqn (13) ,  
too, justifying our suggestion. 

We have tested the derived robust algorithms in 
more realistic cases using higher-dimensional data. 
When we previously studied, in the context of  sinusoi- 
dal frequency estimation, the performance of the non- 
linear generalizations of Oja 's  PCA subspace rule sug- 
gested in Oja et al. (1991),  we found that the 
symmetric variance maximization algorithm (9) with 
g (t)  = t anh ( t / a )  tolerated somewhat better strong or 
impulsive noise than standard Oja 's  PCA subspace rule 
(Karbunen & Joutsensalo, 1992). 

A problem related to the estimation of sinusoidal 
frequencies is directions-of-arrival estimation in array 
processing. In both these problems, PCA subspace can 
be used for estimating the unknown directions or si- 
nusoidal frequencies. The background theory of this 
rather specialized topic can be found in Orfanidis 
(1988) and Therrien (1992). In the simulations with 
different algorithms described in Joutsensalo and Kar- 
hunen(  1993 ), the optimal robust algorithm (17) with 
a log-type nonlinearity performed somewhat better 
than its linear PCA counterpart. In another comparison 
with similar data containing some impulsive noise, it 
gave about 25% more accurate results than Oja's  stan- 
dard PCA subspace rule with otherwise the same pa- 
rameters. In Karhunen and Joutsensalo (1993a), we 
have presented an example of  tracking slowly changing 
spatial frequencies, in which eqn (17) with the nonlin- 
earity g( t )  = sgn( t ) log(1  + 10lt l)  performs better 
than Oja 's  PCA subspace rule. 

5.2. Nonlinear PCA Algorithms 

As mentioned earlier, the main advantage of the non- 
linear PCA algorithms over the respective linear ones 
is that the outputs of the nonlinear PCA network usu- 
ally are more independent than in the linear case. Such 
outputs are in many cases more meaningful than the 
mutually uncorrelated variance maximizing outputs of 
a linear PCA network. In the following, this property 
is demonstrated using sinusoidal signals. 

In the test example, the training data consisted of 
100 samples x (0 )  . . . . .  x (99)  of  two real sinusoids in 
additive colored noise. The samples were generated 
from the formula 

x(k) = AlCOS(27rflk + 01) 

+ Azcos(27rfzk + 02) + v(k), (28) 

where the parameters of  the sinusoids unknown to the 
network were: amplitudes Aj = 0.8 and A2 = 1.2, and 
normalized frequencies f~ = 0.17 and f2 = 0.22. The 
phases 01 and Oz were randomly chosen fixed numbers. 
The colored noise process v (n)  was generated from the 
autoregressive (AR)  model v(n)  = 1.058v(n - 1) - 
0.81v(n - 2) + u(n) ,  where u(n)  is white Gaussian 
noise. The signal-to-noise ratio (SNR) was 5 dB. The 
power spectrum of this process has a rather disturbing 
peak f requency  0.15 ( the  poles are 0.9 
exp [ + j 27r0.15 ] ). The 15-dimensional data vectors xk 
= [x(k) ,  x ( k  + 1) . . . . .  x (k  + 14)] T were collected 
from successive samples and were used several times 
for achieving convergence. The PCA subspace dimen- 
sion (number of neurons) was M = 4, which is correct 
for this sinusoidal model (Orfanidis, 1988; Therrien, 
1992). 

After learning, test data (Figure 3) generated from 
eqn (28) using different realization of the noise process 
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FIGURE 4. Output sequence of the first neuron of the linear 
PCA network trained by the standard GHA algorithm for the 
test data. 

and phases of  the sinusoids were presented to PCA- 
type networks. Figures 4 and 5 show the outputs 
xkrw(1) and xkrw(2) of  the two first neurons for the 
linear hierarchic PCA network trained by the standard 
GHA algorithm. These outputs are almost similar linear 
combinations of  the two sinusoids and AR noise as the 
test data, even though some of the noise has been fil- 
tered out. The outputs of  the third and fourth neuron 
look similar and are not shown here. Figures 6 and 7 
show the outputs g [x rw(  1 )] and g [ x r w ( 2 ) ]  of  the two 
first neurons for otherwise similar but nonlinear hier- 
archic PCA network trained by the nonlinear GHA al- 
gorithm (27) using g ( t )  -- s ign(t) log(51t[  + 1 ). Now 
the first neuron has clearly learned the stronger sinusoid 
corresponding to the frequency f2 = 0.22, and the sec- 
ond neuron the weaker sinusoid with the frequency f,  
= 0.17. Due to the difficulty of  the problem, the output 
sequences contain some AR noise. The outputs of  the 
third and fourth neurons are almost similar to the first 
two ones with a phase shift of 7r/4. A tanh-type non- 
linearity could be used, but it clips out the peaks of  the 
sinusoids. 

Quite recently, Sudjianto and Hassoun (1994) have 
given some theoretical justifications to this separation 
property. For other types than sinusoidal processes the 
separation properties of  nonlinear PCA algorithms are 
not so good, because they try to minimize the mean- 
square error and not directly separate the subsignals. In 
the next section, we briefly discuss the more general 
signal separation problem. 

In Karhunen and Joutsensalo (1994) ,  we have 
presented experimental  results for the respective sub- 
space algorithm (25)  in a similar but somewhat  eas- 
ier test case where the sinusoidal frequencies were 
not so closely spaced. Compared  to the subspace al- 
gori thm (25) ,  eqn (27)  performs similarly but ar- 
ranges the separated signals according to their 
power. 

6. FROM UNCORRELATEDNESS TO 
INDEPENDENCE 

In the following, we briefly consider generalization of 
the third information representation problem leading to 
the PCA solution mentioned in the Introduction, 
namely uncorrelatedness of  coefficients after an or- 
thonormal transform. 

In a neural network environment, the requirement of  
uncorrelatedness usually means that the outputs y (i)  = 
w( i ) rx ,  i = 1 . . . . .  M, of  a linear network must be 
mutually uncorrelated: E { y ( i ) y ( j )  } = O, i ~: j .  This 
immediately yields the general condition w( i ) rCw ( j )  
= 0 for zero-mean data vectors. It should be noted that 
if  the number of  neurons M is less than or equal to the 
dimension L of the data vectors x, there usually exists 
an 'infinite number of  possible linearly independent 
bases w( 1 ) . . . . .  w(M)  that satisfy the uncorrelated- 
ness requirement (Jain, 1989; Palmieri, Zhu, & Chang, 
1993 ). I f  the weight vectors w ( i)  are constrained to be 
mutually orthonormal, the uncorrelatedness require- 
ment is satisfied if different weight vectors are linear 
combinations of mutually excluding sets of  eigenvec- 
tors e ( j )  of  C. This is easy to see by representing the 
weight vectors in the basis of the eigenvectors c ( j ) .  If  
we finally impose a further constraint that the output 
powers (variances) E { y (i) 2 } of  the M neurons must 
be maximal, the weight vectors w( i )  become the prin- 
cipal eigenvectors e( 1 ) . . . . .  c (M)  of the data covar- 
iance matrix C (cf. Haykin, 1989, Section 11.2). Thus, 
the standard hierarchic PCA network yield uncorre- 
lated outputs after convergence, but symmetric net- 
works (estimating PCA subspace only) generally not. 

A stronger requirement is that the outputs of the neu- 
ral network should be statistically independent (or as 
independent as possible). I f  merely second-order sta- 
tistics are taken into account, this reduces to the un- 
correlatedness condition. Once again, Gaussian random 
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FIGURE 5. Output sequence of the second neuron of the lin- 
ear PCA network trained by the standard GHA algorithm for 
the test data. 
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FIGURE 6. Output sequence of the first neuron for the non- 
linear PCA network trained by the nonlinear GHA algorithm 
(27) for the test data. 

variables are a special case, because for them inde- 
pendence is equivalent to uncorrelatedness. 

Some neural algorithms for producing independent 
output signals have recently been proposed in context 
with the blind separation problem in signal processing. 
Jutten and Herault have introduced a somewhat heuris- 
tic neural algorithm (Jutten & Herault, 1991; Cichocki 
& Unbehauen, 1993a) for separating original source 
signals from their linear mixture, and Burel (1992) has 
considered a more general but difficult nonlinear prob- 
lem. These neural approaches are related to an inter- 
esting and obvious extension of PCA called Indepen- 
dent Component Analysis (ICA or INCA). This 
concept is formally defined and its relationships to op- 
timization criteria are discussed in Comon (1994).  It 
is noteworthy that ICA does not require a nonlinear 
network for linear mixtures, but its basis vectors are 
usually nonorthogonal and the learning algorithm must 
contain some kind of nonlinearities to take into account 
higher-order statistics. 

In spite of the success of Jutten and Herault's al- 
gorithm in practical examples, there are still several 
open research problems in extending neural PCA to 
ICA. For example, Jutten and Herault's algorithm re- 
quires in its basic form that there are available N dif- 
ferent linearly independent linear mixtures (time se- 
ries) of the original N source signals as an input to the 
network. Thus, this algorithm is not applicable if there 
is available only one linear combination (time series) 
of the original source signals as in our example of si- 
nusoidal signals in colored noise. 

The recent work of Osterberg and Lenz (1994) is 
also related to these ideas. Starting from a determinant 
criterion leading to PCA subspace solution, they have 
developed in a neural network environment new optim- 
ization criteria that contain higher-order moments and 
yield more independent outputs than PCA. 
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7. ENTROPY-BASED CRITERIA 

The fourth criterion yielding PCA as the optimal so- 
lution is based on the concept of entropy. Assume that 
the input signal x is Gaussian, and the output is linear, 
y = Wrx with probability density function f ( y ) ,  and 
that the weight vectors of the neurons are mutually or- 
thonormal: W~Cq = I. The entropy defined by 

H(y) = - fy f (y) log[f (y)]  dy (29) 

is maximized when the weight vectors (columns of the 
weight matrix W) are the principal eigenvectors e( 1 ), 
. . . .  e (M)  of the data covariance matrix C (Young & 
Calvert, 1974). Any orthonormal basis of the PCA sub- 
space will also maximize H ( y ) .  

Equation (29) is just one example of entropy-based 
criteria. There exist several somewhat different entro- 
pies and related information-theoretic criteria that can 
be used for measuring the effectiveness of information 
compression (see, e.g., Devijver & Kittler, 1982; Jain, 
1989; Young & Calvert, 1974). PCA provides in many 
cases the optimal solution, but showing this typically 
requires specific assumptions such as Gaussianity of 
the data and orthonormality of the basis vectors as in 
eqn (29).  

Linsker ( 1992, 1993) and Plumbley ( 1993a, b) have 
applied this kind of information-theoretic optimization 
principles mainly to linear PCA-type networks. If the 
specific assumptions are not satisfied, such linear net- 
works can yield something else than a PCA solution. 
Recently, Linsker (1993) has extended his ideas to a 
mildly nonlinear network with interesting results. We 
will not discuss these information-theoretic optimiza- 
tion principles any more here, because excellent recent 
reviews (Haykin, 1994; Taylor & Plumbley, 1993) are 
available. 
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FIGURE 7. Output sequence of the second neuron for the 
nonlinear PCA network trained by the nonlinear GHA algo- 
rithm (27) for the test data. 
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8. CONCLUSIONS 

It is by no means obvious in advance that the different 
information representation problems discussed in this 
paper have the same optimal solution. In a linear net- 
work their solution is essentially the same and is pro- 
vided by PCA. This is mathematically a very nice re- 
suit. However, it often requires, even in a linear 
network, some additional constraining assumptions. 
Furthermore, the preceding discussions have clearly 
shown that the optimality of  PCA in these information 
representation problems results from taking into ac- 
count second-order statistics (i.e., covariances) only. 
In a sense, an implicit assumption is then made that the 
data or outputs of neurons have roughly Gaussian dis- 
tribution. 

There is much more information in non-Gaussian 
data than just its second-order statistics (Nikias & Men- 
del, 1993). Ideally, this should be taken into account 
in information processing tasks for getting optimal re- 
sults. A way to incorporate higher-order statistics, at 
least implicitly, into the computations is to use nonlin- 
earities in PCA-type networks. Each of the information 
representation problems leading to standard PCA can 
be taken as a starting point of such a nonlinear gener- 
alization with its associated merits and drawbacks. One 
can then talk about nonlinear (or robust) PCA, or per- 
haps more appropriately about unsupervised learning 
beyond PCA. The solutions of these generalized infor- 
mation representation problems are usually different 
from each other and from PCA. Thus nonlinear PCA 
is a nonunique concept, unless the optimization prob- 
lem or learning equations leading to it are defined ap- 
propriately. This viewpoint has been emphasized in a 
recent review paper by Xu (1994),  too. From this 
viewpoint, linear PCA can be regarded as a degenerate 
case in which the optimal solutions coincide. 

In this general framework, we have studied more 
closely generalization of  two of the problems leading 
to standard PCA solutions. These are maximization of 
the output variances and minimization of the mean- 
square representation error in PCA-type networks. For 
the generalized problems, we have derived gradient- 
type learning algorithms both for symmetric and hier- 
archic networks. We have considered mildly nonlinear 
learning algorithms yielding robust PCA type solu- 
tions, and more nonlinear ones yielding what could be 
called nonlinear PCA. Several known PCA learning al- 
gorithms are obtained as special cases. In particular, 
well-known Sanger's generalized Hebbian algorithm 
and its robust and nonlinear generalizations are derived 
from natural optimization problems. 

Even a linear PCA-type network can have a rather 
rich behavior (Palmieri & Zhu, 1993). There is already 
some evidence (e.g., Palmieri, 1994), that nonlinear 
PCA-type networks are able to yield interesting results 
that are qualitatively clearly different from standard 

PCA. This, together with the justifications presented in 
Section 2, motivates their further research. 

REFERENCES 

Anderson, T. W. (1958). An introduction to multivariate statistical 
analysis. New York: John Wiley. 

Baldi, P., & Hornik, K. (1989). Neural networks for principal com- 
ponent analysis: Learning from examples without local minima. 
Neural Networks, 2, 53-58. 

Bekker, P., & de Leeuw, J. (1988). Relations between variants of 
non-linear principal components analysis. In J. L. A. van Rijck- 
evorsei & J. de Leeuw (Eds.), Component and correspondence 
analysis. Dimension reduction by function approximation, Wiley 
Series in Probability and Mathematical Statistics (pp. 1-31).  
New York: John Wiley. 

Bourlard, H., & Kamp, Y. (1988). Auto-association by multilayer 
perceptrons and singular value decomposition. Biological Cyber- 
netics, 59, 291-294. 

Burel, G. (1992). Blind separation of sources: A nonlinear neural 
algorithm. Neural Networks, 5, 937-947. 

Cichocki, A., & Unbehauen, R. (1993a). Neural networks for optim- 
ization and signal processing. New York: John Wiley. 

Cichocki, A., & Unbehauen, R. (1993b). Robust estimation of prin- 
cipal components by using neural network learning algorithms. 
Electronics Letters, 29, 1869- ! 870. 

Comon, P. (1994). Independent component analysis--a new con- 
cept? Signal Processing, 36(3), 287-314, 

Devijver, P. A., & Kittler, J. (1982). Pattern recognition: A statis- 
tical approach. Englewood Cliffs, NJ: Prentice-Hall. 

Girl, A. (1990). Nonlinear multivariate analysis. Wiley Series in 
Probability and Mathematical Statistics. New York: John Wiley. 

Golub, G. H., & Van Loan, C. F. (1983). Matrix computations. Bal- 
timore, MD: Johns Hopkins Univ. Press. 

Hastie, T., & Stuetzle, W. (1989). Principal Curves. Journal of  the 
American Statistical Association, 84, 502-516. 

Haykin, S. (1989). Modern filters. New York: Macmillan. 
Haykin, S. (1994). Neural networks: A comprehensive foundation. 

New York: IEEE Computer Society Press and Macmillan. 
Hertz, J., Krogh, A., & Palmer, R. G. (1991). Introduction to the 

theory of  neural computation. Reading, MA: Addison-Wesley. 
Jain, A. K. (1989). Fundamentals of  digital image processing. En- 

glewood Cliffs, NJ: Prentice-Hall. 
Joutsensalo, J., & Karhunen, J. (1993). Nonlinear multilayer prin- 

cipal component type subspace learning algorithms. In C. A. 
Kamm et al. (Eds.), Neural networks for signal processing 111 
(pp. 68-77) .  New York: IEEE Press. 

Jutten, C., & Herault, J. (1991). Blind separation of sources, part I: 
An adaptive algorithm based on neuromimetic architecture. Sig- 
nal Processing, 24, 1 - 10. 

Kambhatla, N., & Leen, T. K. (1993). A fast non-linear dimension 
reduction. Proceedings of  the 1993 IEEE International Confer- 
ence on Neural Networks, San Francisco, CA, March 1993 (pp. 
1213-1218). 

Karhunen, J. (1994). Stability of Oja's PCA subspace rule. Neural 
Computation 6, 739-747. 

Karhunen, J., & Joutsensalo, J. (1992). Learning of sinusoidal fre- 
quencies by nonlinear constrained Hebbian algorithms. In S. Y. 
Kung et al. (Eds.), Neural networks for signal processing H (pp. 
39-48) .  New York: IEEE Press. 

Karhunen, J., & Joutsensalo, J. (1993a). Learning of robust principal 
component subspace. Proceedings of  the International Joint Con- 
ference on Neural Networks, Nagoya, Japan, October 1993 (pp. 
2409-2412). 

Karhunen, J., & Joutsensalo, J. (1993b). Nonlinear generalizations 
of principal component learning algorithms. Proceedings of the 
International Joint Conference on Neural Networks, Nagoya, Ja- 
pan, October 1993 (pp. 2599-2602). 



562 J. Karhunen and J. Joutsensalo 

Karhunen, J., & Joutsensalo, J. (1994). Representation and separa- 
tion of signals using nonlinear PCA type learning. Neural Net- 
works, 7, 113-127. 

Kung, S. Y. (1993). Digital neural networks. Englewood Cliffs, NJ: 
Prentice - Hail. 

Linsker, R. (1992). Local synaptic learning rules suffice to maximize 
mutual information in a linear network. Neural Computation, 4, 
691 - 702. 

Linsker, R. (1993). Deriving receptive fields using an optimal en- 
coding criterion. In S. J. Hanson, J. D. Cowan, & C. L. Giles 
(Eds.), Neural information processing system 5 (pp. 953-960).  
San Mateo, CA: Morgan Kaufmann. 

Nikias, C. L., & Mendel, J. M. (1993). Signal processing with higher- 
order spectra. IEEE Signal Processing Magazine, 10, 10-37. 

Oja, E. (1992). Principal components, minor components, and linear 
neural networks. Neural Networks, 5, 927-935. 

Oja, E., & Karhunen, J. (1993). Nonlinear PCA: Algorithms and 
applications. Report A 18, September 1993. Espoo, Finland: Hel- 
sinki University of Technology, Laboratory of Computer and In- 
formation Science. 

Oja, E., Ogawa, H., & Wangviwattana, J. (1991). Learning in non- 
linear constrained Hebbian networks. In T. Kohonen et al. (Eds.), 
Artificial neural networks (pp. 385-390).  Amsterdam: North- 
Holland. 

Oja, E., Ogawa, H., & Wangviwattana, J. (1992). Principal compo- 
nent analysis by homogeneous neural networks, part II: Analysis 
and extensions of the learning algorithms. IEICE Transactions on 
Information and Systems (Japan), E75-D, 3, 376-382. 

Orfanidis, S. J. (1988). Optimum signal processing, 2nd ed. New 
York: Macmillan. 

Osterberg, M., & Lenz, R. (1994). Unsupervised parallel feature ex- 
traction from first principles. In J. D. Cowan, G. Tesauro, & J. 
Alspector (Eds.), Advances in neural information processing sys- 
tems 6 (pp. 136-143) San Francisco, CA: Morgan Kaufmann. 

Palmieri, F. (1994). Hebbian learning and self-association in nonlin- 
ear neural networks. Proceedings of the 1994 IEEE International 
Conference on Neural Networks, Orlando, FL, June-July 1994 
(pp. 1258-1263). 

Palmieri, F., & Zhu, J. (1993). Hebbian learning in linear neural 
networks: A review (Tech. Rep. 5/93 ). Storrs, CT: University of 
Connecticut, Department of Electrical and Systems Engineering. 

Palmieri, F., Zhu, J., & Chang, C. (1993). Anti-Hebbian learning in 
topologically constrained linear networks: A tutorial. IEEE 
Transactions on Neural Networks, 4, 748-761. 

Plumbley, M. D. (1993a). Efficient information transfer and anti- 
Hebbian neural networks. Neural Networks, 6, 823-833. 

Plumbley, M. D. (1993b). A Hebbian/anti-Hebbian network which 
optimizes information capacity by orthonormalizing the principal 
subspace. Proceedings of the lEE Conference on Artificial Neural 
Networks, Brighton, UK, May 1993 (pp. 86-90).  

Sanger, T. D. (1989a). An optimality principle for unsupervised 
learning. In D. S. Touretzky (Ed.), Advances in neural informa- 
tion processing systems 1 (pp. 11-19). Palo Alto, CA: Morgan 
Kanfmann. 

Sanger, T. D. (1989b). Optimal unsupervised learning in a single- 
layer linear feedforward network. Neural Networks, 2, 459-  
473. 

Sorenson, H. W. (1980). Parameter estimation--principles and 
problems. New York: Marcel Dekker. 

Sudjianto, A., & Hassoun, M. (1994). Nonlinear Hebbian rule: A 
statistical interpretation. Proceedings of the 1994 IEEE Interna- 
tional Conference on Neural Networks, Orlando, FL, June-July 
1994 (pp. 1247-1252). 

Taylor, J. G., & Plumbley, M. D. (1993). Information theory and 
neural networks. In J. G. Taylor (Ed.), Mathematical approaches 
to neural networks (pp. 307-340).  Amsterdam: Elsevier Science 
Publishers. 

Therrien, C. W. (1992). Discrete random signals and statistical sig- 
nal processing. Englewood Cliffs, NJ: Prentice-Hall. 

Xu, L. (1993). Least mean square error reconstruction principle 
for self-organizing neural-nets. Neural Networks, 6, 627-  
648. 

Xu, L. (1994). Theories for unsupervised learning: PCA and its non- 
linear extensions. Proceedings of the 1994 IEEE International 
Conference on Neural Networks, Orlando, FL, June-July 1994 
(pp. 1252-1257). 

Xu, L., & Yuille, A. (1993). Self-organizing rules for robust prin- 
cipal component analysis. In S. J. Hanson, J. D. Cowan, & C. L. 
Giles (Eds.), Advances in neural information processing systems 
5 (pp. 467-474).  San Mateo, CA: Morgan Kaufmann. 

Young, T. Y., & Calvert, T. W. (1974). Classification, estimation, 
and pattern recognition. New York: American Elsevier. 


