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Abstract—In this paper, we consider an extension of inde-
pendent component analysis (ICA) and blind source separation
(BSS) techniques to several related data sets. The goal is to
separate mutually dependent and independent components or
source signals from these data sets. This problem is important
in practice, because such data sets are common in real-world
applications. We propose a new method which first uses a
generalization of standard canonical correlation analysis (CCA)
for detecting subspaces of independent and dependent compo-
nents. Any ICA or BSS method can after this be used for final
separation of these components. The proposed method performs
well for synthetic data sets for which the assumed data model
holds, and provides interesting and meaningful results forreal-
world functional magnetic resonance imaging (fMRI) data. The
method is straightforward to implement and computationally
not too demanding. The proposed method improves clearly the
separation results of several well-known ICA and BSS methods
compared with the situation in which generalized CCA is not
used.

I. I NTRODUCTION

A. Independent component analysis and blind source sepa-
ration

Independent component analysis (ICA) and related blind
source separation (BSS) methods [1], [8], [9] are nowadays
well understood techniques for blind extraction of useful in-
formation from vector-valued datax with many applications.

The data model used in standard linear ICA is simply

x(t) = As(t) =
m∑

i=1

si(t)ai (1)

Thus each data vectorx(t) is expressed as a linear combina-
tion of independent components or source signalssi(t), i =
1, 2, . . . ,m, which multiply the respective constant basis vec-
tors ai. The source vectors(t) = [s1(t), s2(t), . . . , sm(t)]T

contains the source signals, and the mixing matrixA =
[a1, a2, . . . , am] the basis vectorsai. They are in general
linearly independent but non-orthogonal. They depend on the
available data setX = [x(1), . . . ,x(Nx)] but once they have
been estimated, they are the same for all the data vectors in
X. The indext in the source signalssi(t) may denote time,
position (especially in digital images), or just the number
of the sample vector. For simplicity, we assume here that
both the data vectorx(t) = [x1(t), x2(t), . . . , xm(t)]T and
the source vectors(t) are zero meanm-vectors, and that the
mixing matrixA is a full-rank constantm×m matrix.
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In standard linear ICA, the indext can be dropped out,
because the order of the data vectorsx(t) is not important
and can even be random. This assumption is valid if the
data vectors are samples from some multivariate statistical
distribution. However, the data vectorsx(t) have often im-
portant underlying temporal structure, if they are subsequent
samples from a vector-valued time series which is temporally
correlated (non-white). Standard ICA can be applied to
such time series, too, but it is suboptimal because it does
not utilize this temporal information. Alternative methods
have been developed for extracting the source signals or
independent components in such cases. They usually uti-
lize either temporal autocorrelations directly or assume that
the variances of the source signals are nonstationary but
smoothly changing; see for example [1], [8], [9], [11].

The application domains and assumptions made in these
three major groups of BSS techniques vary to some extent
[1], [11]. In standard ICA, it is assumed that all the indepen-
dent components have non-Gaussian distributions except for
possibly one, and they are mutually statistically independent
[1]. Then standard ICA methods are able to separate their
waveforms, leaving however the order, sign, and scaling of
the separated components ambiquous. The scaling indeter-
minacy is usually fixed by normalizing the variances of the
separated independent components to unity. The most widely
used standard ICA method is currently FastICA [1], [13] due
to its efficient implementation and fast convergence which
makes it applicable to higher dimensional problems, too.
We have used in our experiments the freely downloadable
FastICA Matlab software package [21].

Methods based on temporal autocorrelations of the source
signals require that different sources have at least some dif-
ferent non-zero autocorrelations. Contrary to standard ICA,
they can then separate even Gaussian sources, but on the
other hand they fail if such temporal autocorrelations do not
exist, while standard ICA can even in this case separate non-
Gaussian sources. In our experiments the TDSEP method
[12] performed best of this type of methods that we have
tried. Temporal autocorrelation methods have been reviewed
in [15].

BSS methods based on nonstationary smoothly changing
variances have been introduced for example in [18], [19]. If
the assumptions made in them are valid, they can separate
even Gaussian temporally uncorrelated (white) sources that
ICA and temporal autocorrelation methods are not able to
handle appropriately. A fourth class of BSS methods employs
time-frequency representations (see Chapter 11 in [9]), but
we shall not discuss them in this paper.



Some attempts have been made to combine different types
of BSS methods so that they would be able to separate wider
classes of source signals. In [14], Hyvärinen developed an
approximate method which tries to utilize both higher-order
statistics, temporal autocorrelations, and nonstationarity of
variances. Only the autocorrelation coefficient corresponding
to a single time lag equal to 1 is used there, but the method
seems anyway to be able to separate different types of
sources. We have used also this method called UniBSS in
its Matlab code [22] in our experiments.

ICA and BSS have been generalized into many directions
from the simple linear noiseless model (1) [1], [8], [9]. In
this paper, we consider a generalization in which one tries
to find out mutually dependent and independent components
from different but related data sets. Considering first two data
such data sets, data vectorsy(t) of dimensionmy belonging
to the related data setY = [y(1), . . . ,y(Ny)] are assumed
to obey a similar basic linear ICA data model

y(t) = Br(t) =

my∑

i=1

ri(t)bi (2)

as the data vectorsx(t) in (1). The assumptions that we make
on themy-dimensional basis vectorsbi and source signals
ri(t) are exactly the same as those made on the basis vectors
ai and source signalssi(t) in context with Eq. (1). More
generally, we haveM such data setsX1,X2, . . . ,XM . The
dimensionalitiesmi of the data vectors belonging to these
data sets can be different, but the number of data vectorsN

in them must be the same for canonical correlation analysis
and its generalizations. If this is not the case, obviously we
selectN equal to the minimum number of data vectors in
these data sets. The respective data vectors in each data set
should correspond to each other, for example being taken at
the same time instant.

In our method, we first apply a generalization of canonical
correlation analysis (CCA) to find subspaces of dependent
and independent sources in the data setsX1,X2, . . . ,XM .
The data sets are then projected onto these subspaces. After
this, any suitable ICA or BSS method can be used for final
separation. Our method is described in more detail in the
next section.

B. Related work

The first author considered the problem of finding depen-
dent components from two related data sets already in [2], but
the method introduced there suffers from a theoretical weak-
ness. We modified this method and got rid of its weakness in
[3]. The method presented in that paper performs much better
than plain BSS and ICA methods applied directly to the data
sets without using canonical correlation analysis. Not only
are the signal-to-noise ratios of the separated sources often
clearly higher, but the method is able to separate difficult
sources for which plain ICA and BSS methods fail. In the
current paper, we generalize this method for more than two
data sets, and present a successful real-world applicationto
fMRI data.

In general, the extension of ICA and BSS for separating
dependent and independent source signals from related data
sets has not been studied as much as many other extensions
of ICA and BSS mentioned above, but some research on this
topic has been carried out.

In [17], Ylipaavalniemi et al. have carried out their analysis
of biomedical fMRI sources in reverse order compared with
our method. They first apply standard ICA to the two related
data sets separately. Then they connect dependent sources
(independent components) in these data sets using CCA.
The method performs pretty well but it has a theoretical
weakness: ICA assumes that the sources are non-Gaussian
but CCA can be derived from a probabilistic latent variable
model where all the involved random variables (vectors) are
Gaussian [20]. The authors of the paper [17] have improved
their method in two later papers. In [23], they apply to the
results first provided by ICA a nonparametric CCA type
model where Gaussian distributions are not assumed. In
another more theoretical paper [24] the authors show on a
general level how to apply a probabilistic CCA type model
without assuming Gaussian distributions.

In [16], the authors use standard CCA and its extension to
multiple data sets for the analysis of medical imaging data,
discussing the advantages of such approaches and comparing
their performances to standard ICA that has been successfully
applied to this type of problems. This tutorial review paper
is largely based on the research papers [29], [28].

Koetsier et al. have presented in [25] an unsupervised
neural algorithm called Exploratory Correlation Analysisfor
the extraction of common features in multiple data sources.
This method is closely related with canonical correlation
analysis.

Gutmann and Hyvärinen [27] have recently introduced a
method based on nonstationary variances for finding depen-
dent sources from related data sets. Their method as well
as most other methods assume that in each of these data
sets there is one source signal that is dependent on one
source signal in the other data sets, while these sources are
independent of all other sources. Our method is more general
and does not suffer from such a restrictive model assumption.

Akaho and his co-authors [10] have considered an ICA
style generalization of canonical correlation analysis which
they call multimodal independent component analysis. In
their method, standard linear ICA is first applied to both data
setsx andy separately. Then the corresponding dependent
components of the two ICA expansions are identified using
a natural gradient type learning rule.

Furhermore, several authors have developed constrained
ICA methods for extracting source signals which are con-
strained to be similar to some reference signals. This re-
quires, however, some prior knowledge on the reference
signals. In [26], Van Hulle introduces three ways to perform
constrained ICA. In one of them he tries to find dependent
components between two data sets by generalizing CCA,
with a small-scale biomedical application.



II. CANONICAL CORRELATION ANALYSIS

Canonical correlation analysis (CCA) [4], [5] is an old
statistical technique which has during the last decade be-
come popular in various signal processing and data analysis
applications, because it often provides in practice quite good
and meaningful results. Standard CCA measures the linear
relationships between two multidimensional datasetsX and
Y using their second-order statistics, autocovariances and
cross-covariances. It finds two bases, one for bothX and
Y, in which the cross-correlation matrix between the data
setsX andY becomes diagonal and the correlations of the
diagonal are maximized.

In CCA, the dimensions of the data vectorsx ∈ X andy ∈
Y can be different, but they are assumed to have zero means.
The number of the data vectors inX andY must be the same.
The exact conditions required for the canonical correlations
and the problem solution are discussed in [4], [5], see also
our earlier paper [3]. It turns out these canonical correlations
can be computed by solving the eigenvector equations

C−1
xxCxyC

−1
yyCyxwx = ρ2wx

C−1
yyCyxC

−1
xxCxywy = ρ2wy

(3)

where Cyx = E{yxT }. The eigenvaluesρ2 are squared
canonical correlations and the eigenvectorswx andwx are
normalized CCA basis vectors. Only non-zero solutions to
these equations are usually of interest, and their number is
equal to the smaller of the dimensions of the vectorsx and
y.

The solution (3) can be simplified if the data vectorsx and
y are prewhitened [1], which is the usual practice in many
ICA and BSS methods. After prewhitening, bothCxx and
Cyy become unit matrices, and noting thatCyx = CT

xy Eqs.
(3) become

CxyC
T
xywx = ρ2wx

CyxC
T
yxwy = ρ2wy

(4)

But these are just the defining equations for the singular value
decomposition (SVD) [30] of the cross-covariance matrix
Cxy:

Cxy = UΣVT =
L∑

i=1

ρiuiv
T
i (5)

ThereU andV are orthogonal square matrices (UTU = I,
VTV = I) containing the singular vectorsui and vi. In
our case, these singular vectors are the basis vectorswxi

and wyi providing canonical correlations. In general, the
dimensionalities of the matricesU andV and consequently
the singular vectorsui and vi are different corresponding
to different dimensions of the data vectorsx and y. The
pseudodiagonal matrix

Σ =

[
D 0

0 0

]
(6)

consists of a diagonal matrixD containing the non-zero
singular values appended with zero matrices so that the
matrix Σ is compatible with the different dimensions of

x and y. These non-zero singular values are just the non-
zero canonical correlations. If the cross-covariance matrix
Cxy has full rank, their number is the smaller one of the
dimensions of the data vectorsx andy.

III. O UR METHOD FOR TWO RELATED DATA SETS

We first preprocess the data vectorsx ∈ X andy ∈ Y

by subtracting their mean vectors from them if they are non-
zero. After this, these data vectors are whitened separately:

vx = Vxx, vy = Vyy (7)

We use standard principal component analysis (PCA) for
computing the whitening matricesVx andVy as discussed
in Section 6.4 in [1]. We then estimate the cross-covariance
matrix Cvxvy

of the whitened data vectorsvx and vy in
standard manner:

Ĉvxvy
=

1

N

N∑

t=1

vx(t)v
T
y (t) (8)

After this, we perform singular value decomposition (SVD)
of the estimated cross-covariance matrixĈvxvy

quite sim-
ilarly as for Cxy in (5). Inspecting the magnitude of the
singular values in the pseudodiagonal matrixΣ, we then
divide the matricesU and V of singular vectors into two
submatrices:

U = [U1 U2], V = [V1 V2] (9)

There U1 and V1 correspond to dependent components
for which the respective singular values are larger than
0.5, and U2 and V2 to the independent components for
which the respective singular values are smaller. We have
found experimentally that the threshold value0.5 is suitable.
The data are then projected using these submatrices into
subspaces corresponding to the dependent and independent
components by computing

UT
1 X, UT

2 X, VT
1 Y, VT

2 Y (10)

whereX = [x(1), . . . ,x(Nx)] andY = [y(1), . . . ,y(Ny)].
Finally, we apply any suitable ICA or BSS method sep-

arately to each of these 4 projected data sets for separating
the source signals contained in these subspaces. It should
be noted that contrary to the customary use of SVD we
include in the submatricesU2 and V2 also the singular
vectors corresponding to small or even zero singular values
for being able to separate all the sources inX and Y. In
the following, we present several somewhat intuitive and
heuristic justifications to the proposed method which anyway
in our opinion largely explain its good performance.

First, let us denote the separating matrices after the whiten-
ing step in (7) byWT

x for vx and respectively byWT
y for

vy. A basic result in the theory of ICA and BSS [1] is that
after whitening the separating matricesWx andWy become
orthogonal:WT

xWx = I, WT
yWy = I. Thus

ŝ = WT
xVxx = WT

xVxAs = PsDss (11)



The vectorŝ on the left hand side contains the estimated
sources. A basic ambiguity in the blind ICA and BSS
methods is that they can appear in different order and have
different scales than the original sources [1]. This has been
taken into account in Eq. (11) by multiplying the source
vectors on the right-hand side by a diagonal scaling matrix
Ds and a permutation matrixPs, which changes the order
of the elements in the column vectorDss [34].

Assuming that there are as many linearly independent
mixtures x as sourcess, so that the mixing matrixA is
a full-rank square matrix, we get from the two last equations
of (11)

A = (WT
xVx)

−1PsDs = V−1
x WxPsDs (12)

due to the orthogonality of the matrixWx. Quite similarly,
we get for the another mixing matrixB in (2) a similar result

B = (WT
yVy)

−1PrDr = V−1
y WyPrDr (13)

whereDr is the diagonal scaling matrix andPr the permu-
tation matrix associated to the estimater̂ of the source vector
r.

Consider now the cross-covariance matrix after whitening.
It is

Cvxvy
= VxE{xyT }VT

y = VxAQBTVT
y (14)

Here the matrixQ = E{srT } is a diagonal matrix, if the
sources signals in the source vectorss and r are pairwise
dependent but otherwise independent of each other. Inserting
A andB from Eqs. (12) and (13) into (14) yields

Cvxvy
= (WxPs)(DsQDT

r )(WyPr)
T (15)

But this is exactly the same type of expansion as the singular
value decomposition (5) of the whitened cross-covariance
matrix Cvxvy

. First, WxPs is a product of an orthogonal
matrix Wx and permutation matrixPs, which here changes
the order of the columns in the matrixWx [34]. ThusWxPs

is still an orthogonal matrix having the same column vectors
asWx but generally in different order. The matrixWxPs

corresponds to the orthogonal matrixU in (5), and quite
similarly the orthogonal matrixWyPr corresponds to the
orthogonal matrixV in (5). Finally, the matrixDsQDT

r is
a product of three diagonal matrices and hence a diagonal
matrix which corresponds to the diagonal matrixΣ in (5).

Thus on the assumptions made above the SVD of the
whitened cross-covariance matrix provides a solution thathas
the same structure as the separating solution. Even though
we cannot from this result directly deduce that the SVD of
the whitened cross-covariance matrix (that is, CCA) would
provide a separating solution, this seems to hold in simple
cases at least as shown by our experiments in [3]. At least
CCA when applied to the data setsX and Y using (10)
provides already partial separation, helping several ICA or
BSS methods to achieve clearly better results in difficult
cases.

Another justification is that CCA, or SVD of whitened
data vectors, uses second-order statistics (cross-covariances)

only for separation, while standard ICA algorithms such as
FastICA use for separation higher-order statistics only after
the data has been normalized with respect to their second-
order statistics by whitening them. Combining both second-
order statistics and higher-order statistics by first performing
CCA and then post-processing the results using a suitable
ICA or BSS method can be expected to provide better results
than using solely second-order or higher-statistics only for
separation.

Our third justification is that dividing the separation prob-
lem into subproblems using the matrices in (10) probably
helps. Solving two lower dimensional subproblems is easier
than solving a higher dimensional separation problem. And
if the mixtures consist of several types of sources, which
could be super-Gaussian, sub-Gaussian, Gaussian, temporally
correlated, or nonstationary sources, the complexity of the
sources in the subproblems to be solved can be reduced.

We can somewhat heuristically modify the SVD based
method introduced above to include temporal correlations
into the computations by using instead of the plain cross-
covariance matrixCvxvy

= E{vxv
T
y } the generalized cross-

covariance matrices

Gvxvy
= E{vx(t)v

T
y (t)+vx(t−d)vT

y (t)+vx(t)v
T
y (t−d)}

(16)
whered is the chosen time delay. In our experiments, we have
found that a suitably chosen time delayd in (16) can improve
the separation results for temporally correlated sources.

IV. EXTENSION TO SEVERAL DATA SETS

In a pioneering paper [31], Kettenring introduced and dis-
cussed five different generalizations of standard CCA to three
or more data sets, albeit only two of them were completely
new. These generalizations are based on somewhat different
optimization criteria and orthogonality constraints, butseem
in practical experiments to yield pretty similar results. The
most popular of these criteria is so-called maximum variance
generalization of CCA [31], [32]. It can be optimized and
the respective canonical vectors estimated using the proce-
dure described in [31], [32]. This optimization method is,
however, computationally somewhat complicated. It requires
first computation of the singular value decompositions of all
the M data setsXk, k = 1, . . . ,M . From them, anL × L

matrix is formed where

L =
M∑

k=1

mk (17)

is the sum of the dimensionalies of the data vectors in the
setsXk, k = 1, . . . ,M . The desired generalized canonical
vectors are then computed from the eigenvectors of thisL×L

matrix.
We do not discuss this procedure in more detail because an

easier solution is available. Via, Santamaria, and Perez have
considered in [32] a generalization of CCA to several data
sets within a least-squares regression framework, and shown
that it is equivalent to the maximum variance generalization.
Their computational method does not require singular value



decompositions of the data sets. In the following, we present
and use this method as a part of our method.

Assume that we have at our disposalM data setsXk,
k = 1, . . . ,M having the same numberN of data vectors.
The data vectors appear as column vectors in these data sets,
and their dimensionalitiesmk are in general different for
each setXk. Denote the successive (generalized) canonical
vectors byh(i)

k and canonical variables byz(i)k = XT
k h

(i)
k , and

the estimated cross-correlation matrices1 asCkl = XkX
T
l .

The least-squares type generalization of CCA can then be
formulated as the problem of sequentially maximizing the
generalized canonical correlation

ρ(i) =
1

M

M∑

k=1

ρ
(i)
k (18)

where

ρ
(i)
k =

1

M − 1

M∑

l=1,l 6=k

ρ
(i)
kl (19)

andρ
(i)
kl = h

(i)T
k Cklh

(i)
l . In this case, the energy constraint

which is needed for avoiding trivial solution is [32]

1

M

M∑

k=1

h
(i)T
k Ckkh

(i)
k = 1 (20)

The orthogonality constraints are fori 6= j

z(i)T z(j) = 0 (21)

z(i) =
1

M

M∑

k=1

z
(i)
k . (22)

This least-squares generalization of CCA can be rewritten
as a function of distances. For extracting thei:th CCA eigen-
vector, the generalized CCA problem consists of minimizing
with respect to theM canonical vectorsh(i)

k the cost function

J (i) =
1

2M(M − 1)

M∑

k,l=1

‖Xkh
(i)
k −Xlh

(i)
l ‖2

=
1

M

M∑

k=1

‖ z
(i)
k ‖2 −ρ(i)

(23)

subject to the constraints (20) and (21), which impliesJ (i)

= 1− ρ(i).
The solutions of this generalized CCA problem can be

obtained using the method of Lagrange multipliers [32]. This
leads to the generalized eigenvector problem

1

M − 1
(C−D)h(i) = ρ(i)Dh(i) (24)

where

h(i) = [h
(i)T
1 ,h

(i)T
2 , . . . ,h

(i)T
M ]T (25)

1The scaling factor1/N can be omitted here

is a “supervector” formed by stacking thei:th canonical
vectors of the M data sets, and the respective block matrices
are

C =



C11 . . . C1M

...
. . .

...
CM1 . . . CMM


 (26)

D =



C11 . . . 0

...
. . .

...
0 . . . CMM


 (27)

ThusD is anL× L block diagonal matrix whose diagonal
blocks are the autocorrelation matricesCii, i = 1, . . . ,M ,
of the M data sets. The matrixC − D is anL × L block
off-diagonal matrix which contains all the cross-correlation
matricesCkl, k 6= l, of theM data sets but not their auto-
correlation matrices. The solutions for this least-squares or
maximum variance generalization of CCA are obtained as the
eigenvectors associated with the largest eigenvalues of (24).
These eigenvectors can be computed also using a deflation
type neural recursive least-squares algorithm introducedand
discussed in [32].

A couple of notes are in order here. First, the equations
(3) defining standard CCA for two data sets can be written
in the form (24) after some manipulation, see [32], [5]. Then
in (24) h(i) = [wT

xi,w
T
yi]

T . If we denote the matrix on the
left-hand side of (24) byO (off-diagonal), (24) is equivalent
to the non-symmetric eigenproblem

D−1Oh(i) = ρ(i)h(i) (28)

which could in principle have complex-valued eigenvectors
and -values. However, the equation (28) can be written as

O1/2D−1O1/2(O1/2h(i)) = ρ(i)(O1/2h(i)) (29)

which is a symmetric eigenproblem for the eigenvector
O1/2h(i). Hence the eigenvalues and -vectors of (24) are
real-valued.

Our method forM related data setsXk, k = 1, . . . ,M
proceeds now as follows. We first estimate all the cross-
correlation matricesCkl, k, l = 1, . . . ,M similarly as in (8)
and form from them estimates of the matricesC and D.
We then compute thed principal generalized eigenvectors
h(1), . . . ,h(d), corresponding to thed largest eigenvalues,
from (24) or (28). Hered ≤ min(m1, . . . ,mM ). From these
stacked eigenvectors we get the vectorsh

(1)
k , . . . ,h

(d)
k corre-

sponding to each data setXk. We then orthonormalize these
vectors, yielding vectorsg(i)

k , i = 1, . . . , d, and orthogonal
projection operator

PD,k = [g
(1)
k , . . . ,g

(d)
k ] (30)

onto the subspace spanned by them, corresponding to the
dependent components in the data setXk. The data sets are
then mapped to these basis vectors,

PT
D,kXk, k = 1, . . . ,M (31)



and the dependent components (sources) of each data set are
found by applying any suitable ICA or BSS method to the
projected data sets (31).

A question now arises how to estimate the independent
components (sources) in each data set. A first idea is to use
the generalized eigenvectors corresponding to the smallest
eigenvalues in a similar manner as above. However, if we
have for example 3 data setsX1, X2, andX3 of data vectors
having respectively the dimensionalitiesm1 = 5, m2 = 4,
andm3 = 6, L = 15 and the equation (28) has 15 stacked
eigenvectorsh(i), i = 1, . . . , 15. From them we get 15
vectorsh(i)

k for each data setXk. These vectors are clearly
linearly dependent.

Therefore a better solution is to construct a subspace
which is orthogonal to the subspace defined by the projection
operatorPD,k in (30) for each data setXk. An orthonormal
basis for this subspace can be computed for example by
takingmk−d random vectors of dimensionmk and orthonor-
malizing them against thed vectorsg(i)

k in (30) and each
other. The resulting vectors are used to define a projection
operator

PI,k = [g
(d+1)
k , . . . ,g

(mk)
k ] (32)

corresponding to the independent components inXk. The
data is then mapped onto these subspaces:

PT
I,kXk, k = 1, . . . ,M (33)

and the independent components are estimated by applying
any suitable ICA or BSS method to the projected data sets
(33).

V. EXPERIMENTAL RESULTS

A. Simulated data

Experiments with synthetically generated data are useful
and necessary, because the true source signals are known. It
is then possible to assess the performance of the methods
using a suitable criterion. For real-world data, the true
sources are usually unknown, and the results can be assessed
qualitatively only.

TABLE I
SIGNAL -TO-NOISE RATIOS(DB) OF DIFFERENT METHODS FOR THE

SOURCE SIGNALSS1-S5IN THE FIRST DATA SETX1 .

Method S1 S2 S3 S4 S5

GCCA 4.6 4.7 10.2 10.2 4.5
FastICA 18.3 16.8 9.9 6.1 6.9
TDSEP 15.5 18.8 10.2 10.2 16.8
UniBSS 27.5 26.4 31.7 24.8 23.9

GCCA+FastICA 26.1 25.7 15.5 15.2 23.8
GCCA+TDSEP 16.4 22.1 10.3 10.5 17.6
GCCA+UniBSS 32.5 33.5 25.9 24.2 28.3
Method in [27] 25.0 27.1 6.9 6.7 24.7
Method in [29] 6.2 5.8 6.2 6.1 4.9

We used the 6 source signals defined in the Matlab code
UniBSS.m [22] and explained in [14]. The four first sources
are generated using a first-order autoregressive model so
that the two first of them are super-Gaussian and the third

and fourth source are Gaussian. The first and third source
had identical temporal autocovariances, and similarly the
second and fourth source. The fifth and sixth source have
smoothly changing variances. Furthermore, we generated 3
more sources in a similar manner, so that one of them was
super-Gaussian, one temporally correlated Gaussian, and one
had a smoothly changing variance. Due to the construction
of these difficult source signals, almost all ICA and BSS
methods fail to separate all of them from their mixtures.
Only the approximative UniBSS method should be able to
separate all of them [14].

From these 9 source signals we constructed three setsX1,
X2, andX3 of 5-dimensional data vectors using randomly
chosen mixing matrices. In each of these data sets there
were 3 same sources, namely sources 1 and 2 which were
super-Gaussian and source 5 which has a smoothly changing
variance. Sources 3 and 4 in each data set were different
and independent of all the other sources. We used 2000
data vectors and source signal values (t = 1, 2, . . . , 2000) for
providing enough data especially to the UniBSS and TDSEP
methods.

Because the results can vary a lot for different statistical
realizations of these sources and their mixtures, we computed
the averages of the signal-to-noise ratios of the separated
sources over 100 random realizations of the sources and the
data sets. The signal-to-noise ratios (SNR’s) of the estimated
source signals were computed for each realization of the data
sets and each source from the formula

SNR(i) = 10 log10

1
N

∑N
t=1 si(t)

2

1
N

∑N
t=1[si(t)− ŝi(t)]2

(34)

where the numerator is the average power of the i:th source
si(t) over the N samples, and the denominator is the
respective power of the differencesi(t)− ŝi(t) between the
source signalsi(t) and its estimatêsi(t).

TABLE II
SIGNAL -TO-NOISE RATIOS(DB) OF DIFFERENT METHODS FOR THE

SOURCE SIGNALSS1-S5IN THE SECOND DATA SETX2 .

Method S1 S2 S3 S4 S5

GCCA 4.6 4.7 9.9 9.8 4.5
FastICA 17.3 16.1 5.4 6.9 5.3
TDSEP 7.7 17.9 7.9 8.7 8.1
UniBSS 26.0 28.3 11.1 18.5 10.7

GCCA+FastICA 26.1 25.8 12.4 12.3 23.8
GCCA+TDSEP 16.4 22.1 19.1 19.3 17.6
GCCA+UniBSS 31.8 33.3 21.7 21.9 27.7
Method in [27] 25.1 28.6 17.5 21.2 24.9
Method in [29] 6.2 5.8 2.5 2.3 4.9

The results for the data setsX1, X2, and X3 are pre-
sented in Tables I, II, and III, respectively. Based on visual
inspection, we set the border value of SNR for a successful
separation to 10 dB. Even an SNR of a few decibels means
in practice progress towards separation, often considerable.
In this case, some parts of the respective source signals are
often well separated while others not. Poor results with no
visible separation have typically an SNR value around 0 dB.



TABLE III
SIGNAL -TO-NOISE RATIOS(DB) OF DIFFERENT METHODS FOR THE

SOURCE SIGNALSS1-S5IN THE THIRD DATA SET X3 .

Method S1 S2 S3 S4 S5

GCCA 4.6 4.7 10.2 10.1 4.5
FastICA 14.7 13.8 4.1 3.8 3.9
TDSEP 11.9 8.8 9.1 9.0 8.8
UniBSS 25.9 27.6 13.8 12.9 10.6

GCCA+FastICA 26.1 25.8 10.1 10.2 23.8
GCCA+TDSEP 16.4 22.1 25.1 24.5 17.6
GCCA+UniBSS 32.6 33.7 19.2 19.4 28.7
Method in [27] 24.6 28.6 9.9 10.2 24.5
Method in [29] 6.2 5.8 8.8 9.2 4.9

On the first row of the tables are the results of the
generalized CCA (GCCA) without any postprocessing. It
shows some progress towards separation, and the results
for the independent 3rd and 4th source are around the
separation border already. FastICA [1], [13], [21], based on
non-Gaussianity, is able to separate the non-Gaussian first
and second sources in all the data sets, but fails for other
types of sources as expected. The TDSEP method [12] based
on temporal autocorrelations is able to marginally separate
all the 5 sources in the first data setX1, but fails though not
badly for most sources in the other two data setsX2 and
X3. The UniBSS method [14], [22] is able to separate all
the sources, though some of them rather marginally. It may
benefit from the construction of the sources using a first-order
autoregressive model as its uses just the first autocorrelation.

Preprocessing using generalized canonical correlation
analysis (GCCA) improves the separation results for most
sources and all the tested methods, FastICA, TDSEP, and
UniBSS. Not only are the SNR’s of separated sources often
much higher but GCCA preprocessing helps FastICA and
TDSEP to separate sources that they alone are not able to
separate. These results are qualitatively similar as in our
earlier paper [3] using plain CCA preprocessing for two data
sets and the FastICA and UniBSS methods.

In this paper, we also compare our method with two
methods introduced by other authors for the same problem.
The first compared method [27] assumes that the dependent
sources in the data sets are active simultaneously. From
Tables I-III one can see that it performs quite well for the
dependent first, second, and fifth source in all the three data
set, but fails for the independent third and fourth source
in the first data setX1, and lies at separation border for
these sources in the third data setX3. The second compared
method [29] uses multiset canonical correlation analysis.It
makes some progress towards separation for most sources,
but fails at least marginally for all of them in this difficult
separation task.

We tested also the dependence of the methods on the
number of samplesN in the data sets. Generalized CCA
(GCCA) performs in practice equally well using 500 samples
(data vectors) only, but the other methods FastICA, TDSEP,
and UniBSS provide much better results when the number of
samples increases. Even the UniBSS method fails to separate

some of the sources when the number of samples is 500 or
1000.

B. Real-world fMRI data

We tested the usefulness of our method with data from
a functional magnetic resonance imaging (fMRI) study [7],
where it is described in more detail. We used the mea-
surements of two healthy adults while they were listening
to spoken safety instructions in 30 s intervals, interleaved
with 30 s resting periods. In these experiments we used
slow feature analysis (SFA) described in detail in [6] for
post-processing the results given by CCA, because it gave
better results than FastICA. All the data were acquired at
the Advanced Magnetic Imaging Centre of Aalto University,
using a 3.0 Tesla MRI scanner (Signa EXCITE 3.0 T; GE
Healthcare, Chalfont St. Giles, UK).

Figures 1 and 2 show the results of applying our method
to the two datasets and separating 11 components from
the dependent subspacesU1 and V1. The consistency of
the components across the subjects is quite good. The first
component shows a global hemodynamic contrast, where
large areas inside the brain have negative values and the
surface of the brain is positive. The clear contrast could also
be a scanning related artifact or an effect produced by the
standard fMRI preprocessing of the datasets.

The activity in the second component is focused on the pri-
mary auditory cortices. The time-course of the activity also
closely follows the stimulation blocks. The third component
shows a weakly task-related activity, with positive regions
around the anterior and posterior cingulate gyrus. These areas
have been identified in many studies to be part of a bigger
network related with novelty of the stimulus, introspection
and default-state-network. The areas of activation in the
fourth component partly overlap with those in the third one.
However, in this case the activation is positive in the anterior
part and negative in the posterior. This clearly shows that the
activity of these areas is too complex to be described by a
single component.

The rest of the components are not directly stimulus re-
lated, but the activated areas have been consistently identified
in the earlier studies. Some of them appear to be well-known
supplementary audio and language processing areas in the
brain.

These results are promising and in good agreement with
the ones reported in [7]. Generally, the activated areas
identified by our method are the same as, or very close to, the
ones previously reported. There are some differences when
compared to the earlier FastICA results, as the method seems
to enhance contrasts within the components. There are both
strongly positive and negative values in each component.
Furthermore, the first component has not been identified by
using FastICA. Future experiments are needed with multiple
datasets for interpreting the found components more thor-
oughly, and a more extensive comparison with existing ICA
and BSS methods using real-world data should be carried
out.
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Fig. 1. Experimental results with fMRI data. Each row shows one of the
11 separated components. The activation time-course with the stimulation
blocks for reference, shown on the left, and the corresponding spatial pattern
on three coincident slices, on the right. Components from the first dataset.

VI. D ISCUSSION

After writing the paper [3], we tested our method for
two data sets with several other methods than FastICA and
UniBSS. The results were good especially for the TDSEP
method, and CCA prepocessing improved them also for
the well-known algebraic ICA method JADE [33], which
is based on non-Gaussianity included into computations
explicitly by higher-order statistics. However, the results of
the CCA followed by JADE method were not as good as
for FastICA, TDSEP, and UniBSS. We tested several other
ICA and BSS methods, too, and found that if a method fails
completely in a separation task providing results around 0
dB, CCA preprocessing does not any more help it to achieve
better results.

Even though the UniBSS method performed well in these
experiments, it has some drawbacks. First, it requires at least
of the order of 1000 samples to perform appropriately, while
for example FastICA needs less samples for providing pretty
good estimates of the sources if there are just a few of
them. Second, the UniBSS method requires many iterations
and it does not converge uniformly. It may already provide
good estimates but then still with more iterations move far
away from a good solution, giving then rather poor estimates
of the source signals. This can happen several times until
the method eventually permanently converges to a good
solution. A third drawback of the UniBSS method is that
just like well-known the natural gradient algorithm [1], [8],
it requires different types of nonlinearities for super-Gaussian
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Fig. 2. Experimental results with fMRI data. Components from the second
dataset.

and sub-Gaussian source signals. Thus one should know
or somehow be able to estimate how many super-Gaussian
and sub-Gaussian sources the data set contains, otherwise
the UniBSS methods fails to separate some sources. In our
experiments with synthetically generated data this was nota
problem because all the sources were either super-Gaussian
or Gaussian. However, FastICA and TDSEP methods do not
suffer from this limitation. In practice, using them together
with CCA or generalized CCA is often a preferable choice
over using the UniBSS method.

Canonical correlation analysis is based on second-order
statistics, that is, autocovariances and cross-covariances of
the two related data sets. Furthermore, like PCA it can be
derived from a probabilistic model in which all the involved
random vectors are Gaussian [20]. We are not aware of a
probabilistic model for the least-squares generalizationof
CCA that we have used, but it also uses second-order statis-
tics only, collected into the matrices (26) and (27). In our
method, this is not so great limitation as one might expect,
because all the information including higher-order statistics
and non-Gaussianity contained in the two related data sets
are retained in mapping them to the subspaces corresponding
to their dependent and independent components in (31) and
(33).

The division into these subspaces is now based on in-
spection of the magnitudes of singular values of the cross-
covariance matrix of whitened data sets. One could argue that
also higher-order statistics should be taken into account in
determining these subspaces. However, even this is often not
critical because the final goal is to separate all the sources



in the related two data sets irrespective of how dependent or
independent they are from each other and in which way they
are divided into these subspaces.

VII. C ONCLUSIONS

In this paper, we have introduced a method based on
least-squares generalization of standard canonical correlation
analysis (CCA) for blind source separation from related
data sets. The goal is to separate mutually dependent and
independent components or source signals from these data
sets. We use this generalization of CCA for first detecting
subspaces of independent and dependent components. Any
ICA or BSS method can after this be used for final separation
of these components. The proposed method performs quite
well for synthetic data sets for which the assumed data
model holds exactly. It provides interesting and meaningful
results for real-world functional magnetic resonance imaging
(fMRI) data. The method is straightforward to implement
and computationally not too demanding. The proposed
method improves clearly the separation results of several
well-known ICA and BSS methods compared with the
situation in which generalized CCA is not used.
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