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Abstract. Principal component analysis (PCA) is a well-known classi-
cal data analysis technique. There are a number of algorithms for solving
the problem, some scaling better than others to problems with high di-
mensionality. They also differ in their ability to handle missing values in
the data. We study a case where the data are high-dimensional and a
majority of the values are missing. In case of very sparse data, overfitting
becomes a severe problem even in simple linear models such as PCA. We
propose an algorithm based on speeding up a simple principal subspace
rule, and extend it to use regularization and variational Bayesian (VB)
learning. The experiments with Netflix data confirm that the proposed
algorithm is much faster than any of the compared methods, and that
VB-PCA method provides more accurate predictions for new data than
traditional PCA or regularized PCA.

1 Introduction

Principal component analysis (PCA) [1,2,3] is a classic technique in data analysis.
It can be used for compressing higher dimensional data sets to lower dimensional
ones for data analysis, visualization, feature extraction, or data compression.

PCA can be derived from a number of starting points and optimization
criteria [3,4,2]. The most important of these are minimization of the mean-
square error in data compression, finding mutually orthogonal directions in the
data having maximal variances, and decorrelation of the data using orthogonal
transformations [5].

In this paper, we study PCA in the case that most of the data values are miss-
ing (or unknown). Common algorithms for solving PCA prove to be inadequate
in this case, and we thus propose a new algorithm. The problem of overfitting is
also studied and solutions given.

We make the typical assumption that values are missing at random, that is,
the missingness does not depend on the unobserved data. An example where
the assumption does not hold is when out-of-scale measurements are marked
missing.
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2 Principal Component Analysis

Assume that we have n d-dimensional data vectors x1,x2, . . . ,xn, which form
the d × n data matrix X = [x1,x2, . . . ,xn]. The matrix X is decomposed into
X ≈ AS, where A is a d× c matrix, S is a c×n matrix and c ≤ d ≤ n. Principal
subspace methods [6,4] find such A and S that the reconstruction error

C = ‖X − AS‖2
F =

d∑

i=1

n∑

j=1

(xij −
c∑

k=1

aikskj)2 , (1)

is minimized. Typically the row-wise mean is removed from X as a preprocessing
step. Without any further constraints, there exist infinitely many ways to per-
form such a decomposition. PCA constraints the solution by further requiring
that the column vectors of A are of unit norm and mutually orthogonal and the
row vectors of S are also mutually orthogonal [3,4,2,5].

There are many ways to solve PCA [6,4,2]. We will concentrate on the subspace
learning algorithm that can be easily adapted for the case of missing values and
further extended.

Subspace Learning Algorithm. Works by applying gradient descent to the
reconstruction error (1) directly yielding the update rules

A ← A + γ(X − AS)ST , S ← S + γAT (X − AS) . (2)

Note that with S = AT X the update rule for A is a batch version of Oja’s
subspace rule [7]. The algorithm finds a basis in the subspace of the largest
principal components. If needed, the end result can be transformed into the
PCA solution by proper orthogonalization of A and S.

3 Principal Component Analysis with Missing Values

Let us consider the same problem when the data matrix has missing entries. We
would like to find A and S such that X ≈ AS for the observed data samples.
The rest of the product AS represents the reconstruction of missing values.

The subspace learning algorithm works in a straightforward manner also in
the presence of missing values. We just take the sum over only those indices i
and j for which the data entry xij (the ijth element of X) is observed, in short
(i, j) ∈ O. The cost function is

C =
∑

(i,j)∈O

e2
ij , with eij = xij −

c∑

k=1

aikskj , (3)

and its partial derivatives are

∂C

∂ail
= −2

∑

j|(i,j)∈O

eijslj ,
∂C

∂slj
= −2

∑

i|(i,j)∈O

eijail . (4)
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We propose to use a speed-up to the gradient descent algorithm. In Newton’s
method for optimization, the gradient is multiplied by the inverse of the Hessian
matrix. Newton’s method is known to be fast-converging, but using the full
Hessian is computationally costly in high-dimensional problems (d � 1). Here we
use only the diagonal part of the Hessian matrix, and include a control parameter
α that allows the learning algorithm to vary from the standard gradient descent
(α = 0) to the diagonal Newton’s method (α = 1). The final learning rules then
take the form

ail ← ail − γ′
(

∂2C

∂a2
il

)−α
∂C

∂ail
= ail + γ

∑
j|(i,j)∈O eijslj(∑
j|(i,j)∈O s2

lj

)α , (5)

slj ← slj − γ′
(

∂2C

∂s2
lj

)−α
∂C

∂slj
= slj + γ

∑
i|(i,j)∈O eijail

(∑
i|(i,j)∈O a2

il

)α . (6)

For comparison, we also consider two alternative PCA methods that can be
adapted for missing values.

Imputation Algorithm. Another option is to complete the data matrix by
iteratively imputing the missing values (see, e.g., [8]). Initially, the missing val-
ues can be replaced by zeroes. With completed data, PCA can be solved by
eigenvalue decomposition of the covariance matrix. Now, the missing values are
replaced using the product AS, PCA is applied again, and this process is it-
erated until convergence. This approach requires the use of the complete data
matrix, and therefore it is computationally very expensive if a large part of the
data matrix is missing.

EM Algorithm. Grung and Manne [9] studied the EM-like algorithm for PCA
in the case of missing values.1 In the E-step, A is fixed and S is solved as a
least squares problem. In the M-step, S is fixed and A is solved again as a
least squares problem. Computations are a lot heavier than in the fully observed
case, but still, experiments in [9] showed a faster convergence compared to the
iterative imputation algorithm.

4 Overfitting in PCA

A trained PCA model can be used for reconstructing missing values by x̂ij =∑c
k=1 aikskj . Although PCA performs a linear transformation of data, overfitting

is a serious problem for large-scale datasets with lots of missing values. This
happens when the cost value (3) is small for training data but the quality of
prediction x̂ij is poor for new data. This effect is illustrated using the following
toy example.

1 The procedure studied in [9] can be seen as the zero-noise limit of the EM algorithm
for a probabilistic PCA model [8].
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Fig. 1. An artificial example where all but two data points have one of the two com-
ponents missing. On the left, the correlation between the components is determined by
these two samples, giving a badly overfitted solution. On the right, the desired solution
where the correlation is not trusted as much (the reconstruction is obtained using the
VB algorithm explained in Section 4).

Assume that the observation space is d = 2-dimensional, and most of the data
are only partly observed, that is either x1j or x2j is unknown for most js. These
observations are represented by triangles placed on the two axes in Fig. 1. There
are only two full observations (x1j , x2j) which are shown on the plot by circles.
A solution which minimizes the cost function (3) to zero is defined by a line that
passes through the two fully observed data points (see the left subfigure). The
missing values are then reconstructed by points lying on the line.

In this example, the solution is defined by only two points and the model is
clearly overfitted: There is very little evidence in the data that there exists a
significant correlation between the two dimensions. The overfitting problem is
even more severe in high-dimensional problems because it is likely that there exist
many such pairs of directions in which the evidence of correlation is represented
by only a few samples. The right subfigure of Fig. 1 shows a regularized solution
that is not overfitted. The correlation is not trusted and the missing values are
reconstructed close to the row-wise means. Note that in regularized PCA, the
reconstructions are no longer projections to the underlying subspace.

Another way to examine overfitting is to compare the number of model pa-
rameters to the number of observed values in data. A rule of thumb is that the
latter should be at least tenfold to avoid overfitting. Consider the subproblem of
finding the jth column vector of S given jth column vector of X while regarding
A a constant. Here, c parameters are determined by the observed values of the
jth column vector of X. If the column has fewer than 10c observations, it is likely
to suffer from overfitting, and if it has fewer than c observations, the subproblem
is underdetermined.

Regularization. A popular way to regularize ill-posed problems is penalizing
the use of large parameter values by adding a proper penalty term into the cost
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function. This can be obtained using a probabilistic formulation with (indepen-
dent) Gaussian priors and a Gaussian noise model:

p(xij | A,S) = N
(

xij ;
c∑

k=1

aikskj , vx

)
(7)

p(A) =
d∏

i=1

c∏

k=1

N (aik; 0, 1) , p(S) =
c∏

k=1

n∏

j=1

N (skj ; 0, vsk) . (8)

The cost function (ignoring constants) is minus logarithm of the posterior of the
unknown parameters:

CBR =
∑

(i,j)∈O

(
e2

ij/vx + ln vx

)
+

d∑

i=1

c∑

k=1

a2
ik +

c∑

k=1

n∑

j=1

(
s2

kj/vsk + ln vsk

)
. (9)

The cost function can be minimized using a gradient-based approach as described
in Section 3. The corresponding update rules are similar to (5)–(6) except for the
extra terms which come from the prior. Note that in case of joint optimization
of CBR w.r.t. aik, skj , vsk, and vx, the cost function (9) has a trivial minimum
with skj = 0, vsk → 0. We try to avoid this minimum by using an orthogonalized
solution provided by unregularized PCA for initialization. Note also that setting
vsk to small values for some components k is equivalent to removal of irrelevant
components from the model. This allows for automatic determination of the
proper dimensionality c instead of discrete model comparison (see, e.g., [10]).

Variational Bayesian Learning. Variational Bayesian (VB) learning provides
even stronger tools against overfitting. VB version of PCA [10] approximates the
joint posterior of the unknown quantities using a simple multivariate distribu-
tion. Each model parameter is described a posteriori using independent Gaussian
distributions: q(aik) = N (aik; aik, ãik) and q(skj) = N (skj ; skj , s̃kj), where aik

and skj denote the mean of the solution and ãik and s̃kj denote the variance of
each parameter. The means aik, skj can then be used as point estimates of the
parameters while the variances ãik, s̃kj define the reliability of the estimates (or
credible regions). The direct extension of the method in [10] to missing values
can be computationally very demanding. VB-PCA has been used to reconstruct
missing values in [11,12] with algorithms that complete the data matrix, which
is also very inefficient in case a large part of data is missing. In this article, we
implement VB learning using a gradient-based procedure similar to the subspace
learning algorithm described in Section 3.

By applying the framework described in [12] to the model in Eqs. (7–8), the
cost function becomes:

CKL = Eq

{
ln

q(A,S)
p(X,A,S)

}
=

∑

(i,j)∈O

Cxij +
d∑

i=1

c∑

k=1

Caik +
c∑

k=1

n∑

j=1

Cskj , (10)
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where individual terms are

Cxij =
(xij −

∑c
k=1 aikskj)2 +

∑c
k=1

(
ãiks2

kj + a2
iks̃kj + ãik s̃kj

)

2vx
+

ln 2πvx

2
,

Caik =
a2

ik + ãik

2
− 1

2
ln ãik − 1

2
, Cskj =

s2
kj + s̃kj

2vsk
− 1

2
ln

s̃kj

vsk
− 1

2
.

We update ã and s̃ to minimize the cost by setting the gradient of the cost
function to zero:

ãik ←

⎡

⎣1 +
∑

j|(i,j)∈O

s2
kj + s̃kj

vx

⎤

⎦
−1

, s̃kj ←

⎡

⎣ 1
vsk

+
∑

i|(i,j)∈O

a2
ik + ãik

vx

⎤

⎦
−1

.

(11)

The gradients for learning a and s are somewhat similar to (4):

∂CKL

∂ail
= ail +

∑

j|(i,j)∈O

− (xij −
∑c

k=1 aikskj) slj + ails̃lj

vx
, (12)

∂CKL

∂slj
=

slj

vsk
+

∑

i|(i,j)∈O

− (xij −
∑c

k=1 aikskj) ail + ãilslj

vx
. (13)

We can use the speed-up described in Section 3 by computing the second deriva-
tives. These derivatives happen to coincide with the inverse of the updated vari-
ances given in (11): ∂2CKL/∂a2

il = ã−1
il and ∂2CKL/∂s2

lj = s̃−1
lj . The vx and vs

parameters are updated to minimize the cost CKL assuming all the other pa-
rameters fixed. The complete algorithm works by alternating four update steps:
{ã}, {s̃}, {a, s}, and {vx, vs}.

5 Experiments

Collaborative filtering is the task of predicting preferences (or producing personal
recommendations) by using other people’s preferences. The Netflix problem [13]
is such a task. It consists of movie ratings given by n = 480189 customers to
d = 17770 movies. There are N = 100480507 ratings from 1 to 5 given, and
the task is to predict 2817131 other ratings among the same group of customers
and movies. 1408395 of the ratings are reserved for validation (or probing). Note
that the 98.8% of the values are thus missing. We tried to find c = 15 principal
components from the data using a number of methods.2 The mean rating was
subtracted for each movie and robust estimation of the mean was used for the
movies with few ratings.

2 The PCA approach has been considered by other Netflix contestants as well (see,
e.g., [14,15]).
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Fig. 2. Left: Learning curves for unregularized PCA (Section 3) applied to the Netflix
data: Root mean square error on the training data is plotted against computation time
in hours. Runs are given for two values of the speed-up parameter α and marks are
plotted after every 50 iterations. For comparison, the training errors for the imputation
algorithm and the EM algorithm are shown. The time scale is linear below 1 and
logarithmic above 1. Right: The root mean square error on the validation data from
the Netflix problem during runs of several algorithms: basic PCA (Section 3) with two
values of α, regularized PCA (Section 4) and VB (Section 4). VB1 has vsk fixed to large
values while VB2 updates all the parameters. The curves clearly reveal overlearning
for unregularized PCA.

Computational Performance. In the first set of experiments we compared
the computational performance of different algorithms for PCA with missing
values. The root mean square (rms) error is measured on the training data, that
is, the observed values in the training set. All experiments were run on a dual
cpu AMD Opteron SE 2220.

The comparison methods, the imputation algoritm and the EM algorithm,
were very slow, except for the first iteration of the imputation algorithm due to
the complete data matrix being sparse. Fig. 2 (left) shows the learning curves.
The closer a curve is to the origin, the faster the algorithm minimizes the cost
function.

We also tested the subspace learning algorithm described in Section 3 with
and without the proposed speed-up, starting from the same random starting
point. The learning rate γ was adapted such that if an update decreased the
cost function, γ was multiplied by 1.1. Each time an update would increase the
cost, the update was canceled and γ was divided by 2. The best α seemed to
be around 0.6 to 0.7, the curve shown in Fig. 2 is for α = 5/8. It gave a more
than tenfold speed-up compared to the gradient descent algorithm even if one
iteration took on average 97 seconds against the gradient descent’s 57 seconds.

Overfitting. We compared PCA (Section 3), regularized PCA (Section 4) and
VB-PCA (Section 4) by computing the root mean square reconstruction error
for the validation set, that is, ratings that were not used for training. We tested
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VB-PCA by firstly fixing vsk to large values (this run is marked as VB1 in
Fig. 2) and secondly by adapting them (marked as VB2) to isolate the effects of
the two types of regularization. We initialized regularized PCA and VB1 using
unregularized subspace learning algorithm with α = 0.625 transformed into the
PCA solution. VB2 was initialized using VB1. The parameter α was set to 2/3.

Fig. 2 (right) shows the results. The performance of unregularized PCA starts
to degrade after a while of learning, especially with large values of α. This effect,
known as overlearning, did not appear with VB. Regularization helped a lot and
the best results were obtained using VB2: The final validation rms error was
0.9180 and the training rms error was 0.7826 which is naturally a bit larger than
the unregularized 0.7657.
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