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2.1 Bayesian modeling and variational learning

Unsupervised learning methods are often based on a generative approach where the goal
is to find a latent variable model which explains how the observations were generated. It
is assumed that there exist certain latent variables (also called in different contexts source
signals, factors, or hidden variables) which have generated the observed data through an
unknown mapping. The goal of generative learning is to identify both the latent variables
and the unknown generative mapping.

The success of a specific model depends on how well it captures the structure of the
phenomena underlying the observations. Various linear models have been popular, be-
cause their mathematical treatment is fairly easy. However, in many realistic cases the
observations have been generated by a nonlinear process. Unsupervised learning of a
nonlinear model is a challenging task, because it is typically computationally much more
demanding than for linear models, and flexible models require strong regularization for
avoiding overfitting.

In Bayesian data analysis and estimation methods, all the uncertain quantities are
modeled in terms of their joint probability distribution. The key principle is to construct
the joint posterior distribution for all the unknown quantities in a model, given the data
sample. This posterior distribution contains all the relevant information on the parameters
to be estimated in parametric models, or the predictions in non-parametric prediction or
classification tasks [1, 2].

Denote by H the particular model under consideration, and by 6 the set of model
parameters that we wish to infer from a given data set X. The posterior probability
density p(0]X,H) of the parameters given the data X and the model H can be computed
from the Bayes’ rule
p(X10, H)p(6|H)

p(X[H)

Here p(X|0,H) is the likelihood of the parameters 0, p(6|H) is the prior pdf of the pa-
rameters, and p(X|H) is a normalizing constant. The term H denotes all the assumptions
made in defining the model, such as the choice of a particular model class and structure,
specific noise model, etc.

The parameters 6 of a particular model H; are often estimated by seeking the peak
value of a probability distribution. The non-Bayesian maximum likelihood (ML) method
uses to this end the distribution p(X|6, H) of the data, and the Bayesian maximum a pos-
teriori (MAP) method finds the parameter values that maximize the posterior probability
density p(0|X,H). However, using point estimates provided by the ML or MAP methods
is often problematic, because the model order estimation and overfitting (choosing too
complicated a model for the given data) are severe problems [1, 2].

Instead of searching for some point estimates, the correct Bayesian procedure is to
use all possible models to evaluate predictions and weight them by the respective pos-
terior probabilities of the models. This means that the predictions will be sensitive to
regions where the probability mass is large instead of being sensitive to high values of the
probability density [3, 2]. This procedure optimally solves the issues related to the model
complexity and choice of a specific model H; among several candidates. In practice, how-
ever, the differences between the probabilities of candidate model structures are often very
large, and hence it is sufficient to select the most probable model and use the estimates
or predictions given by it.

A problem with fully Bayesian estimation is that the posterior distribution (2.1) has a
highly complicated form except for in the simplest problems. Therefore it is too difficult
to handle exactly, and some approximative method must be used. Variational methods

p(0| X, H) = (2.1)
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form a class of approximations where the exact posterior is approximated with a simpler
distribution [4, 2]. In a method commonly known as Variational Bayes (VB) [1, 3, 2] the
misfit of the approximation is measured by the Kullback-Leibler (KL) divergence between
two probability distributions ¢(v) and p(v). The KL divergence is defined by

q(v)
D(q | p) /Q(v)lnp(v)dv (2.2)
which measures the difference in the probability mass between the densities ¢(v) and p(v).

A key idea in the VB method is to minimize the misfit between the actual posterior pdf
and its parametric approximation using the KL divergence. The approximating density is
often taken a diagonal multivariate Gaussian density, because the computations become
then tractable. Even this crude approximation is adequate for finding the region where
the mass of the actual posterior density is concentrated. The mean values of the Gaussian
approximation provide reasonably good point estimates of the unknown parameters, and
the respective variances measure the reliability of these estimates.

A main motivation of using VB is that it avoids overfitting which would be a difficult
problem if ML or MAP estimates were used. VB method allows one to select a model
having appropriate complexity, making often possible to infer the correct number of la-
tent variables or sources. It has provided good estimation results in the very difficult
unsupervised (blind) learning problems that we have considered.

Variational Bayes is closely related to information theoretic approaches which minimize
the description length of the data, because the description length is defined to be the
negative logarithm of the probability. Minimal description length thus means maximal
probability. In the probabilistic framework, we try to find the latent variables or sources
and the nonlinear mapping which most probably correspond to the observed data. In
the information theoretic framework, this corresponds to finding the latent variables or
sources and the mapping that can generate the observed data and have the minimum
total complexity. This information theoretic view also provides insights to many aspects
of learning and helps to explain several common problems [5].

In the following subsections, we first discuss a natural conjugate gradient algorithm
which speeds up learning remarkably compared with compared alternative popular al-
gorithms. After this we consider variational Bayesian learning of nonlinear state-space
models, which are applied to model predictive control. This is followed by extensions
of probabilistic principal component analysis (PCA) to binary PCA, missing values and
achieving robustness in the presence of outliers. We then consider time series modeling
in bioinformatics to learn gene regulatory relationships from time series expression data,
as well as climate data analysis using Gaussian processes. We have also applied Bayesian
methods to the astronomical data analysis problem of estimating time delays in gravi-
tational lensing, as well as to medical image computing, focusing there on model-based
segmentation and registration of magnetic resonance images of the brain. In most of these
topics, we used variational approximations.
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2.2 Algorithmic improvements for variational inference

Natural conjugate gradient

Variational methods for approximate inference in machine learning often adapt a paramet-
ric probability distribution to optimize a given objective function. This view is especially
useful when applying variational Bayes (VB) to models outside the conjugate-exponential
family. For them, variational Bayesian expectation maximization (VB EM) algorithms
are not easily available, and gradient-based methods are often used as alternatives.

In previous machine learning algorithms based on natural gradients [6], the aim has
been to use maximum likelihood to directly update the model parameters 6 taking into
account the geometry imposed by the predictive distribution for data p(X|@). The re-
sulting geometry is often very complicated as the effects of different parameters cannot be
separated and the Fisher information matrix is relatively dense.

Recently, in [7], we propose using natural gradients for free energy minimisation in
variational Bayesian learning using the simpler geometry of the approximating distribu-
tions ¢(0|&). Because the approximations are often chosen to minimize dependencies
between different parameters @, the resulting Fisher information matrix with respect to
the variational parameters £ will be mostly diagonal and hence easy to invert.

While taking into account the structure of the approximation, plain natural gradient in
this case ignores the structure of the model and the global geometry of the parameters 6.
This can be addressed by using conjugate gradients. Combining the natural gradient search
direction with a conjugate gradient method yields our proposed natural conjugate gradient
(NCG) method, which can also be seen as an approximation to the fully Riemannian
conjugate gradient method.

The NCG algorithm was compared against conjugate gradient (CG) and natural gra-
dient (NG) algorithms in learning a nonlinear state-space model [8]. The results for a
number of datasets ranging from 200 to 500 samples of 21 dimensional speech spectro-
grams can be seen in Figure 2.1. The plain CG and NG methods were clearly slower than
others and the maximum runtime of 24 hours was reached by most CG and some NG runs.
NCG was clearly the fastest algorithm with the older heuristic method of [8] between these
extremes. The results with a larger data set are very similar with NCG outperforming all
alternatives by a factor of more than 10.

The experiments in [7] show that the natural conjugate gradient method outperforms
both conjugate gradient and natural gradient methods by a large margin. Considering
univariate Gaussian distributions, the regular gradient is too strong for model variables
with small posterior variance and too weak for variables with large posterior variance.
The posterior variance of latent variables is often much larger than the posterior variance
of model parameters and the natural gradient takes this into account in a very natural
manner.

Transformation of latent variables

Variational methods have been used for learning linear latent variable models in which
observed data vectors x(t) are modeled as linear combination of latent variables s(t):

x(t) = As(t)+ p+n(t), t=1,...,N. (2.3)

The latent variables are assigned some prior distributions, such as zero-mean Gaussian
priors with uncorrelated components in the basic factor analysis model. When VB learning
is used, the true posterior probability density function (pdf) of the unknown variables is
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Figure 2.1: Convergence speed of the natural conjugate gradient (NCG), the natural
gradient (NG) and the conjugate gradient (CG) methods as well as the heuristic algorithm
(Old) with different data sizes. The lines show median times with 25 % and 75 % quantiles
shown by the smaller marks. The times were limited to at most 24 hours, which was
reached by a number of simulations.

approximated using a tractable pdf factorized as follows:

p (s A,ys(1), . s(N) [ {x(1)}) = q(p)q(A)q(s(1)) - - q(s(N)).

This form of the posterior approximation ¢ ignores the strong correlations present between
the variables, which often causes slow convergence of VB learning.

Parameter-expanded VB (PX-VB) methods were recently proposed to address the slow
convergence problem [9]. The general idea is to use auxiliary parameters in the original
model to reduce the effect of strong couplings between different variables. The auxiliary
parameters are optimized during learning, which corresponds to joint optimization of
different components of the variational approximation of the true posterior. In this way
strong functional couplings between the components are reduced and faster convergence
is facilitated. One of the main challenges for applying the PX-VB methodology is to use
proper reparameterization of the original model.

In our recent conference paper [10], we present a similar idea in the context of VB
learning of factor analysis models. There we use auxiliary parameters b and R which
translate and rotate the latent variables:

s(t) < s(t) —b p— p+ Ab
s(t) — Rs(t) A — AR,

The optimal parameters b and R which minimize the misfit between the posterior pdf
and its approximation can then be computed analytically. This corresponds to joint op-
timization of factors ¢(s(t)). In our paper, we show that the proposed transformations
essentially perform centering and whitening of the hidden factors taking into account their
posterior uncertainties.

We tested the effect of the proposed transformations by applying the VB PCA model to
an artificial dataset consisting of N = 200 samples of normally distributed 50-dimensional
vectors x(t). Figure 2.2 shows the minimized VB cost and the root mean squared error
(RMSE) computed on the training and test sets during learning. The curves indicate that
the method first overfits providing a solution with an unreasonably small RMSE. Later,
learning proceeds toward a better solution yielding smaller test RMSE. Note that using



56 Bayesian learning of latent variable models

04 0 1 2 3 11 0 1 2 3
10 10 10 10 10 10 10 10

time (s) time (s) time (s)

(a) VB cost (b) Training RMSE (c) Test RMSE

Figure 2.2: Convergence of VB PCA tested on artificial data. The dotted and solid curves
represent the results with and without the proposed transformations, respectively.

the proposed transformations reduced the overfitting effect at the beginning of learning,
which led to faster convergence to the optimal solution.
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2.3 Nonlinear state-space models for model-predictive con-
trol

In many cases, measurements originate from a dynamical system and form a time series.
In such instances, it is often useful to model the dynamics in addition to the instan-
taneous observations. We have used rather general nonlinear models for both the data
(observations) and dynamics of the sources (latent variables) [8]. This results in a state-
space model where the sources can be interpreted as the internal state of the underlying
generative process.

The general form of our nonlinear model for the generative mapping from the source
(latent variable) vector s(¢) to the data (observation) vector x(t) at time ¢ is

x(t) = £(s(t),0;) + n(t). (2.4)

The dynamics of the sources can be modelled by another nonlinear mapping, which leads
to a source model [8]

s(t) =g(s(t—1),0,) +m(t), (2.5)

where s(t) are the sources (states) at time ¢, m is the Gaussian noise, and g(-) is a vector
containing as its elements the nonlinear functions modelling the dynamics.

The nonlinear functions are modelled by MLP networks. Since the states in dynamical
systems are often slowly changing, the MLP network for mapping g models the change in
the value of the source:

g(s(t—1)) =s(t— 1)+ Dtanh[Cs(t — 1) + c] +d. (2.6)

The dynamic mapping g is thus parameterized by the matrices C and D and bias vectors
c and d.

Estimation of the arising state-space model is rather involved, and it is discussed in de-
tail in our earlier paper [8]. An important advantage of the proposed nonlinear state-space
method (NSSM) is its ability to learn a high-dimensional latent source space. We have also
reasonably solved computational and over-fitting problems which have been major obsta-
cles in developing this kind of unsupervised methods thus far. Potential applications for
our method include prediction and process monitoring, control and identification. MAT-
LAB software package is available under the name nonlinear dynamical factor analysis on
the home page of our Bayes group [11].

Figure 2.3: Left: The cart-pole system. The goal is to swing the pole to an upward
position and stabilize it without hitting the walls. The cart can be controlled by applying
a force to it. Top left: The pole is successfully swinged up by moving first to the left
and then right. Bottom right: Our controller works quite reliably even in the presence of
serious observation noise.
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Figure 2.4: Optimistic inference control is a novel way of doing model predictive control,
where we assume that the goal state has been reached after some window of uncertainty.
The hidden states, observations and control signals are inferred using Bayesian inference
methods. This approach bridges the gap between model-predictive control and Bayesian
inference and thus algorithic developments on one side can be applied on the other side.
The inferred observations and control signals are plotted with confidence intervals. The
current time is typ = 0 and after time to + 7, = 40, the observation x(t) is assumed to be
at the desired level r(t).

In [15], we studied such a system combining variational Bayesian learning of an un-
known dynamical system with nonlinear model-predictive control. For being able to con-
trol the dynamical system, control inputs are added to the nonlinear state-space model
as part of the hidden state. Then we can use stochastic nonlinear model-predictive con-
trol, which is based on optimising control signals based on maximising a utility function.
Figure 2.3 shows a simulation with an alternative method for model-predictive control.

The results with a simulated cart-pole swing-up task confirm that selecting actions
based on a state-space model instead of the observation directly has many benefits: First,
it is more resistant to noise because it implicitly involves filtering. Second, the observations
(without history) do not always carry enough information about the system state. Third,
when nonlinear dynamics are modelled by a function approximator such as an multilayer
perceptron network, a state-space model can find such a representation of the state that
it is more suitable for the approximation and thus more predictable.
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2.4 Extensions of probabilistic PCA

PCA of large-scale datasets with many missing values

Principal component analysis (PCA) is a classical data analysis technique. Some algo-
rithms for PCA scale better than others to problems with high dimensionality. They also
differ in the ability to handle missing values in the data. In our recent papers [16, 17],
a case is studied where the data are high-dimensional and a majority of the values are
missing. In the case of very sparse data, overfitting becomes a severe problem even in
simple linear models such as PCA. Regularization can be provided using the Bayesian
approach by introducing prior for the model parameters. The PCA model can then be
identified using, for example, maximum a posteriori estimates (MAPPCA) or variational
Bayesian (VBPCA) learning.

In [16, 17], we study different approaches to PCA for incomplete data. We show that
faster convergence can be achieved using the following rule for the model parameters:

820) —“oc

9i<—9i—7<69? 20, °

where « is a control parameter that allows the learning algorithm to vary from the standard
gradient descent (o = 0) to the diagonal Newton’s method (o = 1). These learning rules
can be used for standard PCA learning and extended to MAPPCA and VBPCA.

The algorithms were tested on the Netflix problem (http://www.netflixprize.com/),
which is a task of predicting preferences (or producing personal recommendations) by using
other people’s preferences. The Netflix problem consists of movie ratings given by 480189
customers to 17770 movies. There are 100480507 ratings from 1 to 5 given, and the task is
to predict 2817131 other ratings among the same group of customers and movies. 1408395
of the ratings are reserved for validation. Thus, 98.8% of the values are missing.

We used different variants of PCA in order to predict the test ratings in the Netflix data
set. The obtained results are shown in Figure 2.5. The best accuracy was obtained using
VB PCA with a simplified form of the posterior approximation (VBPCAJ in Figure 2.5).
That method was also able to provide reasonable estimates of the uncertainties of the
predictions.
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Figure 2.5: Root mean squared errors for the Netflix data (y-axis) plotted against the
processor time in hours. The upper plot shows the training error while the lower plot
shows the error for the probing data provided by Netflix. The time scale is linear from 0
to 1 and logarithmic above 1.
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Binary PCA for collaborative filtering

In [18], we proposed an algorithm for binary principal component analysis that scales well
to very high dimensional and very sparse data. Binary PCA finds components from data
assuming Bernoulli distributions for the observations. The probabilistic approach allows
for straightforward treatment of missing values.

We applied the proposed method to the same collaborative filtering problem prepared
by Netflix. The collected ratings can be represented in the form of a matrix X in which
each column contains ratings given by one user and each row contains ratings given to one
movie. As a preprocessing step, the ratings were encoded with binary values, according
to the following scheme:

1 — 0000
2 — 0001
3 — 0011
4 — 0111
5 — 1111

With this scheme, each element in the data tells whether a rating is greater or smaller
than a particular threshold.
We model the probability of each element x;; of X to be 1 using the following formula:

P(zij = 1) = o(a]’s;) (2.7)

where a; and s; are parameter vectors (both contain c elements) corresponding to the i-th
movie and j-th user, respectively. The parameters a; and s; are assigned Gaussian priors
and they are estimated from on the available ratings using the MAP method.

The results with the proposed binary PCA algorithm are slighlty worse than the ones
obtained with PCA. However, by blending the two approaches, we were able to improve our
previously best results obtained with PCA alone [16, 17]. Figure 2.6 shows the predictions
of binary PCA against traditional PCA on a smaller MovieLens data set. The difference
between the predictions suggests that the two methods model the data differently and
blending them can improve the overall prediction performance.
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Figure 2.6: Predictions on a test set from the MovieLens data using PCA (x-axis) and the
binary PCA model (y-axis). Note that PCA gives predictions outside the allowed range 1
to 5, whereas the predictions of binary PCA fall between 1 and 5 by construct.
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Robust PCA for incomplete data

Standard PCA is known to be sensitive to outliers in the data because it is based on
minimisation of a quadratic criterion such as the mean-square representation error. Thus,
corrupted or atypical observations may cause the failure of PCA, especially for data sets
with missing values. A standard way to cope with this problem is replacing the quadratic
cost function of PCA a function which grows more slowly.

In [19], we present a new robust PCA model based on the Student-¢ distribution and
show how it can be identified for data sets with missing values. We make the assumption
that the outliers can arise independently in each sensor (i.e. for each dimension of a data
vector). This assumption is different to the previously introduced techniques [21] and it
turns out to be important for modeling incomplete data sets. The proposed model can
improve the quality of the principal subspace estimation and provide better reconstructions
of missing values. The model can also be used to remove outliers by estimating the true
values of their corrupted components from the uncorrupted ones.

We tested the robust PCA model on the Helsinki Testbed data set which at the moment
of our studies contained many atypical measurements and missing values. The model was
used to estimate four principal components of the temperature measurements from 79
stations in Southern Finland. Figure 2.7 presents the reconstruction of the data using our
robust PCA model for four different stations. The reconstructions look very reasonable
with most of the outliers being removed.
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Figure 2.7: Four example signals from the Helsinki Testbed dataset and their reconstruc-
tions using the proposed robust PCA.
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2.5 Time-series modelling in bioinformatics

Bayesian methods are well-suited for analysis of molecular biology data as the data sets
practically always consist of very few samples with a high noise level. We have stud-
ied models of gene transcription regulation based on time series gene expression data in
collaboration with the Machine Learning and Optimisation group at the University of
Manchester. This is a very challenging modelling task as the time series are very short,
typically at most a dozen time points.

In [22], we have developed a method of modelling single input motif systems, where
a single transcription factor regulates a number of genes. This is achieved by imposing
a Gaussian process prior on the latent regulator (transcription factor protein) activity,
which under a linear ODE transcription model leads to a joint Gaussian process model for
all observable gene expression values. The model can further be extended by incorporating
the transcription factor expression levels through a translation model. It is also possible
to consider nonlinear models by using approximate inference. A sample model of p53
activation is illustrated in Fig. 2.8.

Inferred p53 protein gene TNFRSF20b mRNA gene DDB2 mRNA

B=20719
D =0.31956

gene p21 mRNA gene BIK mRNA

B =1.1904
D =0.42333
=0.4787

B =1.0637
D=0.61474
$=0.71201

B =0.22518
D=08
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Figure 2.8: An inferred model of transcription factor p53 activation based on five known
target genes. Red marks denote observed gene expression values while blue curves are
inferred by the model along with 2 standard deviation error bars.

We have applied the model to genome-wide ranking of potential target genes of tran-
scription factors. In experiments with key regulators of Drosophila mesoderm and muscle
development, this has lead to extremely promising results in terms of enrichment of dif-
ferential expression in loss-of-function mutants as well as ChIP-chip binding near the
predicted target genes [23].
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Figure 2.9: Left: The four images of PG1115+080. Right: The corresponding intensity
measurements (the two images closest to each other are merged).

2.6 Estimation of time delays in gravitational lensing in as-
tronomy

Most of the research topics contained in Markus Harva’s doctoral thesis [24] which ap-
peared in 2008 have already been described in our earlier biennial reports under their
chapters on Bayesian learning of latent variable models. However, the journal paper [27]
on estimation of time delays in gravitational lensing was published in 2008, and therefore
we discuss that work here.

Gravitational lensing occurs when the light coming from a distant bright source is bent
by the gravitational potential of an intermediate galaxy such that several images of the
source are observed (see the left panel of Figure 2.9 for an example system). Relativistic
effects and the different lengths of the paths affect the time it takes for the photons
originating from the source to travel to the observer. This is perceived as a delay in the
intensity variations between the images (see the right panel of Figure 2.9). The significance
of estimating the delays in such systems stems from the early observation that they can
be used in determining important cosmological quantities [25].

The delay estimation problem is difficult for various reasons. The main challenge is
the uneven sampling rate, as the sampling times are determined by factors one cannot
control such as observing conditions and scheduling. The signal-to-noise ratio in the
observations is often poor too, although this varies somewhat between datasets. Classical
delay estimation methods usually rely on the cross-correlation function which is easy to
evaluate between regularly sampled signals. The obvious way to attack the problem with
unevenly sampled signals would then be to interpolate them appropriately to obtain evenly
sampled signals and then apply the cross correlation method. But with all the gaps and
the noise in the data, the interpolation can introduce spurious features to the data which
make the cross-correlation analysis go awry [26].

In [27], a method for estimating the delay between irregularly sampled signals is pre-
sented. Since interpolation on the gappy and noisy data can be venturesome, that is
avoided. Instead the two observed signals, x1(t) and z2(t), are postulated to have been
emitted from the same latent source signal s(t), the observation times being determined
by the actual sampling times and the delay. The source is then assumed to follow the
Wiener process: s(tj11) — s(t;) ~ N(0, [(t;41 — t;) 0]?). This prior encodes the notion of
“slow variability” into the model which is an assumption implicitly present in many of the
other methods as well. The model is estimated using exact marginalization, which leads
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to a specific type of Kalman-filter, combined with the Metropolis-Hastings algorithm.

We have used the proposed method to determine the delays in several gravitational
lensing systems. Controlled comparisons against other methods cannot, however, be done
with real data as the true delays are unknown to us. Instead, artificial data, where the
ground truth is known, must be used. Figure 2.10 shows the performance of several
methods in an artificial setting.
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Figure 2.10: Average errors of the methods for three groups of datasets.
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2.7 Automated segmentation of brain MR images

Many studies in basis neuroscience and neurological and psychiatric diseases benefit from
fully-automated techniques that are able to reliably assign a neuroanatomical label to each
voxel in magnetic resonance (MR) images of the brain. In order to cope with the com-
plex anatomy of the human brain, the large overlap in intensity characteristics between
structures of interest, and the dependency of MR intensities on the acquisition sequence
used, state-of-the-art brain MR labeling techniques rely on prior information extracted
from a collection of manually labeled training datasets. Typically, this prior information
is represented in the form of probabilistic atlases, constructed by first aligning the training
datasets together using linear spatial transformations, and then calculating the probabil-
ity of each voxel being occupied by a particular structure as the relative frequency that
structure occurred at that voxel across the training datasets.

While these “average” atlases are intuitive and straightforward to compute, they are
not necessarily the best way to extract population-wise statistics from the training data.
Atlases built from a limited number of training images tend to generalize poorly to subjects
not included in the training database, necessitating heuristic approaches such as spatially
blurring atlases used in automated segmentation algorithms. Another problem is that such
atlases do not include non-linear deformations aligning corresponding structures across
subjects, although this would be a natural way to model anatomical variations.

In [31], we took a critical look at the generative model implicitly underlying proba-
bilistic brain atlases, and proposed to generalize it using tetrahedral mesh-based repre-
sentations endowed with explicit deformation models. We demonstrated how Bayesian
inference can be used to automatically learn the optimal properties of the resulting atlases
from a set of manual example segmentations in MR images of training subjects. The
learning involves maximizing the probability with which an atlas model would generate
the example segmentations, or, equivalently, minimizing the number of bits needed to
encode them. This procedure automatically yields sparse atlas representations that ex-
plicitly avoid overfitting to the training data, and are therefore better at predicting the
neuroanatomy in new subjects than conventional probabilistic atlases [31]. An example
of an optimal mesh-based atlas, built from manual annotations of 36 neuroanatomical
structures in four individuals, is shown in figure 2.11.

In subsequent work aiming at automatically delineating the subregions of the hip-
pocampus from very high resolution MR images [32, 36, 35|, we supplemented the prior
distribution provided by a mesh-based atlas, which models the generation of images where
each voxel is assigned a unique neuroanatomical label, with a parametric likelihood dis-
tribution that predicts how such label images translate into MR images, where each voxel
has an intensity. Together these distributions form a complete generative model of MR
images that we then used to obtain fully automated structural measurements in a Bayesian
fashion, using concepts from our earlier work [28, 29]. In particular, we estimated how the
position of the nodes of the atlas mesh are optimally warped onto an image under study,
while simultaneously inferring the parameters of the likelihood distribution. Figure 2.12
shows an example of a fully-automated segmentation of the subregions of the hippocampus
computed using this approach.

Additional joint work in brain MR analysis we contributed to during the years 2008-
2009 include group-wise segmentation of collections of images for which no manual training
data is available [38, 41], non-parametric Bayesian whole-brain parcellation [39, 40] and
information theoretical image alignment [37], as well as a number of clinical research
papers [30, 33, 34].
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Figure 2.11: Optimal tetrahedral mesh-
based atlas built from manual annotations
of 36 neuroanatomical structures in 4 sub-
jects. The prior probabilities for the dif-
ferent structures have been color-coded
for visualization purposes.
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