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Abstract

Several methods exist for estimating the warping factors for vo-

cal tract length normalization (VTLN), most of which rely on

an exhaustive search over the warping factors to maximize the

likelihood of the adaptation data. This paper presents a method

for warping factor estimation that is based on matching Gaus-

sian distributions by Kullback-Leibler divergence. It is compu-

tationally more efficient than most maximum likelihood meth-

ods, but above all it can be used to incorporate the speaker nor-

malization very early in the training process. This can greatly

simplify and speed up the training. The estimation method is

compared to the baseline maximum likelihood method in three

large vocabulary continuous speech recognition tasks. The re-

sults confirm that the method performs well in a variety of tasks

and configurations.

Index Terms: speech recognition, speaker normalization,

VTLN, warping factor estimation

1. Introduction

Vocal tract length normalization (VTLN) [1] is a widely used

method for reducing the inter-speaker variability and the mis-

match between the acoustic models and the new speakers.

When used to normalize training set speakers in a manner of

speaker adaptive training (SAT) it can help to produce more

compact models and enable more efficient acoustic modeling

[2]. As VTLN only needs one parameter to be estimated, it can

be applied even with very limited amount of adaptation data.

Several methods for estimating the VTLN warping factors

have been suggested. Traditionally a grid of warping factors

is searched based on the maximum likelihood (ML) criterion

over the adaptation data. This, however, requires evaluating the

adaptation data several times using all possible warping factors.

Computationally more efficient methods have been developed

which use simpler acoustic models for VTLN estimation [1] or

warping factor specific models [3] to select the optimal warp-

ing factor according to ML criterion. One popular alternative

method not related to ML is to use formant estimation to pre-

dict the required frequency warping [4]. However, this can have

problems with the robust estimation of the formant frequencies.

Along with the recent formulation of VTLN as a linear

transformation of the cepstral coefficients [5, 6] new methods

for VTLN estimation have become available. If the transforma-

tion is seen as a model adaptation rather than speaker normaliza-

tion, the warping factor can be estimated by using an auxiliary

function and the EM-algorithm [6], thus avoiding the direct op-

timization of the likelihood of the adaptation data. If the VTLN

transformation is at the end of the feature processing, sufficient

statistics can be used in speaker normalization case as well [7].

Usually the training procedure for VTLN adapted models

is rather complicated. First an unadapted model is trained, af-

ter which the training data is iteratively adapted and models

re-estimated [3]. This may require additional target models

as complex acoustic models may model too much of the inter-

speaker variability, thus hindering the proper estimation of the

warping factors according to the ML criterion [6]. On the other

hand, it has been noted that it is beneficial to use VTLN already

before estimating discriminative feature transformations [8]. In

such cases the VTLN factors should be known already prior to

model and feature estimation. Therefore it would be desirable

if the VTLN warping factors could be estimated in a model in-

dependent manner prior to actual training.

This paper presents a method for estimating VTLN warping

factors based on simple distribution matching. The method op-

erates on collected speech statistics and it can be applied prior

to training as long as a preliminary phoneme segmentation of

the training data is available.

2. Distribution matching by
Kullback-Leibler divergence

The method for estimating VTLN warping factors presented

here is based on matching speaker’s speech distributions to the

reference distributions according to the Kullback-Leibler diver-

gence. The Kullback-Leibler divergence or relative entropy [9]

is defined as

D(p||q) =
X

x∈X

p(x) log
p(x)

q(x)
, (1)

where p and q are some distributions and X is the set of pos-

sible values of x. The use of this measure as the criterion for

speaker normalization can be argued by its connection to maxi-

mum likelihood, as presented below.

Let us consider a model selection problem where the inten-

tion is to find a distribution q(x) that matches p(x) as closely

as possible. For this we can write (1) as

D(p||q) =
X

x∈X

p(x) log p(x) −
X

x∈X

p(x) log q(x) (2)

and drop the first term that is independent of the q(x). The

model selection can therefore be formulated as

q̃(x) = argmin
q(x)

D(p||q) = argmax
q(x)

X

x∈X

p(x) log q(x) (3)

which equals maximizing the likelihood over the set of possible

values distributed as p(x). If we know the true distribution p(x)
minimizing K-L divergence therefore equals ML.

In VTLN the model selection problem is very restricted,

as we are only trying to find one warping factor to define the

actual form of the frequency warping function. Although no

longer justified by the connection to the ML, for warping fac-

tor estimation we will be using the K-L divergence in “reverse



direction”, that is, selecting the warping factor as

α̃ = argmin
α

D(p(α)||q). (4)

This is due to convenience of computing the K-L divergence

when the distributions are modeled with Gaussians, as it obtains

the following formulation:

D(p(α)||q) =
1

2

“

log |Σq| − log |Σp(α)| + tr(Σ−1
q Σp(α))+

(µq − µp(α))
T Σ−1

q (µq − µp(α))
”

. (5)

In this form only the covariance of the distribution q has to be

inverted. To ensure the inversion is possible we use q as the

reference distribution so that we can be sure we have enough

data to avoid the covariance matrix to be ill-conditioned. The

covariances of the reference distributions can also be inverted

in advance so that no matrix inversions are needed when new

estimations are made.

3. Warping factor estimation procedure

The VTLN warping factor estimation procedure consists of two

phases. First the speaker dependent speech statistics are col-

lected from the data, after which the optimal warping factor is

determined such that the warped statistics best match the ref-

erence distributions. During the training the statistics are col-

lected once for all speakers and the reference distributions are

formed from the speaker statistics by iteratively estimating the

warping factors and computing the reference distributions as the

averages of the warped speaker statistics. A few iterations of

the warping factor re-estimation are needed so that no substan-

tial changes to the warping factors occur. However, these iter-

ations only require the manipulation of speaker statistics, not

the actual data. The reference distributions are finally saved for

estimating the VTLN warping factors for the new speakers.

3.1. Speech statistics

The statistics used in warping factor estimation are based on

phoneme segmentation where each phoneme is represented by

a three-state hidden Markov model (HMM). We used a segmen-

tation generated by triphone models, after which context infor-

mation was dropped and monophone statistics were collected.

During evaluation the segmentation was obtained from the first

pass recognition, during training we used aligned transcriptions.

Each HMM state is modeled by a single Gaussian so the

statistics to be collected for each state are the mean and the co-

variance of the features. As we implement the VTLN as a linear

transformation of the features (as in [6]), the effect of frequency

warping can be simulated by applying the same linear transfor-

mation to these statistics. It is therefore enough to collect the

statistics once, unwarped, and only apply the transformation to

the statistics during the warping factor estimation.

The dimension of the Gaussians for the warping factor es-

timation is the dimension of the feature vector before VTLN

transformation in the front-end. In our 16kHz system this was

a 20-dimensional vector of mel-frequency cepstral coefficients

(MFCC), in 8kHz case 15 coefficients were used to reflect the

lack of higher frequency mel-filters. The mean values over a

1.25 second window had been removed from these MFCCs.

The benefit of using HMM states with single Gaussians

over a Gaussian mixture model (GMM) is that as we know the

phoneme segmentation prior to collecting the statistics, one pass

through the data is enough for estimating the required distribu-

tions. With mixture models the data would have to be iterated

several times in order to estimate the mixture models.

The Gaussian distribution of a certain HMM state was used

in warping factor estimation if at least five samples were ob-

served for that state. The silences were omitted in the process-

ing.

3.2. Warping factor estimation by distribution matching

As mentioned earlier, the presented method is based on match-

ing the speech distributions of a speaker and the reference

model using the Kullback-Leibler divergence. As the distribu-

tions of the speech are collected conditional to phoneme HMM

states, the matching is done between the Gaussian models of

these HMM states. The divergence values of the states are

weighted by the states’ sample counts in the speaker data and

then averaged over all states. The warping factor resulting the

minimum of this averaged measure is then selected.

Assuming a Gaussian model for the speech classes we can

compute the K-L divergence between one state of a speaker’s

model and the reference model as in (5), by replacing p with the

state dependent frequency warped Gaussian of the speaker and

q with the Gaussian of the same state in the reference model.

To smooth the covariances of the Gaussians in case of limited

data we used a diagonal covariance version of that equation for

those classes with fewer than 50 samples in the speaker data.

Although the minimization of the averaged K-L divergence

is amenable to several numerical optimization algorithms, a

simple grid search was used in the experiments to find the

optimal warping factor. As the method only manipulates the

statistics this was not an efficiency issue. It should be noted

that this same distribution matching could be used to estimate

more complex speaker normalizations as well, such as multi-

parameter SLAPT [6]. This was tested with SPEECON chil-

dren database, but as it performed slightly worse than the usual

VTLN this was not investigated further.

3.3. Jacobian compensation

It has been pointed out [5] that when optimizing a feature trans-

formation under ML framework the Jacobian of the transfor-

mation should be taken into account as to avoid introducing any

bias to the optimization process. If the transformation is a linear

full-rank transformation, its contribution can be handled easily

by computing the determinant of the transformation. Otherwise

some workarounds are needed, such as modeling the nuisance

dimensions (as with HLDA [10]), or using e.g. MMI criterion

instead of ML [11].

The need for Jacobian compensation arises from the re-

quirement that the acoustic models have to remain proper proba-

bility distributions after the transformation. In K-L based distri-

bution matching compensation is not needed because the Gaus-

sians remain proper probability distributions even after VTLN

transformation is applied to the Gaussian statistics.

4. Evaluation

The presented warping factor estimation method was tested

with three large vocabulary continuous speech recognition

(LVCSR) tasks, two in Finnish and one in English. We used the

HUT recognition system that is a HMM/GMM based LVCSR

system. The acoustic models used triphones with decision tree

tied states. The acoustic features were standard MFCC with

delta and double delta features, followed by a global maximum
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Figure 1: Histograms of the training set warping factors in the

English task for two different models.

likelihood linear transformation [10]. Although the statistics

for warping factor estimation were collected with higher dimen-

sional features, only 12 mel frequency cepstral coefficients were

used for the actual acoustic features. With power and deltas the

dimension of the acoustic features was then 39.

The frequency warping was implemented as a linear trans-

formation of the MFCC features as presented by McDonough

et al. [6]. The baseline VTLN estimation was a ML-based

grid search using VTLN adapted models. The baseline adapted

models were trained by first training an unadapted model after

which VTLN estimation and re-training were iterated 6-8 times.

For the distribution matching method only the same number of

iterations as for the unadapted models were used for training.

Although we used rather complex acoustic models (16-

Gaussian mixtures), the VTLN training with ML estimation did

succeed without separate target models. This was confirmed

by looking at the warping factor histograms of the training set

speakers. Figure 1 shows the histogram of the warping factors

for the 3507-speaker training set of the English task for both

ML and distribution matching (DM) estimation methods. Both

methods show the distinctive bimodal distribution, but it is clear

that ML has acquired a broader range for the warping factors.

For ML the warping factors have also drifted towards the low

values. One possible reason for this is the unequal number of

males and females in the training set (1516 and 1991, respec-

tively).

For the Finnish tasks the error rates were evaluated using

letter error rate, as it suits well for measuring the recognition

errors of a highly inflectional and compounding language. For

the English task the errors were measured with word error rate.

4.1. Finnish dictation task

The distribution matching method was compared against the

maximum likelihood baseline for different amounts of adapta-

tion data in a Finnish dictation task. The task was based on the

Finnish SPEECON database [12]. For the training we used 21

hours of clean speech (sample rate 16kHz) from 207 speakers.

The acoustic models had 1853 tied states, each modeled with a

16-Gaussian mixture model.

The test set consisted of read sentences from 30 speakers

not present in the training set, about 1.5 hours of speech in total

in 755 sentences. The adaptation was done using 1, 3 or 5 en-

rollment sentences with unknown transcriptions, or with all the

test data as in two-pass recognition.

The results are shown in Table 1. It can be seen that both

the ML and DM methods achieve the best performance after 3

enrollment sentences. The results for one adaptation sentence

is slightly worse with the distribution matching method. Using

Table 1: Speech recognition results for different amounts of

adaptation data, measured in letter error rate. 1-pass is un-

adapted recognition, Enr(N) is adaptation with N separate en-

rollment sentences, and 2-pass is adaptation with all the test

sentences.

VTLN 1-pass Enr(1) Enr(3) Enr(5) 2-pass

ML 5.59% 3.52% 3.42% 3.42% 3.41%

DM 5.52% 3.63% 3.42% 3.42% 3.43%

Table 2: Speech recognition results for children speech, mea-

sured in letter error rate.

VTLN 1-Pass 2-Pass 3-Pass

ML 26.8% 7.82% 7.22%

DM 32.2% 8.74% 7.74%

DM (ML in test) 32.2% 8.24% 7.59%

ML estimation with the DM model in two-pass recognition gave

the same result as using DM in the test set as well.

It should be noted that better unadapted results would be

obtained if an unadapted model was used, but in this test all the

models were trained using VTLN in the training set. The un-

adapted error rate here reflects the quality of the segmentation

obtained from the first-pass decoding that was used for adapta-

tion.

4.2. Children speech

For more radical adaptation the child speaker portion of

SPEECON was used with the models trained from adult speech,

i.e. the same models as in the previous task.

The test set consisted of 25 children, aged 9–12 years, each

reading 21–35 sentences. The total amount of test set sentences

was 725, consisting of about 1 hour of speech.

All the test material was used for adaptation in an unsuper-

vised manner. As the first (unadapted) recognition pass gave

rather poor results, the adaptation was re-run using the better

segmentations from the second pass. The results of the three

passes of recognition are given in Table 2.

The results show that the distribution matching method did

not quite achieve the performance of the baseline models. Using

ML estimation in the test set with the DM models gave slightly

better results, but still 5% worse than the baseline.

4.3. English conversational telephone speech task

Warping factor estimation methods were also compared in En-

glish conversational telephone speech task. The models were

trained from a 200-hour portion of the Fisher corpus. The

speech data had been sampled at 8kHz rate and it was much

more noisy than the speech in the Finnish tasks. For the test set,

all utterances lasting over 2 seconds from 34 new speakers were

used, totaling about 2 hours of speech. The acoustic models had

6094 tied states, again modeled with 16-Gaussian mixture mod-

els. The language model for the recognition was trained from

the part 2 transcripts of the Fisher corpus, excluding the mate-

rial in the test set.

Table 3 shows results for several different configurations.

Now also the unadapted model was tested to see the amount of

improvement from VTLN overall. Adaptation was again unsu-

pervised. In addition to ML and DM models two combinations



Table 3: Speech recognition results for English CTS task, mea-

sured in word error rate. Field “Estimation” refers to VTLN

warping factor estimation in the test set.

Model Estimation WER

Unadapted - 46.7%

ML ML 44.6%

DM DM 44.4%

DM ML 44.4%

DM+ML ML 44.1%

were tested: DM model with ML estimation in the test set (as

in Finnish tasks) and a model where one iteration of ML based

VTLN estimation and retraining over the training set was run

over the DM model (denoted as DM+ML).

All the VTLN estimation variants gave similar results. The

best method was to use DM estimated warping factors from

the beginning of the training process and run one iteration of

ML-VTLN estimation at the end of the training. Due to rather

broad range of VTLN warping factors in the training set the

ML model gave rather poor performance for the first recogni-

tion pass (58.7% as opposed to 48.4% of the DM model), but

using the segmentation from the unadapted model didn’t help

increase its final performance.

5. Discussion

For the Finnish adult task the DM models showed similar per-

formance as with ML estimated VTLN models. Only the case

with a single enrollment sentence showed slight degradation in

the performance, but even that was not statistically significant

according to the Wilcoxon signed rank test (as implemented in

the NIST SCTK). For the children speech task the DM models

didn’t work quite as well as ML, but again the differences were

rather small. The performance difference between the ML and

DM models in the 3-pass recognition of the children speech was

statistically significant, but the test showed no statistical signif-

icance for the performance difference between the DM and ML

models when ML criterion was used with the DM models to

estimate the test set warping factors.

In the English task, all VTLN models were statistically sig-

nificantly better then the unadapted model, but between the dif-

ferent VTLN estimation methods the Wilcoxon signed rank test

did not show statistically significant differences.

The biggest advantage of the presented method is that it

greatly simplifies the training procedure as the VTLN warping

factors are available from the very beginning of the training.

Thus there is no need to separately train the unadapted models

and retrain them with VTLN. For the models used in this pa-

per, this saved about one third of the iterations needed for train-

ing the adapted models with ML VTLN estimation. The use

of ML VTLN estimation along with DM trained models was

also showed to work well, which can be useful if a recognition

system with an optimized ML-based VTLN estimation method

already exists.

One possible improvement for the distribution matching

method is to increase the complexity of the models used for

warping factor estimation. The easiest way to do this would be

to use context dependent models instead of monophone HMM

state models for the speech statistics. This, however, would re-

quire a more elaborate solution to the data sparsity problem,

such as some kind of clustering.

6. Conclusions

This paper presented a method for estimating warping fac-

tors for vocal tract length normalization based on matching the

HMM state dependent Gaussian distributions with the reference

model using Kullback-Leibler divergence. The method is com-

putationally efficient and it can provide estimates of the VTLN

warping factors already early in the training process. This sim-

plifies the training procedure and can e.g. enable the use of

VTLN in the estimation of discriminative feature transforma-

tions prior to actual model training.

The evaluations reported here show that the method works

in a variety of tasks with equal performance as the baseline max-

imum likelihood estimation method. Also the different combi-

nations of the distribution matching and maximum likelihood

methods showed good performance.
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