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Abstract
In large vocabulary continuous speech recognizers the

search space needs to be constrained efficiently to make the
recognition task feasible. Beam pruning and restricting the
number of active paths are the most widely applied techniques
for this. In this paper, we present three additional pruning crite-
ria, which can be used to further limit the search space. These
new criteria take into account the state of the search space,
which enables tighter pruning. In the speech recognition ex-
periments, the new pruning criteria were shown to reduce the
search space up to 50% without affecting the search accuracy.
We also present a method for optimizing the threshold parame-
ters of the pruning criteria for the selected level of recognition
accuracy. With this method even a large number of different
pruning thresholds can be determined with little effort.

1. Introduction
Decoding efficiency continues to be a very important issue in
automatic speech recognition (ASR) systems. The ever increas-
ing computing power is utilized by more and more complex
models of acoustics and language in order to cut down the gap
between the accuracy of ASR systems and that of a human.
Therefore, the efficiency needs to be considered as a problem
of its own.

In practice, the decoding can be viewed as a search of an op-
timal path in a large search network. The search network com-
prises the constraints set by the different knowledge sources,
and it can be constructed either statically before the recognition
or dynamically during the recognition. In almost any case, an
exhaustive search through the network is intractable in large vo-
cabulary continuous speech recognition (LVCSR) tasks [1]. To
make the search feasible, we need to compromise the optimality
of the search by introducing pruning.

Ideal pruning restricts the search space effectively without
degrading the recognition accuracy. In this respect, the basic
beam pruning works quite well. It alone can provide enough
restrictions to the search space to make the recognition feasi-
ble, and the pruning threshold can be chosen to minimize the
number of search errors due to pruning [2]. The desired level
of pruning depends on the recognition task, and the pruning
thresholds are usually determined by optimizing the recognition
accuracy on a separate development data set.

In this paper, we propose three new pruning criteria which
can be used in addition with the basic prunings to further limit
the search space. We also present a method for easily deter-
mining the pruning thresholds for these and other criteria. The
pruning methods are evaluated in two LVCSR tasks.

This paper concentrates only on the pruning of the search
space, not e.g. to the pruning of the Gaussians in acoustic prob-
ability computations. The methods presented are intended for

one-pass time-synchronous decoders (see e.g. [1]), although
they can be applied to other decoding techniques too.

2. Basic pruning methods
The idea of the search space pruning is to retain only the most
promising path hypotheses as the starting points for the follow-
ing path expansions. The relative goodness of the paths can be
determined by their likelihood scores. Following the notations
in [3], we denote as Qw(t, s) the overall likelihood score of
the best partial path that ends at time t in state s of the search
network with word history w.

2.1. Global beam pruning

The so called beam search is probably the most important prun-
ing criteria used in LVCSR decoders. In this paper, we refer to
it as global beam pruning, as it can be applied in all states of
the search network. The global beam pruning retains only paths
with a likelihood score close to the best partial path hypothesis
[3]. More formally, we can define the likelihood score of the
best partial path as

QGB (t) = max
(v,σ)

{Qv(t, σ)}. (1)

The pruning criterion then states that those paths are pruned for
which

Qw(t, s) < fGB · QGB (t). (2)

The threshold fGB determines the width of the beam. If likeli-
hood scores are stored in logarithmic domain, the beam pruning
criterion becomes

log Qw(t, s) < log QGB (t) − f
′

GB , (3)

where f ′

GB = − log fGB is a positive beam width. Figure 1
shows a conceptual example of this pruning criterion.

The beam pruning method needs to know the likelihood
score of the best partial path hypothesis at each time frame. It is
still possible to apply a first level of pruning already when ex-
panding the path hypotheses, using the best partial path which
has already been expanded as an estimate for the best path. To
achieve maximal pruning it is then necessary to add a further
pruning step after the actual best likelihood score is available,
but the early pruning is effective enough to benefit the efficiency
despite a small computational overhead.

2.2. Histogram pruning

Another common pruning criterion is the histogram pruning,
which limits the number of active paths at each time frame by
retaining only a predefined number of best paths [3]. The name
histogram pruning is used because the pruning can be done ef-
ficiently using a histogram of likelihood scores. Compared to
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Figure 1: A conceptual example of the global beam pruning.

the global beam pruning histogram pruning has the benefit of
defining a worst case processing time for decoding. In many
cases, however, it is not as effective as the global beam pruning,
so these two criteria are often used together.

2.3. Word end pruning

The two pruning criteria described above are applied to all path
hypotheses. Besides these global prunings, it is also possible to
define prunings specific to the state of the search space which
a search hypothesis occupies. One pruning criterion that is of-
ten reported is applied after the language model score has been
added to the likelihood score of the path hypothesis. In [3] this
pruning is called the language model pruning, but we refer to
it as the word end pruning, as it is used at the end of a lexical
search network, where the word identity has been resolved. The
idea is the same as with the global beam pruning, except that we
compare the likelihood scores to the best partial path hypothesis
in the word end position and use a tighter beam width.

Let us define the likelihood score of the best word end hy-
pothesis as

QWE (t) = max
(v,σ∈SWE )

{Qv(t, σ)}, (4)

where SWE is the set of word end states of the search network.
The pruning is then applied to those path hypotheses, which
are in one of the word end states and a path is removed if its
likelihood score fulfills

log Qw(t, s) < log QWE (t) − f
′

WE , (5)

where f ′

WE is the corresponding beam width.
The word end pruning is useful for two reasons. The global

beam width must be wide enough to tolerate the addition of the
language model score. The word end beam width can therefore
be tighter, because for the paths this pruning is applied to the
language model score has been added recently. Another advan-
tage of the word end pruning is that usually the search network
has a high level of branching in these word end positions, due to
beginning of a new word. The paths at those positions are there-
fore likely to be expanded to numerous new path hypotheses, so
it is beneficial to prune them more tightly.

2.4. Setting the pruning thresholds

The pruning thresholds can be used to adjust the tradeoff be-
tween the recognition accuracy and efficiency. If accuracy is to
be maximized, the tightest possible pruning thresholds that still

give the optimal accuracy can be found by evaluating different
values iteratively using a development data set.

Besides fixed pruning thresholds, it is also possible to adap-
tively change them during decoding. This is useful especially
for the global beam width when histogram pruning is also used.
As stated above, the global beam pruning (and also the word
end pruning) can be applied already when the best likelihood
score of the current time frame is not yet available. Histogram
pruning, on the other hand, can be used only after all path hy-
potheses have been expanded. It would be beneficial if the paths
which will be pruned due to histogram pruning could be pruned
already before expansion. This situation can be approximated
by adjusting the global beam width based on the number of ex-
panded path hypotheses in previous frames. One method for
this was presented in [4].

3. New pruning criteria
Extending the idea behind the word end pruning, it is possible
to define additional specific pruning criteria, which use sepa-
rate reference likelihood scores and pruning thresholds. Next
we present three new pruning criteria which we show to give
performance boosts in the evaluation.

3.1. Equal depth pruning

If the search network is organized as a lexical prefix tree (see [1]
for more information about the tree organization of the search
network), it is easy to define for each state a depth from the
root of the tree as the number of states between the state and
the root. Path hypotheses ending at the states at equal depth
may have common properties which enable the use of a tighter
beam threshold. We therefore define the equal depth pruning as
follows:

QED(t, s) = max
(v,D(σ)=D(s))

{Qv(t, σ)}, (6)

log Qw(t, s) < log QED(t, s) − f
′

ED , (7)

where D(s) denotes the depth of the state s, and f ′

ED is the
beam width of the pruning.

In our decoder, the depths of the search network states are
most naturally computed at the level of HMM states. The num-
ber of depth levels is therefore slightly too fine grained, so we
divide the depth value by two and retain only the integral part.

3.2. Equal word count pruning

Adding language model scores to the path likelihood score
causes discontinuities, which at worst may throw an otherwise
feasible path hypothesis outside the global beam. The situation
is problematic especially if the differences between the word
counts of the competing path hypotheses are large, implying
considerable differences in the added language model likeli-
hood scores. The global beam width may therefore need to be
rather wide, so some efficiency is lost in situations where the
word counts do not differ.

To improve the prunings in these situations, we define the
equal word count pruning, for which the reference likelihood
score is relative to the word count of the word history. The
pruning criterion can be stated as

QEWC (w, t) = max
(C(v)=C(w),σ)

{Qv(t, σ)}, (8)

log Qw(t, s) < log QEWC (w, t) − f
′

EWC , (9)



where C(w) denotes the number of words in the word history,
and f ′

EWC is the beam width.

3.3. Fan-in pruning

One more specific pruning criterion was defined for path hy-
potheses which are at the so called fan-in states. These states
model the context dependent phones at the beginning of the
words. In our decoder, these states are shared among all the
words, so it is important to be able to prune the paths in these
positions as effectively as possible before they get expanded to
different word beginnings.

4. Optimizing the pruning thresholds
The pruning thresholds are usually optimized using a develop-
ment data set to evaluate the performance with different thresh-
old values. The search of the optimal thresholds can be done
by simply trying different values iteratively, or using, for exam-
ple, some form of a line search scheme. But as the number of
different pruning criteria increases, it soon becomes difficult to
quickly obtain optimal values for all the thresholds.

To optimize our pruning thresholds described in the previ-
ous sections, we use the following procedure. The global beam
width is first optimized using a development data set as usual,
to achieve the target accuracy. During this optimization, loose
values for the other pruning thresholds are used.

The development data set is then recognized one more time
to determine the tightest threshold values that still would retain
the final best path. Again loose threshold values for the ad-
ditional pruning criteria are actually used, but now along each
partial path hypothesis the tightest possible pruning thresholds
that still would have allowed that path to survive are stored. At
each frame these values are updated so that if more loose thresh-
old values were needed to allow the expansion of the path at that
frame, the new threshold limits are stored and passed forward
to the expanded path hypotheses. At the end of the recognition,
the final best path contains for each pruning criterion the tight-
est possible threshold value with which it would not have been
pruned away.

If this method was used to collect only single threshold val-
ues from the whole development data set, the obtained values
might be overly conservative due to some rare events in the
prunings in some particular segments. To obtain more useful
thresholds, this analysis is done in small segments (1-3 sen-
tences each). Then from a set of pruning thresholds clear out-
liers can be removed.

Figure 2 shows an example of a histogram obtained using
this procedure when optimizing the threshold for equal word
count pruning. There were 581 segments over which the thresh-
old data was collected. In this example, the pruning threshold
was set around value 165 so that 99% of the segments were still
guaranteed to be recognized with the same accuracy. The global
beam width in this case was 210.

5. Evaluation
The effect of the described new pruning criteria were evaluated
using two Finnish LVCSR tasks, one speaker dependent and one
speaker independent task.

The material for the speaker dependent task was a book read
by a professional female speaker, the same as used in [5]. For
the training, we used 12 hours of data, the development data set
was about 19 minutes and the evaluation set 27 minutes. The
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Figure 2: An example of a pruning threshold measurement.

development set was divided into 47 segments of two to three
sentences for estimating the pruning thresholds.

For the speaker independent task we used the Finnish
SPEECON database [6]. Only adult speakers with clean record-
ing conditions were used. For the training, we took 207 speak-
ers, with total of about 26 hours of material. Both sentences and
single words were used for acoustic training. The development
and evaluation data sets comprised of disjoint sets of 20 and
31 speakers, respectively. For these two, only read speech sen-
tences without mispronunciations were used. For each speaker,
26–30 of those sentences were available, so that the pruning
thresholds could be optimized over 581 segments.

Our speech recognition system uses HMMs and Gaussian
mixture models for acoustic modeling. The HMM states of the
triphone models have been tied using a decision tree based al-
gorithm [2]. No acoustic adaptation was used. The language
model was a sub-word based 4-gram model [5]. The decoder
to which the prunings were implemented was our one-pass time
synchronous decoder. It uses a static search network for lex-
icon and acoustic models, and combines the language model
dynamically during the search. The decoder is able to model
the cross-word triphones properly. A detailed description of the
decoder can be found in [7].

Tables 1 and 2 show the recognition results for the two
tasks. To better illustrate the effect the pruning criteria have
to the search space, the time used for the Gaussian mixture
model computations were omitted from the real-time (RT) fac-
tors shown in the tables. For the speaker independent task the
recognition was run with and without the proposed pruning cri-
teria. With the speaker dependent task we also analyzed the
effect of all the proposed criteria separately showing that each
of them are useful in restricting the search space. In all the cases
the new pruning criteria were used in addition to the basic prun-
ing methods described in Section 2. The global beam width and
the histogram pruning threshold were first optimized iteratively
to achieve a close to optimal accuracy in the development data
set. Then the other pruning criteria were optimized as described
in Section 4. The beam widths for global and word end prun-
ings were adapted during the decoding to minimize the need for
histogram pruning.

The results show that the proposed pruning criteria can re-
duce the search space over 50% as in the speaker dependent



Table 1: Evaluation, speaker dependent task.

Prunings Word error Phoneme error RT factor
rate rate (search)

Only basic 12.6% 1.96% 1.4
Equal depth 12.7% 1.96% 1.1
Equal WC 12.7% 1.95% 1.0
Fan-in 12.6% 1.95% 1.2
All 12.6% 1.95% 0.65

Table 2: Evaluation, speaker independent task.

Prunings Word error Phoneme error RT factor
rate rate (search)

Only basic 31.3% 10.2% 7.1
All 31.4% 10.3% 5.6

task, without compromising the recognition accuracy. How-
ever, the performance in a more difficult task (speaker indepen-
dent, no adaptation, limited amount of training material) was
lower, and the search space computations were reduced only
about 20%.

6. Conclusions
This paper presented three new pruning criteria, the equal depth
pruning, the equal word count pruning, and the fan-in pruning,
which can be used to reduce the search space in decoding. The
criteria can be easily implemented to static search tree based de-
coders, and they are probably applicable in some other decoder
architectures as well. The evaluation of the pruning criteria in
two LVCSR tasks showed that the reduction of the search space
can be over 50%. This reduction, however, is task dependent,
and the performance boost obtained in a more difficult speaker
independent task was only about 20%. This was probably due
to a rather poor overall recognition accuracy (word error rate
about 31%), implying significant acoustic confusion with re-
spect to acoustic models.

We also presented a method for easily determining the
threshold values for different pruning criteria. This is useful es-
pecially when the number of different pruning criteria increases,
so that it is no longer feasible to simply try a set of different
values for each criterion. The threshold optimization method
presented guarantees that some portion of the segments in a de-
velopment data set will be recognized the same way as with
the preset loose threshold values. Even tighter threshold values
might still lead to the same recognition results, but with differ-
ent state or phoneme level segmentations. In practice, however,
the values obtained using this method are close to optimal for
the selected level of accuracy.
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