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ABSTRACT

Finnish is one of the languages where phone durations dis-

criminate between words and have in that way a significant

role in the proper recognition of speech. Modern large vo-

cabulary continuous speech recognizers do not offer rea-

sonable means to model these durations, which would be

necessary in order to seamlessly deal with such a language.

Therefore some explicit actions have to be taken to be able

to distinguish certain words from each other as the only

cues for doing this might be prosodic ones, namely the du-

rations. In this work, an extension of an existing speech

recognition system to include models for discriminatively

important phone durations is studied. The explicit duration

model applied resulted in 5% relative reduction in the letter

error rate of the recognition task.

1. INTRODUCTION

Finnish is an example of a language in which phone dura-

tions have a discriminative role in speech. The single and

double phonemes are distinguished from each other by dif-

ferent durations of the corresponding phones. The same is

apparent also in the written forms of the words, making it

easy to analyze the phenomenon. For example, words tuli

and tuuli (fire and wind) have the same phones in the spec-

tral sense, but the vowel /u/ has increased duration in the

latter word. This kind of distinction between words is not

an exception, many similar word pairs exists in Finnish.

The discriminative meaning of phone durations in Finnish

is in contrast to their use in some other languages, for ex-

ample, in English. The other extreme would be that the du-

rations of the phones had no role whatsoever with the iden-

tification of the words. But durations and acoustic quality

can also be coupled, as is the case in English. An example

of a word pair in which this occurs is seat and sit. The mid-

dle part of the latter word is clearly shorter than that of the

former, but there is also difference in the spectral contents

of the phones. However, in English, the spectral cue is the

more important for discrimination than the duration [1].

From this consideration it is apparent that for some lan-

guages, including Finnish, the phone duration modeling is

crucial for the proper recognition of speech. But even with

languages where phone durations do not give discrimina-

tive information between words, analyzing them can pro-

vide useful information to aid the recognition task. Unfor-

tunately, the modern speech recognition systems generally

model the phone durations rather poorly due to use of hid-

den Markov models (HMMs) as their underlying acoustic

model. Several alleviations have been proposed [2, 3, 4],

but the field seems to lack an established method to deal

with the problem.

In this work, the use of explicit phone duration models

is studied in the context of an existing speech recognition

system. To alleviate the limitations of HMMs, a duration

model functioning as a post-processor to the path compari-

son in the normal decoder was implemented. This kind of

duration model is easy to be implemented and efficient to

be used, yet powerful enough to improve the accuracy of

the recognizer.

2. PHONE DURATION MODELING

2.1 HMM Based Phone Duration Models

Hidden Markov models have intrinsic geometric state dura-

tion distributions, as the duration of one HMM state is com-

pletely determined by the probability of a self transition [5].

In majority of the modern phoneme based speech recogniz-

ers a phone is modeled as a three-state left-to-right HMM.

The resulting phone duration distribution is therefore a con-

volution of these three geometric distributions, when con-

sidered prior to the acoustic information. Although this dis-

tribution has three free parameters, they are coupled in such

a way that the overall distribution is insufficient to model

the phone durations properly [6].

Figure 1 shows an example of the poor modeling of the

phone durations with the normal three-state HMMs. The

solid line shows an unsmoothed duration distribution of a

triphone, where /s/ has an /a/ as the left context and /t/ as

the right context. The data was measured over 879 occur-

rences of the triphone in a speech material spoken by the

same speaker. The dash-dotted line shows the convolution

of the three geometric state duration distributions, there-

fore representing the phone duration distribution. The fit

is far from the objective distribution. On the other hand,

the dashed line shows the convolution of three gamma dis-

tributions fitted to model the same HMM state durations.
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Fig. 1. An example of a phone duration distribution and

models with convoluted state durations, as explained in the

text.

The fit is now almost perfect. This suggests that gamma

distributions are much more suitable for modeling the state

durations, and they have indeed been reported to be used for

that purpose [3]. They are also the choice for the duration

distributions in this work.

Several methods have been proposed to enable the use of

more general state duration distributions with HMM based

models. Extending the HMM directly to include an explicit

duration model instead of an intrinsic one leads to so called

hidden semi-Markov models [7, 3, 8]. Another method

to better model the state durations employs the fact that

Markov models can be used to model general probability

distributions [9]. Therefore HMM states can be extended

to sub-HMMs, sharing the same acoustic emission density,

to explicitly model the state durations. Resulting model is

called the expanded state HMM [4]. Unfortunately, both of

these models degrade the recognition efficiency, thus cut-

ting the benefits of enhanced duration modeling [6].

Juang et al. [2] proposed a duration model which avoids the

loss of efficiency in the recognition. Their method uses the

output of the Viterbi search [5] at the heart of the decoding

(recognition) process, and ranks the proposed paths using

better models for the state durations. The method is there-

fore called the post-processor duration model. The original

version of this method was formulated as an augmentation

to the Viterbi search likelihood:

log f̂ = log f + α

N∑

j=1

log dj(τj). (1)

f denotes the likelihood score given by the Viterbi search,

α is an empirical scaling factor, N is the number of dis-

tinct HMM states through which the best path traversed, dj

are the duration probability distribution functions of those

states, and τj are the durations spent in each state.

The post-processor method can also be derived from the

following probabilistic considerations. If simplified, the

decoder can be seen to pick the phoneme sequence W for

which the likelihood p(O |W,λa, λd) of the acoustic frame

sequence O = o1, . . . ,ot is the highest. The decoder is

given the acoustic and duration models as a prior knowl-

edge, denoted by λa and λd, respectively. The acoustic

likelihood can be computed as a sum over the paths of the

HMM forming the phoneme sequence W :

p(O |W,λa, λd) =
∑

Qi∈Q

p(O |Qi, λa)P (Qi |W,λd),

(2)

where Q is the set of valid HMM state sequences. In the

Viterbi search used in decoding, the likelihood is approxi-

mated with a single best path:

p(O |W,λa, λd) ≈ p(O |Qbest, λa)P (Qbest |W,λd).
(3)

The first term of the right hand side is simply the acous-

tic probability given the state sequence Qbest. In the con-

text of HMMs, the second term is the product of transi-

tion probabilities for the state sequence Qbest. However,

this term could be computed more correctly if we forget the

HMM context and adopt more accurate state duration mod-

els. Therefore the resulting likelihood can be computed as

a product of the acoustic likelihood and the duration likeli-

hood, which both are computed over the best path given by

the Viterbi search. When dealing with log likelihoods, this

results in a sum of logarithms of the acoustic and duration

likelihoods. This is now in accordance with the equation 1,

except that the f in Eq. 1 includes, along the acoustic like-

lihood, also the transition probabilities of the HMM path,

which is the duration information with the geometric state

distributions. The implications of this depend on the scal-

ing of the acoustic likelihoods and on the scaling factor α.

Tests with different duration modeling methods showed

that the post-processor duration model gave the best results

in relation to the recognition efficiency [6]. Although it

is not mathematically as justified as the other methods, it

benefits for having almost negligible impact to the recog-

nition efficiency. The decoder can therefore be run with

more time consuming parameters to achieve the perfor-

mance gain. The performance and implementation of the

post-processor method is deeply coupled with the structure

of the decoder, which is presented in the next section.

2.2 The Stack Decoder Based Speech Recognition Sys-

tem

The speech recognition system at HUT utilized for this

study has been presented in [10]. The specialty in the sys-

tem is the use of morphs instead of words as the language

model units. The morphs work well in modeling Finnish,

which has a huge number of word forms due to extensive

use of suffixes and compound words. These morphs are

morpheme-like units which are discovered in an unsuper-

vised manner, thus achieving language independence and

avoids the need of coding extensive morphological rules.



The decoder of the speech recognizer [11] is based on the

principle of stack decoding [12]. The existing recognition

hypotheses are expanded with new words (or in this case

morphs) starting from each time instance where some pre-

vious hypothesis ends. Several hypotheses are stored in

stacks and expanded appropriately with new word (morph)

alternatives. These new alternatives are searched with a lo-

cal Viterbi search in a window of about 1-2 seconds. The

breadth of the Viterbi search can be controlled with a so

called beam parameter, which defines how much the log

likelihood of different expansion alternatives are allowed

to deviate from the best one. The effect of this pruning is

in close correlation to the speed of the decoder, so it can be

used as a mean to control the tradeoff between the accuracy

and efficiency. The larger the beam parameter is, the more

accurate recognitions can be achieved.

The search strategy which the decoder employs suits well

to the post-processor duration model. As several compet-

ing hypothesis paths are kept as a starting point for new

hypotheses, many path alternatives are presented to the

post-processor model. This makes it more probable that

the correct paths are evaluated using the better duration

models. Ranking the new hypotheses with better models

leads to more correct decisions and guides the recognition

to more accurate results. Furthermore, due to the expansion

scheme used in the decoder several expansions may result

the same hypothesis, but with slightly differing paths over

the HMM state lattice. This also reduces the possibility that

the best path in respect to the better duration models would

be missed.

The decoder combines the different knowledge sources by

summing their log likelihoods together with appropriate

scalings to get the final likelihood estimate for each hy-

pothesis. These knowledge sources are the acoustic like-

lihood (HMM emission probabilities), the HMM transition

probabilities, the new duration model (the latter term of the

Eq. 1) and the language model. The log likelihoods of the

three last sources are scaled with respect to the acoustic

log likelihood to achieve the best recognition performance.

During the experiments, all these three parameters were op-

timized with a development set independent of the actual

test set.

3. EXPERIMENTS

The models used for the speech recognition experiments

were speaker dependent triphone models trained from an

about 12 hour extract of a Finnish book spoken by one fe-

male reader. Independent parts of 9 and 30 minutes of the

same material were used as development and evaluation

sets, respectively. The number of different triphones was

empirically adjusted to the available data. Each triphone

was modeled with three-state left-to-right HMM model,

each HMM state having Gaussian mixture emission den-

sity with four Gaussian components. For the explicit state

duration models, gamma distributions were used.

For the recognition tests, letter error rates (LER) were

used as a criterion for the recognition performance. There

are number of reasons for this decision. Word error rate

(WER), which is common in speech recognition measure-

ments, is not well applicable for Finnish where rather long

words consisting of many morphemes are common. Word

error rate also penalizes too much for misrecognized word

breaks. This becomes an issue when language model units

are not words. Letter error rate, on the other hand, is a

good and meaningful criterion if the recognition result is

intended to be manually corrected or read by humans. The

actual task for which the speech recognizer is designed to

naturally determines the proper error measure, and this lat-

ter argument has been seen as the most relevant one in the

present system.

The recognition evaluation was performed with different

decoder beam values, resulting in different running times.

This way a recognition performance as a function of recog-

nition speed could be obtained as in Figure 2. The speed

is indicated by the real-time factor of the decoding, and it

should be interpreted only as a relative value, for the num-

ber of reasons affecting the actual speed of the recognition.

Four different models were evaluated. The baseline did not

distinguish between single and double phonemes. These

were separated to own acoustic models to improve the

recognition accuracy. Then upon that two versions of post-

processor duration models were implemented and tested.

The first (1) does not include the transition probabilities

encountered during the Viterbi search, whereas the second

(2) does, thus implementing exactly the Equation 1. Table

1 shows the lowest letter error rates of the evaluation, along

with the corresponding word error rates for reference.
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Fig. 2. Speech recognition results with various running

times.

4. DISCUSSION

The system as reported in [10] did not distinguish between

different lengths of phonemes and it was entirely up to the

language model to decide which variant of the phoneme



Table 1. Speech recognition results for real-time factor 21

Model LER (%) WER (%)

Baseline 3.61 19.8

Separate phonemes 2.88 16.2

Post-processor (1) 2.81 15.6

Post-processor (2) 2.73 15.3

was more correct in the context of a hypothesis. Thus a

simple separation of the single and double phonemes alone

improved the recognition accuracy significantly. This way

the different durations of phones can be modeled using

the HMM transition probabilities. Although there should

not be significant difference in the spectral contents of the

phones corresponding to the single and double forms of the

same phoneme, the acoustic emission densities were kept

separate to keep the system as simple as possible.

It can be noted from Fig. 2 that the better modeling of the

phone durations begin to have influence only after a cer-

tain accuracy has been achieved, in respect to the pruning

of the decoder. Also what is seen in the figure is that the

post-processor method performs slightly better when im-

plemented as originally proposed, by augmenting the log

likelihood given by the Viterbi search. This suggests that

the transition probabilities may carry some additional in-

formation not available in the gamma distributed state dura-

tion models. With this duration model a letter error rate of

about 5% smaller (6% smaller WER) is achieved than with

the same acoustic models but without the post-processor.

The model without separate models for single and double

phonemes is clearly the worst.

The assumptions with the implemented post-processor

model are that we get the correct paths from the Viterbi

search and that by ranking them using better duration mod-

els really gives us more information to aid in choosing the

best hypothesis. The evident problem results from the for-

mer assumption, as the best path relative to the better dura-

tion models needs not be the same as the one Viterbi search

finds using the simple geometric duration models. How-

ever, the evaluations show the the post-processor model

works well despite this inconsistency.

5. CONCLUSIONS

Explicit modeling of phonemes of different lengths, and

therefore the duration of phones, is crucial in Finnish to

distinguish certain words from each other. Better models

can be built if the phone durations are modeled more accu-

rately than the standard HMM framework allows. During

the tests with different phone duration models it was noted

that a simple post-processor duration model was the best

with respect to the recognition efficiency. The evaluation

reported in this work indicate that about 5% relative reduc-

tion in letter error rate can be achieved with this model. It

should be noted, however, that the actual performance of

the model depends on the decoder in which the model is

implemented.
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