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Abstract. We address the problem of estimating three head pose angles
in sign language video using the Pointing04 data set as training data.
The proposed model employs facial landmark points and Support Vector
Regression learned from the training set to identify yaw and pitch angles
independently. A simple geometric approach is used for the roll angle.
As a novel development, we propose to use the detected skin tone areas
within the face bounding box as additional features for head pose estima-
tion. The accuracy level of the estimators we obtain compares favorably
with published results on the same data, but the smaller number of pose
angles in our setup may explain some of the observed advantage.

We evaluated the pose angle estimators also against ground truth
values from motion capture recording of a sign language video. The cor-
relations for the yaw and roll angles exceeded 0.9 whereas the pitch
correlation was slightly worse. As a whole, the results are very promising
both from the computer vision and linguistic points of view.

1 Introduction

Human head orientation, or head pose, is determined by three angles: yaw (hor-
izontal movement), pitch (vertical movement) and roll (rotational movement)
as shown in Figure 1. Head pose can provide additional information that en-
riches communication wherever the visual channel is available [1]. For example,
the pointing direction of the head will cue for the intended subject of atten-
tion; also, movements of the head can express emotions and actions related to
conversational involvement.

In sign languages, in addition to pure communicative and emotional infor-
mation, head movements and poses also express important grammatical and
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Fig. 1. Degrees of freedom of the human head described by rotation angles [1]

prosodic information [2,3]. For example, a head shake is the primary grammati-
cal means through which sign languages change sentence polarity from positive
to negative [4]. Head nods, on the other hand, may perform a variety of lin-
guistic functions: they are widely acknowledged to mark phrase and sentence
boundaries but they also indicate, for instance, affirmation as well as existence
(e.g. [2, 5]); when co-occurring with signs, head nods may also mark prosodic
emphasis [2]. To be able to automatically model and detect also these types
of linguistic movements and head poses from sign language videos is the main
motivator of this research.

In this work, we follow a model-based approach where facial landmarks [6]
are extracted from a set of training images and the resulting point coordinate
locations are used as input data to solve a regression problem by using Support
Vectors with Radial Basis Functions as kernels [7]. In the experiments, we use
the Pointing04 image database for training with 684 selected images within near
frontal angles, i.e. −45◦ to +45◦ angles in yaw and within −30◦ to +30◦ in
pitch. The roll angle is estimated by using a simple geometric method. Different
combinations of facial landmark points, their normalizations and combination
with facial skin area information are tested to find an optimal set of features
that can provide reliable pose angle information. Finally, the model is used to
estimate head pose from a sign language video where the ground truth pose
angles are available from a motion capture recording.

The rest of the paper is organized as follows: Section 2 introduces related work
and Section 3 presents our proposed method. Section 4 shows the experiment
setup and results, and the conclusions are presented in Section 5.

2 Related Work

Head pose can be estimated with either model-based approaches using a number
of facial features, or with appearance model approaches that use the entire image
of the face for pose estimation. While several methods [8–10] have reported
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good results using appearance-based approaches, more advanced model-based
methods use Active Appearance Models (AAM) [11] to learn shape variations
in a wireframe fashion. AAM requires learning the features in each frame, and
has been applied to head pose estimation in videos [12] implementing feature
tracking for faster convergence.

A popular approach has been to interpret pose detection as a classification
problem and train a set of pose-specific classifiers for recognizing specific pose
angle ranges [13, 14]. The opposite approach has been to directly estimate the
pose angles, e.g. with methods such as Support Vector Regression (SVR) in com-
bination with dimensionality reduction techniques such as PCA with appearance
model approaches [15], localized gradient orientation histograms [1], CCA [16],
and sparse representation of facial features [17, 18].

While earlier research has considered head pose estimation in video [19–21]
its application for sign language has been limited [22, 23]. Especially, we are
not aware of any previous sign language studies where visually estimated pose
would have been compared with a ground truth obtained from motion capture
recording.

3 Head Pose Estimation

In this work we use a model-based approach where we estimate all pose attributes
from sets of facial point coordinates. Support Vector Regression is our choice
of method for yaw and pitch angle estimation [7]. In preliminary studies we
also tried a feed-forward neural network with four hidden layers and Levenberg-
Marquardt optimization, but the obtained accuracy was inferior to that of SVR.

To estimate the roll angles, we use a simple plane geometric approach. Ge-
ometric techniques have been considered sensitive due to their dependency on
previously detected landmarks and face symmetry assumptions, but when these
requirements are correctly met, the simplicity and speed of geometric approaches
are effective.

3.1 Face Detection

The face detection method used is based on OpenCV’s implementation of the
Viola-Jones [24] object detector. The features used by the detector are based
on two-dimensional Haar-like features that encode oriented contrasts between
image regions. A classifier is trained with several sample views using the Haar
features for a desired object, in our case faces. Even though the face detector
has been trained with mostly frontal views, it can still detect a range of pose
angles sufficient for pose estimation in sign language videos.

3.2 Facial Landmark Detection

The facial landmarks are in our work extracted using an open source package
flandmark [6]. The package is based on Deformable Part Models: given an ap-
pearance fit and deformation cost functions, the facial points are constrained to
fit within a structured component graph.
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The extracted facial features we are using are composed of 8 × (x, y) coor-
dinates for the face landmarks and (x0, y0), (x1, y1) coordinates that define the
face area bounding box. Since face location and size vary across images, the land-
marks were preprocessed to fit within the range of (x, y) ∈ [0, 1] × [0, 1] with
respect to the bounding box.

3.3 Geometric Approach for Roll Angle

The Pointing04 data used for training does not include non-zero roll angles.
Therefore we estimate roll angles geometrically in the image plane with the
assumption that the facial landmarks have been correctly approximated and
the camera is aligned at zero degrees. The roll angle is thus determined by
simple trigonometry from the angle between the horizon an imaginary line drawn
connecting the eye centers as illustrated in Figure 2.

3.4 Skin Mask

As a novel technique for aiding the identification of the head pose, a skin-tone
mask was extracted from each image. The skin mask consists of tonal segmen-
tation of skin-like colors images as shown in Figure 2. The binary mask is used
to calculate four additional values for regression: the fractional areas of non-skin
pixels on the left and right side of the face bounding box, L and R, respectively,
and similarly the top and bottom areas T and B, all in the range [0, 1].

Fig. 2. Left: Roll angle estimation. Center: Original image. Right: Skin mask.

In the evaluation, we have used the four fractional non-skin areas as such, but
also considered coordinate normalization by offsetting the point coordinates with
respect to the mask areas. For yaw and pitch angle estimation, we displaced the
landmark (x, y) coordinates independently in proportion to the left/right (yaw)
and top/bottom (pitch) mask areas to get the normalized coordinates (x′, y′) as

x′ = x− L+R , (1)

y′ = y − T +B . (2)
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3.5 Support Vector Regression

We address the task of pose estimation as a non-linear regression problem.
Within this context, Support Vector Regression (SVR) [7] is used due to its
earlier good performance with appearance-based models [15].

The standard form of the ε-insensitive SVR is given as

min
w,b,ξ,ξ∗

1

2
wTw+ C

l∑

i=1

ξi + C

l∑

i=1

ξ∗i (3)

subject to wTφ(xi)− zi + b ≤ ε+ ξi,

zi −wTφ(xi)− b ≤ ε+ ξ∗i ,
ξ∗i , ξi ≥ 0, i = 1, . . . , l ,

where {(x1, z1), . . . , (xl, zl)} are training samples with xi feature vectors and zi
target outputs, we seek to optimize the weights wi that correctly map φ(xi) to
their target zi. The parameter C is the cost, or trade-off, between the accuracy
and the amount of deviations larger than the sensitivity ε that are tolerated.
ξi, ξ

∗
i are slack variables.

The dual problem is described as

min
α,α∗

1

2
(α−α∗)TQ(α−α∗) + ε

l∑

i=1

(αi + α∗
i ) +

l∑

i=1

zi(αi − α∗
i ) (4)

subject to eT (α − α∗) = 0 and 0 ≤ αi, α
∗
i ≤ C, i = 1, . . . , l, where Qij =

K(xi, xj) ≡ φ(xi)
Tφ(xj) with αi, α

∗
i Lagrange multipliers. The final regressor

function after solving the dual problem is

f(x) =

l∑

i=1

(α∗
i − αi)K(xi,x) + b (5)

K(xi,x) = exp(−γ‖xi − x‖2) , (6)

where K(·, ·) is a Gaussian Radial Basis Function kernel and γ determines the
coverage of the decision boundaries.

4 Experiments and Results

4.1 Data

The data used for performance evaluation consists of a 30·7·5 = 1050 Pointing04
database images [25], approximately 37% of the whole material. The selected
poses have yaw and pitch angles in the ranges −45◦ to +45◦ in yaw, and −30◦

to +30◦ in pitch. The angle differences are 15◦ from one pose to the other as
illustrated in Figure 3.

From the output of the flandmark detector, two sets of feature vectors with
different angular distributions were selected for training the regressors. The first



354 M. Luzardo et al.

Fig. 3. Example images from the Pointing04 image database

set, A, results from 684 images for which the landmark detection had been
successful and consecutively has an emphasis on the near frontal poses. The
second set, B, contains 29 · 7 · 5 = 1015 feature vectors equally distributed in all
considered poses. This set was generated by adding 366 synthetic samples based
on pose-specific pixel location means and variances estimated from set A. The
synthetic values were created as x = μ+ rσ with mean μ, standard deviation σ
and a random factor r in the range [−0.75,+0.75], and similarly for y.

4.2 Classification Experiment

Sixteen experiments were performed for both data sets A and B to obtain the
best combination of facial features, and to determine the usefulness of the skin
masks as such and as a means for coordinate normalization. All SVRs were
trained independently for yaw and pitch for both data sets in a leave-one-sample-
out procedure commonly followed in evaluations using the Pointing04 data.

We quantized the regressor outputs to the nearest values in 0,±15,±30,±45
degrees for yaw and 0,±15,±30 degrees for pitch. The quantized angles were then
used in a classification experiment seeking answers to the following questions:
1) Is the face center landmark beneficial as a member of the feature vector? 2) Is
it better to use both x- and y-coordinates for estimating both yaw and pitch,
or is it better to use only x for yaw and only y for pitch? 3) Are the L,R, T,B
skin mask areas useful in pose angle estimation and if they are, should they be
used as such, as a normalization method or both? 4) Is the balancing of training
data, i.e. the use of data set B instead of set A beneficial?

The results in Table 1 indicate that for yaw, ignoring the face center land-
mark increases the accuracy whereas for pitch it provides important reference
information. Concerning the second question, the results show that it is always
better to use both coordinates for estimating the both angles, not only x for
yaw and y for pitch. It is clearly beneficial to use the offset normalized coordi-
nates (x′, y′) for yaw, but not so much for pitch. The best results were, however
obtained when the skin area values are used as such in the feature vector. The
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Table 1. Classification accuracy with different feature vectors and training data. In
the third and fourth vertical blocks only the x coordinates were used for yaw, and only
the y coordinates for pitch. Skin areas included as additional data are: L = left, R =
right, T = top, B = bottom. In training set A the images had a stronger distribution
near the central poses, in set B poses were equally distributed.

Point set Dim YawA(%) YawB(%) PitchA(%) PitchB(%)

8× (x, y) 16 50.29 49.71 45.18 46.35
8× (x, y) + L,R, T,B 20 66.81 66.96 51.75 52.63
8× (x′, y′) 16 68.28 67.69 47.66 45.76
8× (x′, y′) + L,R, T, B 20 68.72 64.91 47.22 48.25

7× (x, y) 14 48.98 48.83 44.74 45.61
7× (x, y) + L,R, T,B 18 68.86 69.29 49.56 54.24
7× (x′, y′) 14 69.15 67.69 44.44 46.78
7× (x′, y′) + L,R, T, B 18 69.15 66.08 44.15 47.81

8× x | 8× y 8 49.71 46.49 44.15 45.76
8× x+ L,R | 8× y + T,B 10 64.47 61.55 45.76 46.93
8× x′ | 8× y′ 8 63.89 60.38 45.76 44.74
8× x′ + L,R | 8× y′ + T,B 10 63.60 63.74 47.81 45.91

7× x | 7× y 7 47.52 42.84 44.01 45.18
7× x+ L,R | 7× y + T,B 9 62.87 59.06 45.91 46.49
7× x′ | 7× y′ 7 64.62 62.43 42.84 45.91
7× x′ + L,R | 7× y′ + T,B 9 63.74 63.74 46.20 46.78

answer to the last question seems to be that for yaw, training with the set A
mostly produces better results whereas for pitch the additional synthetic values
in set B bring improvement.

4.3 Pose Angle Estimation and Comparison with Related Work

The angle classification errors and mean absolute errors in pose angle estimation
were calculated for our best methods from Table 1 using the same procedure as
other methods using the Pointing04 data set in a survey [1].

As seen in Table 2, our method shows improved classification accuracy for the
yaw angle and similar accuracy for the pitch angle compared to the reference
methods. Similar result holds also for the mean absolute error; while recent
research shows improved results they employ an increased amount of features
or, in the case of [26], a different training dataset in comparison to our method.
However, the results are not directly comparable as our method has been limited
to the near frontal angles only.

4.4 Sign Language Video Experiment

The best regressors from Table 1 were in our final experiment used to estimate
the yaw and pitch angles in a sign language video. The geometric approach
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Table 2. Performance of fine pose estimation and pose angle classification

Mean Absolute Err Classification Discrete
Publication Yaw Pitch Accuracy Poses

Dense SIFT + RP [26] 6.05◦ 5.84◦ — {13, 9}
kPLS (40 factors) [27] 6.56◦ 6.61◦ {67.36%, 80.36%} {13, 9}
LARR2 [28] 9.23◦ 7.69◦ — {13, 9}
Stiefelhagen [8] 9.5◦ 9.7◦ {52.0%, 66.3%} {13, 9}
CRSR [18] 8.6◦ 12.1◦ — {13, 9}
Human Performance [9] 11.8◦ 9.4◦ {40.7%, 59.0%} {13, 9}
Associative Memories [9] 10.1◦ 15.9◦ {50.0%, 43.9%} {13, 9}
Tu (High-order SVD) [29] 12.9◦ 17.97◦ {49.25%, 54.84%} {13, 9}
FL+SVR A 6.2◦ 8.8◦ {69.2%, 51.8%} {7, 5}
FL+SVR B 6.2◦ 8.8◦ {69.3%, 54.2%} {7, 5}

previously described in Section 3.3 was used to get the roll angles. The used
video was recorded during a motion capture recording session and comprises
of continuous signing with a variety of naturally occurring head movements
and poses. The length of the video is 60 seconds and it was shot at 25 frames
per second in the resolution of 1440 × 1080 pixels. The estimated angles were
visualized using a gyroscope plot to aid the interpretation of the results as shown
in Figure 4.

The estimated pose angles were temporally low-pass filtered with a FIR filter of
order five to reduce the inherent noise. These smoothed values can be compared in
Figure 5 with the ground truth obtained from motion capture data recorded with
an eight-camera optical ProReflex MCU120 system [30]. The three-dimensional
positions of 20 small ball-shaped markers attached to the signer were tracked at
120 Hz. In this experiment, we considered only the four markers attached to the
signer’s head with a headband roughly symmetrically with one marker on the left

yw: −18.7
pt: 7.6
rl: 9.9

Fig. 4. A sample frame from the sign language video with the estimated head pose
angles yaw, pitch and roll. Top right: Gyroscope visualization of the estimated pose.
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Fig. 5. Left: Estimated pose angles from a sign language video in blue and ground truth
angles from motion capture in red. Right: Absolute difference between the visually
estimated angles and the motion capture ground truth.

and right hand sides of the head, both front and backside of the head. The loca-
tions of these markers were used to infer ground truth values by computing the
corresponding roll, pitch, and yaw angles trigonometrically. The sample rates were
then equalized by averaging the inferred marker-based values over 4 or 5 samples
per frame.

Correlation values between the visual regressor outputs and the motion cap-
ture data are presented in Table 3. The selected SVRs trained with data set A
(shown in bold in Table 1) had a strong correlation with the motion capture
data especially for yaw. Regressors trained with data set B had a slight improve-
ment over those of set A for the pitch angle estimation. Additionally, roll angles
show the highest correlation with the motion capture data, demonstrating the
strength of the simple geometric approach.

Although the purpose of the present work was not yet to quantitatively evalu-
ate the accuracy of the method to capture the very fine linguistically meaningful
details of head movements, a qualitative inspection of the data reveals that the
method indeed is capable of detecting these. For example, around frames 490–
510 there is a very subtle negative headshake which is captured perfectly by the
yaw angle. Moreover, between frames 385–400 and 460–470 there are boundary-
marking head nods (the latter of which has also an affirmative function) which
are clearly identified by the pitch angle of the pose estimate. Approximately be-
tween frames 930–1150 there are several linguistically significant roll movements

Table 3. Correlation and standard deviation σ of the signal difference for angle esti-
mation and motion capture data for the best trained models

Correlation Difference σ
Model Yaw Pitch Roll Yaw Pitch Roll

FL+SVR A 0.92 0.72 0.95 4.29 4.30 2.19
FL+SVR B 0.85 0.74 0.95 5.55 4.17 2.19
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captured. Roll movements, together with simultaneous yaw and pitch move-
ments, serve here to demonstrate changes in perspective from which the signer
narrates the actions of the characters in the story.

5 Conclusions and Future Work

In this work, head pose estimation was studied using a model-based approach
and aiming at analysis and interpretation of sign language videos. Non-linear
regression was employed by using a combination of Support Vector Regression
with Radial Basis Function kernels. Facial landmark locations were used as input
features for the non-linear regressor. As a novel development, we used also skin
mask areas as additional information to the regressor with improved results. In
other comparisons it was found out that it is beneficial to use both horizontal and
vertical landmark locations as inputs to the regressors when estimating either
the yaw or pitch angle. The use of synthetically generated feature vectors for
balancing the training sample distribution over all poses brought some benefit.

Previous research has reported higher mean absolute errors in pose angle
prediction with the same Pointing04 database, but a direct comparison of the
results is yet not possible due to the differences in the number of pose angles
considered. This will be addressed in future work and also other head pose
estimation benchmarks, such as the GENKI-4K Database1, will be evaluated.

As the ultimate goal of our work, the presented method was applied in an ex-
periment with a sign language video showing strong correlation of the estimated
angles with motion capture ground truth data. The simple plane geometric ap-
proach we used for roll angle estimation proved to be working very well with
the video data. Later we will also try to accurately compare our pose estimation
results with those from the publicly available CERT toolbox [31]. Preliminary
inspection of the CERT demonstrator output has shown that our method is at
least more robust against partial face occlusions and other error sources that
cause the CERT algorithm to occasionally lose track of the pose angles.

In sign languages, even the very fine details of head movements may be sig-
nificant for the proper understanding of the intended meaning. In this work,
the accuracy to capture all these details in the sign language video was not yet
evaluated. However, on the basis of the presented results and preliminary qual-
itative observations, the approach is very promising both from the computer
vision and linguistic points of view: the work strongly suggests that, in the fu-
ture, the method may be used, for example, to aid automated annotation of head
movements and poses in videos containing natural signing.
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