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Abstract—Handshape has an important role in sign languages.
It would be inconceivable to try to understand sign language
without recognising the handshapes. Over the years, numerous
different approaches have been proposed for extracting the hand
configuration information. The existing approaches for hand-
shape recognition have problems especially with the huge sizes of
modern linguistic corpora. Computationally expensive methods
become easily infeasible with such large amounts of data. In this
paper we examine the straightforward and efficient approach of
recognising handshapes by our existing image category detection
methodology, involving state-of-the-art local image descriptors.
In the experiments the approach produces promising results.
On the image feature side, we find that surprisingly complex
hierarchical descriptors of shape primitive statistics provide the
best overall performance in handshape recognition. The accuracy
of feature-wise detections can be improved by fusing together
several features. Considering the temporal succession of the
hand blobs markedly improves the accuracy over detecting the
handshape in each video frame in isolation.

I. INTRODUCTION

Handshapes – sometimes also called hand configura-
tions [1] or hand poses – are explicit articulations that human
beings form with their hands. Handshapes are among the most
prominent features of sign languages, possibly only surpassed
by the movement of the hands in passing linguistic informa-
tion. It is inconceivable to try to understand sign language
without recognising the handshapes. Over the years, numerous
different approaches have been proposed for extracting the
hand configuration information. The problem of recognising
the 3D shape from a 2D projection is intrinsically difficult
and all the proposed solutions suffer from various drawbacks.
Besides the imperfect quality of analysis results, the compu-
tational cost of the proposed methods is another source of
concern. The current trend in sign language research is to
collect and analyse large corpora of at least dozens or hundreds
of hours of signing. Computationally expensive methods easily
become infeasible with such large amounts of data.

In this paper we examine the straightforward and efficient
approach of recognising—or detecting— the handshapes in a
real-world video material by the means of our existing image
category detection system. It has earlier been successfully used
by us for diverse other tasks in visual analysis. The system
employs the standard processing stages of feature extraction
and supervised learning. This appearance-based approach is
taken here into an extreme in terms of simplicity of explicit
hand modelling: hands are treated just as skin-coloured blobs
of pixels. The implicit models of handshapes are provided by
annotated training examples.

Our approach is related to some other appearance-based
methods. However, our work has many distinctive properties.
First of all, we use handshape examples from real video as
models as opposed to synthetic images. Secondly, our models
consist of handshape classes instead of individual prototype
hand images. Thirdly, there exists a direct connection with our
shape classes to the sign language phonology as our video ma-
terial originates from a video dictionary of sign language. The
handshape classes correspond to handshapes that the creators
of the dictionary have judged to be phonologically distinctive.
Fourthly, the features we extract from hands make the study
interesting. The shape primitive statistic descriptors are quite
advanced and complex as such, and may facilitate recognising
handshapes in a degree that would not be possible using
simpler features, thereby opening a door for new application
possibilities. This study provides us the knowledge what level
of performance can be realised with our current image analysis
methods. We can then speculate whether this performance level
is useful for applications in sign language analysis. We also
gain insight into the usefulness of various feature extraction
techniques in the handshape recognition context.

The rest of the paper is organised as follows. Section II sur-
veys related literature. Section III describes the sign language
video material we use along with the applied pre-processing.
Section IV describes the used image feature extraction meth-
ods. Section V includes the description of our experiments
along with the analysis of the results. Final conclusions are
drawn in Section VI.

II. RELATED WORK

A coarse division into two classes can be made for the
existing handshape recognition methods: methods based on
three-dimensional models and appearance-based methods. The
3D methods work by creating synthetic images by projecting
hypothesised hand configurations onto the image plane and the
hypothesis is updated after evaluating its correspondence with
the input image. For example, in [2], an approach based on on-
line optimisation of the parameters of a synthetic 3D model
is presented. In [3], the problem is modelled as a detection
problem and the configuration of the 3D model is selected
via a Bayesian hierarchical detection scheme. Among other
problems, both of these exemplary models suffer from high
computational cost. In [4], a 3D model was used in a Monte
Carlo importance sampling setting, and it was suggested that
the dimensionality of the model could be reduced efficiently.

The appearance-based methods only model the 2D appear-
ance of the hand, usually without taking the underlying skeletal
structure into account. The methods tend to be simpler and thus
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computationally less expensive, making them more viable for
processing large amounts of data. However, the appearance-
based hand analysis methods in the literature usually concen-
trate on detection, description and tracking hands on a lower
level, the handshape is seldom explicitly modelled. At least
not on the level of detail required by phonological analysis
of sign language. Exceptions include [5] where the handshape
estimation is treated as a database search of synthetic hand
images. Although a 3D model is used, its use is limited to an
off-line setting and matching is performed in an appearance-
based fashion. In [6], a method of modelling the contour of
the hand, based on a generalisation of Hidden Markov Models,
was proposed, but the method is computationally very demand-
ing. In [7], depth cues are obtained by estimating the direction
of the shadow cast by the hand. Although the algorithm was
reported to be very fast, the parametrisation is too crude for
sign language context. A purely appearance-based approach
is presented in [8], based on matching images with Dynamic
Time Warping and Longest Common Subsequence measures.
The approach is quite simplistic, but the basic problem setting
resembles a smaller scale version of ours.

A recent survey into different methods of hand gesture
recognition, covering a wide range of methodology, including
hand tracking and other parts of a recognition system, is given
in [9]. An older survey focusing on the hand pose estimation
can be found in [10]. It would appear that most relevant work
in recent literature has focused on 3D models. However, the
current 3D methods are computationally too intensive for large
scale data processing or require data collection procedures
beyond the use of a standard 2-dimensional video camera.

III. DATA

Our experiments were performed on a set of hand blobs
extracted from a number of sign language videos of the S-
pot benchmark material [11] that consists of the material from
the Suvi video dictionary of Finnish Sign Language1. The
video material for the dictionary was recorded during the 1990s
with an analogue Betacam camera and converted into digital
format afterwards. The technical quality poses a challenge to
automatic analysis as the videos suffer quite severely from
limited resolution, motion blur and coding artifacts. However,
the challenge is a realistic one and reflects the real world:
the dictionary can be regarded as a modern electronic sign
language resourcewhose video quality is perfectly sufficient
for a naturalistic viewing experience by human users.

A subset of 300 citation form videos was chosen from the
material by considering those videos that were tagged with
a specific handshape in the expert-prepared indexing of the
dictionary. Furthermore, we limited ourselves to videos where
the signer to wear a long-sleeved shirt. The chosen subset of
videos was manually annotated by us. Our annotations specify
the frames where the dominating hand of the signer shows
the handshape of the index tag. Each video of the subset is
indexed by a single handshape. This means that in each video,
the occurrences of all the other non-indexing handshape classes
are ignored.

1Suvi, the Online dictionary of Finland’s sign languages,
http://suvi.viittomat.net. Published in 2003, an extended version published
with a new interface in 2013

Isolated skin-coloured hand blobs were extracted from the
videos using an ELM-based detector. Because of technically
modest video quality, the skin detection results had to be
smoothed rather strongly, resulting in somewhat approximate
and spread out blob contours. Other than that, the detection
works well for the material. Dominant hand (i.e. right hand for
right-handed signers) blobs were extracted only from frames
where the hand was separate from the head and the non-
dominant hand. In cases where the signer was left-handed,
the hand blobs were mirrored so that the hand blobs in the
extracted set all look like right hands. The automatically
extracted blobs were screened by a human viewer. Erroneous
blobs (e.g. hands occluding the head) were removed and the
wrongly detected left/right-handedness corrected by mirroring.
In the experiments we used both the exact skin-coloured
area of the blob, and alternatively also the rectangular patch
surrounding the blob. Our data (videos, blobs, annotations and
extracted features) are available upon request.

Based on the visual properties of the isolated hand blobs
alone, not all the blobs could be assigned the handshape
class they are annotated with, not even by a human. This is
because in our annotation procedure the annotator is able to
see the whole video sequence and note down the beginning
and ending times of a certain handshape. All the frames
between these times get annotated with the handshape even
though visually the handshape could not be identified in some
of these frames. This often occurs due to motion blur, but
sometimes also because of self-occlusion or otherwise difficult
viewing angles. The annotations are thus somewhat noisy due
to the annotation process not marking all the handshapes and
assigning handshape labels to visually non-recognisable blobs.
Still, the connection between the annotations and the actual
handshapes is definitely strong enough to make automatically
replicating the annotations a very feasible goal.

We devised an experimental setup where the task is to
replicate the manually assigned handshape labels to blobs.
Based on the numbers of extracted blobs associated with each
handshape, the experiment was limited to the subset of 12
shapes with the largest number of examples. Altogether Suvi
indexing uses 29 handshape classes. Figure 1 shows the subset.

1001 1021 1100 1110

1120 1130 1201 1301

1311 1501 1511 1631

Fig. 1. The 12 handshape classes of Suvi studied in the experiments.

For the purpose of the experiments, the videos were par-
titioned approximately evenly into training and test sets. This
partitioning was constructed so that both the training and test
sets contain roughly the same number of dominant hand blobs
of each of the 12 handshapes. Table I shows details of the
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TABLE I. STATISTICS OF THE DATA.

Handshape Training Testing Total
videos blobs videos blobs videos blobs

1001 24 340 24 362 50 702
1021 13 148 13 163 26 311
1100 3 44 4 54 7 98
1110 3 63 3 83 6 146
1120 7 143 6 85 13 228
1130 9 144 8 112 17 256
1201 19 234 19 229 38 463
1301 6 70 4 57 10 127
1311 6 85 5 55 11 140
1501 11 167 10 138 21 305
1511 8 107 7 90 15 197
1631 3 38 2 39 5 77
total 154 2462 146 2278 300 4740

statistics of the partitioning. The bottom row “Total” includes
also blobs that are not annotated with any handshape label.
There are 1239 unannotated blobs among the 4740.

Fig. 2. Dominant hand blobs from a sequence annotated with label 1311.

IV. FEATURES

A large number of features and feature extraction variants
was tested in the experiments with respect to their handshape
distinguishing power. The features originate from our general
purpose image/video analysis framework and have proven
useful in diverse visual analysis tasks, including for example
interactive multimedia retrieval and robot navigation [12].

Table II summarises the extracted features. Fourier descrip-
tors and Zernike moments describe the shape of the extracted
hand silhouettes. The remaining majority of the features de-
scribes the statistics of local shape primitives, mostly by means
of histograms. The histograms are calculated either globally for
the whole blob or the blob are first divided into sub-areas that
are described each separately and the descriptions then joined.
Different hierarchical blob area partitioning schemes result in
a huge number of possible feature extraction variants. This
number is increased by the independent design choice whether
the features are extracted from the estimated skin area of the
blobs or from the rectangular image patches surrounding the
blobs (referred to as patch features from here on). The details
of all the feature extraction variants we used are not described
here due to space limitations, but some interesting issues are
revisited in Section V-B where we analyse the experimental
results.

Some of the features implement the bag-of-visual-words
(BOV) feature extraction paradigm where codebook transform
is applied to the image statistics. Within the paradigm, there are
a few more parameters that can be altered: type of interest point
selection (interest point detector or dense sampling), the size of
the histograms (i.e. the number of histogram bins) and whether

TABLE II. EXTRACTED FEATURE TYPES.

Fourier descriptors of the blob contour
Zernike moments of the blob silhouette
Edge co-occurrence matrix
Edge histogram variants
Fourier transform of edges
Directional local brightness variation
spatial PCA of Census Transform histograms (sPACT) [13]
various Local Binary Pattern (LBP) histograms [14]
various Histogram of Oriented Gradients (HoG) features [15]
SIFT histograms with Harris-Laplace interest points (BOV)
ColorSIFT histograms employing dense sampling (BOV)

descriptors are assigned using soft or hard assignment. In our
experiments we employ two BOV feature types: SIFT [16] and
opponent colour ColorSIFT [17]. The sampling type is coupled
with the descriptor type: the ColorSIFT features employ dense
sampling whereas the SIFT features use Harris-Laplace interest
point detection [18].

V. EXPERIMENTS

SVM classifiers were trained for all the different features
and handshapes similarly as in the [12] (Section 3.3.1). The
C-SVC soft margin variant was used, optimised with the
LIBSVM library [19]. As kernels we used the χ2 kernel for
all the histogram-like features and RBF kernels for all the
other features. A cross-validation type procedure was used for
parameter search. , starting with a coarse line search, followed
by a grid search for fine-tuning.

For each handshape, a classifier was trained using those
blobs in the training half of the data for which the annotations
specified the handshape to be definitely present or absent. The
blobs with unknown annotation were excluded from training.
The performance of the SVMs in recognising the handshapes
of the test set blobs was evaluated in terms of average precision
(AP). For each handshape, the evaluation was limited to those
blobs of the testing half of the data for which the annotations
definitely specified that handshape to be present or absent.

A. Detection of Individual Handshape Classes

The first 12 rows of Table III show the best recognition
performance obtained for each handshape class. In the table,
the columns under the heading “Best individual feature” ad-
dress the best performance obtained by using any single one
of the tested features. The column “AP” measures the absolute
performance and “AP/a priori” shows the improvement over
random (a priori) performance. By looking at these numbers,
we see that the obtained recognition performance is clearly
better than trivial, on average over four times as good. How-
ever, recognitions are far from perfect, as the AP values are
clearly below one. It remains an open question, in which kinds
of tasks is this performance level useful. In some applications
handshape recognition that produces results of probabilistic
nature can be useful already at the current level, e.g. in spotting
specific signs within continuous signing [11]. However, if an
application requires reliable crisp decisions of handshape, our
current accuracy is probably not sufficient.

The row “MAP” of Table III shows the mean AP over all
the 12 handshapes. On that row, the column “AP” shows the
MAP of the single best feature, not the average of handshape-
wise best performances. In addition, the row “MAP4 shows
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TABLE III. HANDSHAPE-WISE DETECTION RESULTS.

Best individual feature Feature fusion Temporal smoothing
handshape a priori best feature AP AP / a priori AP AP / a priori AP AP / a priori

1001 0.204 3×3 ColorSIFT, 512 bins 0.578 2.83 0.612 2.99 0.709 3.47
1021 0.093 Fourier descriptors, order 20 0.218 2.35 0.166 1.79 0.211 2.27
1100 0.031 SIFT, 4096 bins, patch 0.169 5.37 0.167 5.31 0.241 7.66
1110 0.048 3×3 HoG in spatial pyramid , patch 0.084 1.74 0.042 0.87 0.043 0.89
1120 0.049 sPACT, patch 0.097 1.97 0.075 1.52 0.101 2.05
1130 0.064 3×3 ColorSIFT, 512 bins, patch 0.245 3.82 0.297 4.63 0.314 4.90
1201 0.129 5×5 HoG 0.526 4.08 0.509 3.95 0.621 4.81
1301 0.033 3×3 HoG in spatial pyramid 0.157 4.79 0.151 4.61 0.174 5.31
1311 0.031 3×3 LBP 0.298 9.50 0.352 11.2 0.363 11.6
1501 0.079 Fourier descriptors, order 20 0.524 6.63 0.520 6.58 0.560 7.09
1511 0.052 1×1 HoG in spatial pyramid 0.258 4.98 0.243 4.69 0.304 5.87
1631 0.022 sPACT 0.461 20.4 0.282 12.5 0.428 18.9
MAP 0.070 5×5 HoG in spatial pyramid 0.235 3.37 0.284 4.08 0.339 4.86
MAP4 0.126 5×5 HoG in spatial pyramid 0.429 3.40 0.452 3.58 0.525 4.16
MAP 0.070 Oracle feature selection 0.301 4.31
MAP4 0.126 Oracle feature selection 0.462 3.65

the AP over the four classes that occur in more than 300 blobs
in our data set (handshapes 1001, 1021, 1201 and 1501).

Figure 3 shows the best detection results for some hand-
shapes. By inspecting similar visualisations for all the hand-
shapes, we may state that for handshapes such as 1001, 1201
and 1501, the detections accuracy seems to be reasonable good.
For example, within the 60 blobs detected as handshape 1001
with the most confidence, the “false positive” detections are
actually blobs that just are not annotated with the handshape
label in the ground truth despite showing the handshape.
For some other handshapes, the results are modest at best.
However, even though the detectors may not be able to capture
the exact targeted Suvi handshape class, the best detections
often seem reflect some other properties of the handshapes.

In a set of experiments we tried to improve the detection
performance by combining the blob-wise detections based on
a single feature in various ways. Firstly, we applied late fusion
techniques to combine predictions made on basis of seven
individually well-performing features: Fourier descriptors of
orders up to 10 and 20, Zernike moments, global and 3 × 3
SIFT histograms and global and 3× 3 ColorSIFT histograms.
The results are shown in columns “Feature Fusion” in Table III.
The columns “Temporal smoothing” refer to another series of
experiments where the fused detections of the seven features
were temporally spread onto preceding and subsequent blobs.
In the experiments we tried both kernel smoothing and a
maximum operation within a fixed-length window. Tabulated
are the best results obtained using a Gaussian smoothing
kernel with standard deviation σ = 8. The selection of the
smoothing operator and its parameters are demonstrated more
in detail in Figure 4. The results show that even this kind
of elementary utilisation of the temporal dependencies of the
hand blobs significantly improves the detection. The accuracy
does not seem to be very sensitive to parameter selection.
More advanced temporal modelling could probably improve
the results even more.

B. Average Performance of Different Features

In the following we compare different features in the light
of their average performance over the handshapes. Naturally,
this overlooks the fact features compare differently for various

handshape types, of which indications could be seen in the
complete shapewise AP data (not shown here). However, we
consider our sample size too small to look too much in the
details.

Table IV displays the average performance of some of the
features. Based on this table, we may make some observations
regarding different feature extraction techniques. Firstly, we
notice that features extracted from the exact skin area seem
to usually perform somewhat better than features of the whole
surrounding image patches. We did this comparison partly in
the hope of being able to omit the sometimes inconvenient
processing step of skin area determination and use just the
surrounding patch, but this seems not to be a good choice.
This is in contrast to the case in the task of more coarse blob
type characterisation which we have previously investigated.

We also notice that sub-dividing the blob area into very
small parts and describing each part in very much detail seems
to lead to the best overall performance. For example, compare
the performances of 1×1 LBP and 5×5 LBP. This is somewhat
surprising, considering the small size of the blobs, the low
image quality and the small training set. The best feature (5×5
HoG pyramid) employs a two-level spatial pyramid, each level
consisting of HoGs evaluated in a 5×5 grid of 2×2 cells. This
results in a 14580-dimensional feature vector. This is the most
fine-grained HoG feature we evaluated, but finer partitionings
might have worked even better. The nearly as good sPACT
feature employs a three-level pyramid structure of census
transform histograms (1302 dimensions). The exact way the
partitioning is organised, hierarchically or otherwise, does not
seem to matter as much as the sheer number of elementary
parts. The line “edge co-occurrence matrix” is included in the
table as an example of the much poorer performance of simpler
shape statistic features.

The BOV features provide decent performance as well.
Among them, ColorSIFT features perform better than the SIFT
features in general, although shapewise there are exceptions.
The features differ in two respects: the local descriptor type
(SIFT or ColorSIFT) and type of point selection (Harris-
Laplace interest point detector or dense sampling). The dif-
ference of the descriptors is the use of colour information in
contrast to monochrome images. The colour probably does
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1001 1311 1501

Fig. 3. The best 60 detections of handshapes 1001, 1311 and 1501. The green frames denote a correct detection according to the annotated ground truth, the
red frames an incorrect one.
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Fig. 4. The MAP (a) and MAP4 (b) of different temporal smoothing operators and parameters. The temporal extent is the standard deviation of the Gaussian, the
half-width of the box filter and the half-width of the maximum-taking window, in the case of Gaussian kernel, box kernel and maximum operator, respectively.

not differentiate the handshapes very much, which leaves
us to conclude that dense sampling performs better overall
than interest point detection in this handshape recognition
task. However, based as well on the current experiments as
on our prior experience from other applications, we may
state that dense sampling and interest point detection are
complementary: for some handshape and object classes interest
point detection outperforms dense sampling. Also the BOV
features are markedly improved by using sub-blob histograms
with 3× 3 partitioning of the hand blob area instead of single
histograms for the whole blob.

The features characterising the shape of the hand silhouette,
i.e. Fourier descriptors and Zernike moments, provide good
performance. The Fourier features rival the best shape primi-
tive statistic descriptors and outperform the BOV features. In
light of more detailed handshape-wise results (omitted here),
the features genuinely appear to be complementary in the sense
that some of the handshapes can be recognised very well on

basis of the blob contour shape descriptors whereas shape
primitive statistics distinguish other shapes the best. The shape
primitive statistics appear to provide steadier performance for
all handshapes.

VI. CONCLUSIONS AND DISCUSSION

We have seen that with our current visual analysis and
SVM detectors, we can achieve significantly better-than-
random handshape recognition for hand blobs extracted from
sign language videos. The quality of the results varies from
handshape class to another. In light of examples, the system
recognises some handshapes very well whereas the perfor-
mance is not much better than random for some other shapes.
It remains currently as an open question for what applications
the reported detection accuracy is useful.

Whether or not the current machine learning setting is able
to produce handshape detections that would be the most useful
for practical applications, the experiments serve well in helping
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TABLE IV. AVERAGE PERFORMACES OF DIFFERENT FEATURES.

Skin area Surrounding patch
Feature MAP MAP4 MAP MAP4

Silhouette shape Fourier descriptors, order 10 0.173 0.303
Fourier descriptors, order 20 0.210 0.390
Zernike moments 0.160 0.286

Shape primitive sPACT 0.234 0.395 0.207 0.370
statistics 1×1 LBP 0.098 0.193 0.100 0.182
(non-BOV) 3×3 LBP 0.198 0.342 0.162 0.284

5×5 LBP 0.216 0.394 0.188 0.331
pyramid LBP 0.190 0.349 0.159 0.286
1×1 HoG 0.107 0.202 0.097 0.165
1×1 HoG pyramid 0.190 0.309 0.127 0.235
3×3 HoG 0.210 0.360 0.153 0.278
3×3 HoG pyramid 0.230 0.378 0.167 0.328
5×5 HoG 0.229 0.413 0.172 0.334
5×5 HoG pyramid 0.235 0.429 0.174 0.326
edge co-occurrence matrix 0.077 0.144 0.074 0.138

Shape primitive ColorSIFT, 512 bins 0.180 0.310 0.143 0.265
statistics 3×3 ColorSIFT, 512 bins 0.206 0.360 0.178 0.314
(BOV) SIFT, 4096 bins 0.159 0.283 0.151 0.272

3×3 SIFT, 4096 bins 0.175 0.313 0.167 0.316

us understand how well we can expect to detect handshapes
based on this type of visual analysis and how fine-grained
distinctions we are going to be able to make. Furthermore, we
now know more about the visual feature extraction methods
that are useful for handshape recognition: surprisingly detailed
statistical descriptions of the shape primitives within the blob
area seem to work well. Limiting the descriptions to the actual
skin area within the blobs improves handshape detection, in
comparison to considering a rectangular image patch around
the hand. In addition to shape primitive statistics, the shape
of the hand silhouette is also useful. The accuracy of feature-
wise detections can be improved by fusing together several
features. Considering the temporal succession of the hand
blobs significantly improves the accuracy over detecting the
handshape in each video frame in isolation.

It may be that the taxonomy of handshapes used for
indexing the Suvi dictionary is unnecessarily fine-grained for
many practical applications of automatic handshape recogni-
tion, for example for automatic pairwise matching of sign
sequences. It might be e.g. useful just to detect that the hand
is compactly squeezed (the 1100-series) even if the exact
configuration of the fingers could not be reliably determined,
which would differentiate the handshapes 1100, 1110, 1120
and 1130. Likewise, detecting that fingers are spread out could
be useful even if the handshapes 1501 and 1511 could not be
told apart. Our future plans include a systematic experiment
with the present hand blob collection to test which handshape
groups could be separated most efficiently from others by
automatic methods.
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