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Introduction

◮



Gaussian processes

◮ Gaussian process is a distribution over functions.

◮ Any finite set of function values are multivariate normally
distributed.

◮ The distribution

f (x) ∼ GP
(

m(x), k(x, x′)
)

◮ Covariance functions defines similarity betcontrol high-level
properties, such as

◮ Computational cost scales cubically O(N3) with respect to the
number N of observations.



Gaussian processes – examples

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

r=|x−x’|
k(

r)

 

 
θ

1
=1

θ
1
=0.1

θ
1
=0.01

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−3

−2

−1

0

1

2

3

x

f(
x)

(a) smooth functions
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(b) periodic functions
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(d) quasi-periodic functions



Gaussian-process factor analysis

◮ Model:

Y ≈ A S

time instances

lo
ca

ti
on

s

spatial feat.

tem
p
oral

feat.

◮ The reconstruction error is modeled as Gaussian noise.



Gaussian-process factor analysis

◮ Data consists of observations at spatial locations {lm}
M
m=1 at

time instances {tn}
N
n=1.

◮ Model for the observations

y(lm, tn) =
D

∑

d=1

ad(lm)sd(tn) + noise,

◮ Priors for the spatial and temporal feature functions:

ad(l) ∼ GP
(

0, kad
(l , l ′)

)

sd(t) ∼ GP
(

0, ksd
(t, t ′)

)

◮ Covariance functions are chosen based on the prior knowledge.



Variational approximate inference

◮ True posterior p(A,S|Y) is intractable.

◮ Approximate with a factorized distribution:

p(A,S|Y) ≈ q(A)q(S).

◮ Optimize the approximation by minimizing the
Kullback-Leibler divergence between the true and approximate
distributions.

◮ In order to reduce computational cost, one can
◮ factorize q(A) and q(S) with respect to the components.
◮ use sparse approximations for the components.



Artificial experiment

◮ Generated data by using the presented model with D = 4
latent components.

◮ The four components had different characteristics.

◮ M = 30 spatial locations.

◮ N = 200 time instances.

◮ 90% of the data was discarded, resulting in approximately 450
noisy observations for training.



Artificial experiment – temporal components
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◮ (a) The true latent signals sd(t) used to generate the data.

◮ (b) The posteriors of the four latent signals sd(t).

◮ Vertical lines show a gap with no training observations.



Artificial experiment – spatial components

◮ The true spatial loadings ad(l) used to generate the data:
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◮ The posterior means of the loadings:
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◮ The standard deviations computed from the posterior:
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Artificial experiment – predictive distribution

◮ Posterior predictive distribution for six randomly selected
locations.

y 19
(t

)
y 1(t

)
y 20

(t
)

y 5(t
)

y 23
(t

)
y 28

(t
)

time, t



Historical sea surface data

◮ Historical sea surface temperature dataset:
◮ monthly temperature averages over 1856–1991
◮ 5◦ × 5◦ longitude-latitude bins
◮ 55% of the values missing

◮ Estimated D = 80 components:
◮ 5 very slow components
◮ 5 smooth interannual components
◮ 5 quasi-periodic components
◮ 65 fast varying components



Historical sea surface data
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Figure: Experimental results for the MOHSST5 dataset. The spatial and
temporal patterns of the four most dominating principal components for
GPFA (above) and VB-PCA (below). The solid lines and gray color in
the time series show the mean and two standard deviations of the



Conclusions

◮ A novel method for spatio-temporal modeling and exploratory
analysis.

◮ Spatial and temporal structure modeled with Gaussian
processes.

◮ Computational savings compared to standard GPs.
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