

Aalto University School of Science

Linear State-Space Model with **Time-Varying Dynamics**

Jaakko Luttinen, jaakko.luttinen@aalto.fi Tapani Raiko, tapani.raiko@aalto.fi Alexander Ilin, alexander.ilin@aalto.fi

Department of Information and Computer Science, Aalto University

Motivation

Statistical modelling of physical processes whose parameters vary in time.

															\times							\times						
										Х	Х		\times	\times														
								\times																				
																	\times	\times										\times
															\times	\times			\times									
				\times									\times							Х								
												\times	\times															
×		Х	\times			\times		\times																Х				\times
				\times						Х				\times							\times	\times			\times	Х		
																										Х		
																				Х	\times				\times	Х		
									\times																			
						Х						\times				Х				\times	X							
					Х																							
					Х									\times			X											
							\times																					
																				Х								
\times																				Х					\times			\times
							\times	\times						\times						Х	Х						\times	
													Х						Х	Х								
\times												\times				Х												
																										Х	\times	
											Х							Х					Х		Х			
					Х	Х		Х					Х						Х				Х				×	
						Х		Х									Х	Х										
×	×			Х		Х		Х						Х	Х													
											Х							×				Х						
\times					Х	Х	Х		Х																X			
																			Х						X			

Domain

- Spatio-temporal physical processes
- (Stochastic) linear partial differential equations (PDE)
- Arbitrary measurement locations
- Measurements at regular time intervals

Focus of the contribution

Parameters of the PDE vary in time (e.g., wind direction changes)

Snapshot of an advection-diffusion process. Crosses denote measurement locations.

Model

Linear state-space model:

Observations: $\mathbf{y}_n = \mathbf{C}\mathbf{x}_n + \text{noise},$ Latent states: $\mathbf{x}_n = \mathbf{W}_n \mathbf{x}_{n-1} + \text{noise},$

Time-varying state dynamics matrix \mathbf{W}_n as a time-varying linear

Inference

- Use the Bayesian framework.
- Approximate posterior using variational Bayes (VB).
- Factorize with respect to the variables:

 $p(\mathbf{X}, \mathbf{C}, \mathbf{B}, \mathbf{S}, \mathbf{A}, \Theta | \mathbf{Y}) \approx q(\mathbf{X})q(\mathbf{C})q(\mathbf{B})q(\mathbf{S})q(\mathbf{A})q(\Theta).$

combination of matrices \mathbf{B}_k :

State dynamics matrix:
$$\mathbf{W}_n = \sum_{k=1}^K s_{kn} \mathbf{B}_k,$$
Mixing weights: $\mathbf{s}_n = \mathbf{A}\mathbf{s}_{n-1} + \text{noise},$

- Update each q(...) in turns (VB-EM algorithm).
- The method is available in BayesPy, a Python package for VB inference.

Stochastic Advection-Diffusion Process with Time-Varying Advection

$$\frac{\partial f}{\partial t} = \delta \nabla^2 f - \mathbf{v} \cdot \nabla f + R,$$

- Velocity field **v** changes in time.
- Source *R* is stochastic.
- 100 measurement locations
- Five experiments: predictive RMSE for temporal gaps

Method	1	2	3	4	5
Standard LSSM	104	107	102	94	104
LSSM with switching dynamics	106	117	113	94	102
LSSM with time-varying dynamics	73	81	75	67	82

Posterior of the mixing weights $\mathbf{s}_k(n)$.

one constant component \sim average dynamics two varying components ~ velocity field

The method was implemented as a part of a variational Bayesian Python package, BayesPy, available at GitHub and PyPI. The scripts and data for reproducing the results are available at http://users.ics.aalto.fi/jluttine/ecml2014.