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Abstract. This paper introduces a linear state-space model with time-
varying dynamics. The time dependency is obtained by forming the state
dynamics matrix as a time-varying linear combination of a set of ma-
trices. The time dependency of the weights in the linear combination
is modelled by another linear Gaussian dynamical model allowing the
model to learn how the dynamics of the process changes. Previous ap-
proaches have used switching models which have a small set of possible
state dynamics matrices and the model selects one of those matrices at
each time, thus jumping between them. Our model forms the dynamics
as a linear combination and the changes can be smooth and more contin-
uous. The model is motivated by physical processes which are described
by linear partial differential equations whose parameters vary in time.
An example of such a process could be a temperature field whose evo-
lution is driven by a varying wind direction. The posterior inference is
performed using variational Bayesian approximation. The experiments
on stochastic advection-diffusion processes and real-world weather pro-
cesses show that the model with time-varying dynamics can outperform
previously introduced approaches.

1 Introduction

Linear state-space models (LSSM) are widely used in time-series analysis and
modelling of dynamical systems [1,2]. They assume that the observations are
generated linearly from hidden states with a linear dynamical model that does
not change with time. The assumptions of linearity and constant dynamics make
the model easy to analyze and efficient to learn.

Most real-world processes cannot be accurately described by linear Gaussian
models, which motivates more complex nonlinear state-space models (see, e.g.,
[3,4]). However, in many cases processes behave approximately linearly in a local
regime. For instance, an industrial process may have a set of regimes with very
distinct but linear dynamics. Such processes can be modelled by switching linear
state-space models [5,6] in which the transition between a set of linear dynamical
models is described with hidden Markov models. Thus, these models have a small
number of states defining their dynamics.

Instead of having a small number of possible states of the process dynamics,
some processes may have linear dynamics that change continuously in time. For
instance, physical processes may be characterized by linear stochastic partial



differential equations but the parameters of the equations may vary in time.
Simple climate models may use the advection-diffusion equation in which the
diffusion and the velocity field parameters define how the modelled quantity
mixes and moves in space and time. In a realistic scenario, these parameters are
time-dependent because, for instance, the wind modelled by the velocity field
changes with time.

This paper presents a Bayesian linear state-space model with time-varying
dynamics. The dynamics at each time is formed as a linear combination of a
set of state dynamics matrices, and the weights of the linear combination follow
a linear Gaussian dynamical model. The main difference to switching LSSMs
is that instead of having a small number of dynamical regimes, the proposed
model allows for an infinite number of them with a smooth transition between
them. Thus, the model can adapt to small changes in the system. This work is an
extension of an abstract [7] which presented the basic idea without the Bayesian
treatment. The model bears some similarity to relational feature learning in
modelling sequential data [8].

Posterior inference for the model is performed using variational Bayesian
(VB) approximation because the exact Bayesian inference is intractable [9]. In
order for the VB learning algorithm to converge fast, the method uses a similar
parameter expansion that was introduced in [10]. This parameter expansion is
based on finding the optimal rotation in the latent subspace and it may improve
the speed of the convergence by several orders of magnitude.

The experimental section shows that the proposed LSSM with time-varying
dynamics is able to learn the varying dynamics of complex physical processes.
The model predicts the processes better than the classical LSSM and the LSSM
with switching dynamics. It finds latent processes that describe the changes in
the dynamics and is thus able to learn the dynamics at each time point ac-
curately. These experimental results are promising and suggest that the time-
varying dynamics may be a useful tool for statistical modelling of complex dy-
namical and physical processes.

2 Model

Linear state-space models assume that a sequence of M -dimensional observa-
tions (y1, . . . ,yN ) is generated from latent D-dimensional states (x1, . . . ,xN )
following a first-order Gaussian Markov process:

yn = Cxn + noise, (1)

xn = Wxn−1 + noise, (2)

where noise is Gaussian, W is the D ×D state dynamics matrix and C is the
M ×D loading matrix. Usually, the latent space dimensionality D is assumed to
be much smaller than the observation space dimensionality M in order to model
the dependencies of high-dimensional observations efficiently. Because the state
dynamics matrix is constant, the model can perform badly if the dynamics of
the modelled process changes in time.



In order to model changing dynamics, the constant dynamics in (2) can be
replaced with a state dynamics matrix Wn which is time-dependent. Thus, (2)
is replaced with

xn = Wnxn−1 + noise. (3)

However, modelling the unknown time dependency of Wn is a challenging task
because for each Wn there is only one transition xn−1 → xn which gives infor-
mation about each Wn.

Previous work modelled the time-dependency using switching state dynamics
[6]. It means having a small set of matrices B1, . . . ,BK and using one of them
at each time step:

Wn = Bzn , (4)

where zn ∈ {1, . . . ,K} is a time-dependent index. The indices zn then follow a
first-order Markov chain with an unknown state-transition matrix. The model
can be motivated by dynamical processes which have a few states with different
dynamics and the process jumps between these states.

This paper presents an approach for continuously changing time-dependent
dynamics. The state dynamics matrix is constructed as a linear combination of
K matrices:

Wn =

K∑
k=1

sknBk. (5)

The mixing weight vector sn =
[
s1n . . . sKn

]T
varies in time and follows a first-

order Gaussian Markov process:

sn = Asn−1 + noise, (6)

where A is the K×K state dynamics matrix of this latent mixing-weight process.
The model with switching dynamics in (4) can be interpreted as a special case
of (5) by restricting the weight vector sn to be a binary vector with only one
non-zero element. However, in the switching model, sn would follow a first-order
Markov chain, which is different from the first-order Gaussian Markov process
used in the proposed model. Compared to models with switching dynamics, the
model with time-varying dynamics allows the state dynamics matrix to change
continuously and smoothly.

The model is motivated by physical processes which roughly follow stochas-
tic partial differential equations but the parameters of the equations change
in time. For instance, a temperature field may be modelled with a stochastic
advection-diffusion equation but the direction of the wind may change in time,
thus changing the velocity field parameter of the equation.

2.1 Prior Probability Distributions

We give the proposed model a Bayesian formulation by setting prior probability
distributions for the variables. It roughly follows the linear state-space model



formulation in [9,10] and the principal component analysis formulation in [11].
The likelihood function is

p(Y|C,X, τ) =

N∏
n=1

N (yn|Cxn,diag(τ )−1), (7)

where N (y|m, v) is the Gaussian probability density function of y with mean m
and covariance v, and diag(τ ) is a diagonal matrix with elements τ1, . . . , τM on
the diagonal. For simplicity, we used isotropic noise (τm = τ) in our experiments.

The loading matrix C has the following prior, which is also known as an
automatic relevance determination (ARD) prior [11]:

p(C|γ) =

D∏
d=1

N (cd|0,diag(γ)−1), p(γ) =

D∏
d=1

G(γd|aγ , bγ), (8)

where cd is the d-th row vector of C, the vector γ =
[
γ1 . . . γD

]T
contains the

ARD parameters, and G(γ|a, b) is the gamma probability density function of γ
with shape a and rate b.

The latent states X =
[
x0 . . . xN

]
follow a first-order Gaussian Markov pro-

cess, which can be written as

p(X|Wn) = N (x0|µ(x)
0 ,Λ−10 )

N∏
n=1

N (xn|Wnxn−1, I), (9)

where µ
(x)
0 and Λ0 are the mean and precision of the auxiliary initial state x0.

The process noise covariance matrix can be an identity matrix without loss of
generality because any rotation can be compensated in xn and Wn. The initial

state x0 can be given a broad prior by setting, for instance, µ
(x)
0 = 0 and

Λ0 = 10−6 · I.
The state dynamics matrices Wn are a linear combination of matrices Bk

which have the following ARD prior:

p(Bk|βk) =

D∏
c=1

D∏
d=1

N (bkcd|0, β−1kd ), p(βdk) = G(βkd|aβ , bβ), k = 1, . . . ,K, (10)

where bkcd = [Bk]cd is the element on the c-th row and d-th column of Bk. The
ARD parameter βkd helps in pruning out irrelevant components in each matrix.

In order to keep the formulas less cluttered, we use the following notation:
B is a K × D × D tensor. When using subscripts, the first index corresponds
to the index of the state dynamics matrix, the second index to the rows of the
matrices and the third index to the columns of the matrices. A colon is used to
denote that all elements along that axis are taken. Thus, for instance, Bk:: is Bk

and B:d: is a K ×D matrix obtained by stacking the d-th row vectors of Bk for
each k.
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Fig. 1. The graphical model of the linear state-space model with time-varying dynamics

The mixing weights S =
[
s0 . . . sN

]
have first-order Gaussian Markov process

prior

p(S|A) = N (s0|µ(s)
0 ,V−10 )

N∏
n=1

N (sn|Asn−1, I), (11)

where, similarly to the prior of X, the parameters µ
(s)
0 and V0 are the mean

and precision of the auxiliary initial state s0, and the noise covariance can be
an identity matrix without loss of generality. The initial state s0 can be given a

broad prior by setting, for instance, µ
(s)
0 = 0 and V0 = 10−6 · I.

The state dynamics matrix A of the latent mixing weights sn is given an
ARD prior

p(A|α) =

K∏
k=1

N
(
ak|0,diag(α)−1

)
, p(α) =

K∏
k=1

G(αk|aα, bα) (12)

where ak is the k-th row of A, and α =
[
α1 . . . αK

]T
contains the ARD param-

eters.
Finally, the noise parameter is given a gamma prior

p(τ ) =

M∏
m=1

G(τm|aτ , bτ ). (13)

The hyperparameters of the model can be set, for instance, as aα = bα = aβ =
bβ = aγ = bγ = aτ = bτ = 10−6 to obtain broad priors for the variables. Small
values result in approximately non-informative priors which are usually a good
choice in a wide range of problems.

For the experimental section, we constructed the LSSM with switching dy-
namics by using a hidden Markov model (HMM) for the state dynamics matrix



Wn. The HMM had an unknown initial state and a state transition matrix with
broad conjugate priors. We used similar prior probability distributions in the
classical LSSM with constant dynamics, the proposed LSSM with time-varying
dynamics, and the LSSM with switching dynamics for the similar parts of the
models.

3 Variational Bayesian Inference

As the posterior distribution is analytically intractable, it is approximated using
variational Bayesian (VB) framework, which scales well to large applications
compared to Markov chain Monte Carlo (MCMC) methods [12]. The posterior
approximation is assumed to factorize with respect to the variables:

p(X,C,γ,B,β,S,A,α, τ |Y)≈q(X)q(C)q(γ)q(B)q(β)q(S)q(A)q(α)q(τ ). (14)

This approximation is optimized by minimizing the Kullback-Leibler divergence
from the true posterior by using the variational Bayesian expectation-maximization
(VB-EM) algorithm [13]. In VB-EM, the posterior approximation is updated for
the variables one at a time and iterated until convergence.

3.1 Update Equations

The approximate posterior distributions have the following forms:

q(X) = N ([X]:|µx,Σx), q(τ ) =

M∏
m=1

G(τm|ā(m)
τ , b̄(m)

τ ), (15)

q(C) =

M∏
m=1

N (cm|µ(m)
c ,Σ(m)

c ), q(γ) =

D∏
d=1

G(γd|ā(d)γ , b̄(d)γ ), (16)

q(B) =

D∏
d=1

N ([B:d:]:|µ(d)
b ,Σ

(d)
b ), q(β) =

K∏
k=1

D∏
d=1

G(βkd|ā(kd)β , b̄
(kd)
β ), (17)

q(S) = N ([S]:|µs,Σs), (18)

q(A) =

K∏
k=1

N (ak|µ(k)
a ,Σ(k)

a ), q(α) =

K∏
k=1

G(αk|ā(k)α , b̄(k)α ), (19)

where [X]: is a vector obtained by stacking the column vectors xn. It is straight-
forward to derive the following update equations of the variational parameters:

ā(m)
τ = aτ +

Nm
2
, b̄(m)

τ = bτ +
1

2

∑
n∈Om:

ξmn, (20)

Σ(m)
c =

(
〈diag(γ)〉+

∑
n∈Om:

〈τm〉〈xnxT
n 〉

)−1
, µ(m)

c = Σ(m)
c

∑
n∈Om:

ymn〈τm〉〈xn〉, (21)

ā(d)γ = aγ +
M

2
, b̄(d)γ = bγ +

1

2

M∑
m=1

〈c2md〉, (22)



Σ
(d)
b =

(
〈diag(β)〉+

N∑
n=1

Ωn

)−1
, µ

(d)
b = Σ

(d)
b

N∑
n=1

[
〈sn〉〈xdnxT

n−1〉
]
:
, (23)

Σ(k)
a =

(
〈diag(α)〉+

N∑
n=1

〈sn−1sTn−1〉

)−1
, µ(k)

a = Σ(k)
a

N∑
n=1

〈sknsn−1〉, (24)

ā(k)α = aα +
K

2
, b̄(k)α = bα +

1

2

K∑
i=1

〈a2ik〉, (25)

where Om: is the set of time instances n for which the observation ymn is
not missing, Nm is the size of the set Om:, ξmn =

〈
(ymn − cTmxn)2

〉
, Ωn =

〈xn−1xT
n−1〉 ⊗ 〈snsTn 〉, and ⊗ denotes the Kronecker product. The computation

of the posterior distribution of X and S is more complicated and will be discussed
next.

The time-series variables X and S can be updated using algorithms simi-
lar to the Kalman filter and the Rauch-Tung-Striebel smoother. The classical
formulations of those algorithms do not work for VB learning because of the
uncertainty in the dynamics matrix [9,14]. Thus, we used a modified version
of these algorithms as presented for the classical LSSM in [10]. The algorithm
performs a forward and a backward pass in order to find the required posterior
expectations.

The explicit update equations for q(X) can be written as:

Σ−1x =


Λ0 + 〈WT

1 W1〉 −〈W1〉T

−〈W1〉 I + 〈WT
2 W2〉+ Ψ1

. . .

. . .
. . . −〈WN 〉T

−〈WN 〉 I + ΨN

 , (26)

µx = Σx


Λ0µ

(x)
0∑

m∈O:1
ym1〈τm〉〈cm〉

...∑
m∈O:N

ymN 〈τm〉〈cm〉

 , (27)

where O:n is the set of indices m for which the observation ymn is not miss-
ing, Ψn =

∑
m∈O:n

〈τm〉〈cmcTm〉, 〈Wn〉 =
∑K
k=1〈skn〉〈Bk〉, and 〈WT

nWn〉 =∑K
k=1

∑K
l=1[〈snsTn 〉]kl〈BT

kBl〉. Instead of using standard matrix inversion, one
can utilize the block-banded structure of Σ−1x to compute the required expecta-
tions 〈xn〉, 〈xnxT

n 〉 and 〈xnxT
n−1〉 efficiently. The algorithm for the computations

is presented in [10].



Similarly for S, the explicit update equations are

Σ−1s =


V0 + 〈ATA〉 −〈A〉T

−〈A〉 I + 〈ATA〉+ Θ1
. . .

. . .
. . . −〈A〉T

−〈A〉 I + ΘN

 , (28)

µs = Σs


V0µ

(s)
0∑D

d=1〈B:d:〉〈xd1xT
0 〉

...∑D
d=1〈B:d:〉〈xdNxT

N−1〉

 , (29)

where Θn =
∑D
i=1

∑D
j=1[〈xn−1xT

n−1〉]ij · 〈B::iB
T
::j〉. The required expectations

〈sn〉, 〈snsn〉 and 〈snsn−1〉 can be computed efficiently by using the same algo-
rithm as for X [10].

The VB learning of the LSSM with switching dynamics is quite similar to the
equations presented above. The main difference is that the posterior distribution
of the discrete state variable zn is computed by using alpha-beta recursion [12].
The update equations for the state transition probability matrix and the initial
state probabilities are straightforward because of the conjugacy. The expecta-
tions 〈Wn〉 and 〈WT

nWn〉 are computed by averaging 〈Bk〉 and 〈BT
kBk〉 over

the state probabilities E[zn = k].

3.2 Practical Issues

The main practical issue with the proposed model is that the VB learning algo-
rithm may converge to bad local minima. As a solution, we found two ways of
improving the robustness of the method. The first improvement is related to the
updating of the posterior approximation and the second improvement is related
to the initialization of the approximate posterior distributions.

The first practical tip is that one may want to run the VB updates for
the lower layers of the model hierarchy first for a few times before starting to
update the upper layers. Otherwise, the hyperparameters may learn very bad
values because the child variables have not yet been well estimated. Thus, we
updated X, C, B and τ 5–10 times before updating the hyperparameters and
the upper layers. However, this procedure requires a reasonable initialization.

We initialized X and C randomly but for S and B we used a bit more
complicated approach. One goal of the initialization was that the model would
be close to a model with constant dynamics. Thus, the first component in S was
set to a constant value and the corresponding matrix Bk was initialized as an
identity matrix. The other components in S and B were random but their scale



was a bit smaller so that the time variation in the resulting state dynamics matrix
Wn was small initially. Obviously, this initialization leads to a bias towards a
constant component in S but this is often realistic as the system probably has
some average dynamics and deviations from it.

3.3 Rotations for Faster Convergence

One issue with the VB-EM algorithm for state-space models is that the algo-
rithm may converge extremely slowly. This happens if the variables are strongly
correlated because they are updated only one at a time causing zigzagging and
small updates. This effect can be reduced by the parameter expansion approach,
which finds a suitable auxiliary parameter connecting several variables and then
optimizes this auxiliary parameter [15,16]. This corresponds to a parameterized
joint optimization of several variables.

A suitable parameter expansion for state-space models is related to the ro-
tation of the latent sub-space [17,10]. It can be motivated by noting that the
latent variable X can be rotated arbitrarily by compensating it in C:

yn = Cxn = CR−1Rxn =
(
CR−1

)(
Rxn

)
for all non-singular R . (30)

The rotation of X must also be compensated in the dynamics Wn as

Rxn = RWnR−1Rxn−1 =
(
RWnR−1

)(
Rxn−1

)
. (31)

The rotation R can be used to parameterize the posterior distributions q(X),
q(C) and q(B). Optionally, the distributions of the hyperparameters q(γ) and
q(β) can also be parameterized. Optimizing the posterior approximation with
respect to R is efficient and leads to significant improvement in the speed of the
VB learning. Details for the procedure in the context of the classical LSSM can
be found in [10].

Similarly to X, the latent mixing weights S can also be rotated as

[Wn]d: = BT
:d:sn = BT

:d:R
−1Rsn =

(
BT

:d:R
−1
)(

Rsn

)
, (32)

where [Wn]d: is the d-th row vector of Wn. The rotation must also be compen-
sated in the dynamics of S as

Rsn = RAR−1Rsn−1 =
(
RAR−1

)(
Rsn−1

)
. (33)

Thus, the rotation corresponds to a parameterized joint optimization of q(S),
q(A), q(B), and optionally also q(α) and q(β). Note that the optimal rotation
of S can be computed separately from the optimal rotation for X.

The extra computational cost by the rotation speed up is small compared
to the computational cost of one VB update of all variables. Thus, the rotation
can be computed at each iteration after the variables have been updated. If for
some reason the computation of the optimal rotation is slow, one can use the
rotations less frequently, for instance, after every ten updates of all variables, and



still gain similar performance improvements. However, as was shown in [10], the
rotation transformation is essential even for the classical LSSM, thus ignoring
it may lead to extremely slow convergence and poor results. Thus, we used the
rotation transformation for all methods in the next section.

4 Experiments

We compare the proposed linear state-space model with time-varying dynamics
(LSSM-TVD) to the classical linear-state space model (LSSM) and the linear
state-space model with switching dynamics (LSSM-SD) using three datasets: a
one-dimensional signal with changing frequency, a simulated physical process
with time-varying parameters, and real-world daily temperature measurements
in Europe. The methods are evaluated by their ability to predict missing values
and gaps in the observed processes.

4.1 Signal with Changing Frequency

We demonstrate the LSSM with time-varying dynamics using an artificial signal
with changing frequency. The signal is defined as

f(n) = sin(a · (n+ c sin(b · 2π)) · 2π), n = 0, . . . , 999 (34)

where a = 0.1, b = 0.01 and c = 8. The resulting signal is shown in Fig. 2(a).
The signal was corrupted with Gaussian noise having zero mean and standard
deviation 0.1 to simulate noisy observations. In order to see how well the dif-
ferent methods can learn the dynamics, we created seven gaps in the signal by
removing 15 consecutive observations to produce each gap. In addition, 20%
of the remaining observations were randomly removed. Each method (LSSM,
LSSM-SD and LSSM-TVD) used D = 5 dimensions for the latent states xn.
The LSSM-SD and LSSM-TVD used K = 4 state dynamics matrices Bk.

Figures 2(b)-(d) show the posterior distribution of the latent noiseless func-
tion f for each method. The classical LSSM is not able to capture the dynamics
and the reconstructions over the gaps are bad and have high variance. The
LSSM-SD learns two different states for the dynamics corresponding to a lower
and a higher frequency. The reconstructions over the gaps are better than with
the LSSM, but it still has quite a large variance and the fifth gap is reconstructed
using a wrong frequency. The gap reconstructions have large variance because
the two state dynamics matrices learned by the model do not fit the process
very well so the model assumes a larger innovation noise in the latent process
X. In contrast to that, the LSSM-TVD learns the dynamics practically perfectly
and even learns the dynamics of the process which changes the frequency. Thus,
the LSSM-TVD is able to make nearly perfect predictions over the gaps and
the variance is small. It also prunes out one state dynamics matrix, thus using
effectively only three dimensions for the latent mixing-weight process.



(a) True signal

(b) LSSM

(c) LSSM-SD
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Fig. 2. Results for the signal with changing frequency: (a) the true signal, (b) the
classical LSSM, (c) the LSSM with switching dynamics, (d) the LSSM with time-
varying dynamics. In (b)-(d), the posterior mean is shown as solid black line, two
standard deviations are shown as a gray area, and the true signal is shown in red for
comparison. Vertical lines mark the seven gaps that contain no observations.

4.2 Stochastic Advection-Diffusion Process

We simulated a physical process with time-dependent parameters in order to
compare the considered approaches. The physical process is a stochastic advection-
diffusion process, which is defined by the following partial differential equation:

∂f

∂t
= δ∇2f − v · ∇f +R, (35)

where f is the variable of interest, δ is the diffusivity, v is the velocity field and
R is a stochastic source. We have assumed that the diffusivity is a constant and
the velocity field describes an incompressible flow. The velocity field v changes in
time. This equation could describe, for instance, air temperature and the velocity
field corresponds to winds with changing directions. The spatial domain was a
torus, a two-dimensional manifold with periodic boundary conditions.

The partial differential equation (35) is discretized using the finite difference
method. This is used to generate a discretized realization of the stochastic process
by iterating over the time domain. The stochastic source R is a realization from
a spatial Gaussian process at each time step. The two velocity field components
are modelled as follows:

v(t+ 1) =
√
ρ · v(t) +

√
1− ρ · ξ(t+ 1), (36)

where ρ ∈ (0, 1) controls how fast the velocity changes and ξ(t+ 1) is Gaussian
noise with zero mean and variance which was chosen appropriately. Thus, there



Fig. 3. One of the simulated processes at one time instance. Crosses denote the loca-
tions that were used to collect the observations. Note that the domain is a torus, that
is, a 2-dimensional manifold with periodic boundaries.

are actually two sources of randomness in the stochastic process: the random
source R and the randomly changing velocity field v.

The data were generated from the simulated process as follows: Every 20-th
sample was kept in the time domain, which resulted in N = 2000 time instances.
From the spatial discretization grid, M = 100 locations were selected randomly
as the measurement locations (corresponding to weather stations). The simulated
values were corrupted with Gaussian noise to obtain noisy observations.

We used four methods in this comparison: LSSM, LSSM-SD and LSSM-TVD
with D = 30 dimensions for the latent states xn, and LSSM with D = 60 to
see if adding more dimensions improves the performance of the classical LSSM.
Both the LSSM-SD and LSSM-TVD used K = 5 state dynamics matrices Bk.

For measuring the performance of the methods, we generated two test sets.
First, we created 18 gaps of 15 consecutive time points, that is, the observations
from all the spatial locations were removed over the gaps and the corresponding
values of the noiseless process f formed the first test set. Second, we randomly
removed 20% of the remaining observations and used the corresponding values of
the process f as the second test set. The tests were performed for five simulated
processes. Figure 3 shows one process at one time instance as an example.1

Table 1 shows the root-mean-square errors (RMSE) of the mean reconstruc-
tions for both the generated gaps and the randomly removed values. The results
for each of the five process realizations are shown separately. It appears that
using D = 60 components does not significantly change the performance of the
LSSM compared to using D = 30 components. Also, the LSSM-SD performs
practically identically to the LSSM. The LSSM-SD used effectively two or three
state dynamics matrices. However, this does not seem to help in modelling the
variations in the dynamics and the learned model performs similarly to the
LSSM. In contrast to that, the proposed LSSM-TVD has the best performance

1 http://users.ics.aalto.fi/jluttine/ecml2014/ contains a video visualization of
each of the simulated processes.

http://users.ics.aalto.fi/jluttine/ecml2014/
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Fig. 4. Results for the advection-diffusion experiments. (a) The posterior mean and two
standard deviations of the latent mixing weights by the LSSM-TVD. (b) The posterior
probability of each state transition matrix as a function of time in the LSSM-SD.

in each experiment. For the test set of random values, the difference is not large
because the reconstruction is mainly based on the correlations between the loca-
tions rather than the dynamics. However, in order to accurately reconstruct the
gaps, the model needs to learn the changes in the dynamics. The LSSM-TVD
reconstructs the gaps more accurately than the other methods, because it finds
latent mixing weights sn which model the changes in the dynamics.

Figure 4(a) shows the the posterior distribution of the K = 5 mixing-weight
signals S in one experiment: the first signal is practically constant corresponding
to the average dynamics, the second and the fifth signals correspond to the
changes in the two-dimensional velocity field, and the third and the fourth signals
have been pruned out as they are not needed. Thus, the method was able to learn
the effective dimensionality of the latent mixing-weight process, which suggests
that the method is not very sensitive to the choice of K as long as it is large
enough. The results look similar in all the experiments with the LSSM-TVD
and in every experiment the LSSM-TVD found one constant and two varying
components. Thus, the posterior distribution of S might give insight on some
latent processes that affect the dynamics of the observed process.

Table 1. Results for five stochastic advection-diffusion experiments. The root-mean-
square errors (RMSE) have been multiplied by a factor of 1000 for clarity.

RMSE for gaps RMSE for random
Method 1 2 3 4 5 1 2 3 4 5

LSSM D = 30 104 107 102 94 104 34 38 39 34 34
LSSM D = 60 105 107 110 98 108 35 39 40 35 35

LSSM-SD D = 30 106 117 113 94 102 35 37 39 34 34
LSSM-TVD D = 30 73 81 75 67 82 30 34 35 31 30



Table 2. GSOD reconstruction errors of the test sets in degrees Celsius for five runs

RMSE for gaps RMSE for randomly missing
Method 1 2 3 4 5 1 2 3 4 5

LSSM 1.748 1.753 1.758 1.744 1.751 0.935 0.937 0.935 0.933 0.934
LSSM-SD 1.800 1.801 1.796 1.777 1.788 0.936 0.938 0.936 0.934 0.935

LSSM-TVD 1.661 1.650 1.659 1.653 1.660 0.935 0.937 0.935 0.932 0.934

This experiment showed that the LSSM-SD is not good at modelling lin-
ear combinations of the state dynamics matrices. Interestingly, although the
VB update formulas average the state dynamics matrices by their probabilities
resulting in a convex combination, this mixing is not very prominent in the ap-
proximate posterior distribution as seen in Fig. 4(b). Most of the time, only one
state dynamics matrix is active with probability one. This happens because the
prior penalizes switching between the matrices and one of the matrices is usually
much better than the others on average over several time steps.

4.3 Daily Mean Temperature

The third experiment used real-world temperature measurements in Europe.
The data were taken from the global surface summary of day product produced
by the National Climatic Data Center (NCDC) [18]. We studied daily mean
temperature measurements roughly from the European area2 in 2000–2009. Sta-
tions that had more than 20% of the measurements missing were discarded. This
resulted in N = 3653 time instances and M = 1669 stations for the analysis.

The three models were learned from the data. They used D = 80 dimensions
for the latent states. The LSSM-SD and the LSSM-TVD used K = 6 state
dynamics matrices. We formed two test sets similarly to the previous experiment.
First, we generated randomly 300 2-day gaps in the data, which means that
measurements from all the stations were removed during those periods of time.
Second, 20% of the remaining data was used randomly to form another test set.

Table 2 shows the results for five experiments using different test sets. The
methods reconstructed the randomly formed test sets equally well suggesting
that learning more complex dynamics did not help and the learned correlations
between the stations was sufficient. However, the reconstruction of gaps is more
interesting because it measures how well the method learns the dynamical struc-
ture. This reconstruction shows consistent performance differences between the
methods: The LSSM-SD is slightly worse than the LSSM, and the LSSM-TVD
outperforms the other two. Because climate is a chaotic process, the modelling
is extremely challenging and predictions tend to be far from perfect. However,
these results suggest that the time-varying dynamics might offer a promising im-
provement to the classical LSSM in statistical modelling of physical processes.

2 The longitude of the studied region was in range (−13, 33) and the latitude in range
(35, 72).



5 Conclusions

This paper introduced a linear state-space model with time-varying dynamics.
It forms the state dynamics matrix as a time-varying linear combination of a set
of matrices. It uses another linear state-space model for the mixing weights in
the linear combination. This is different from previous time-dependent LSSMs
which use switching models to jump between a small set of states defining the
model dynamics.

Both the LSSM with switching dynamics and the proposed LSSM are useful
but they are suitable for slightly different problems. The switching dynamics
is realistic for processes which have a few possible states that can be quite
different from each other but each of them has approximately linear dynamics.
The proposed model, on the other hand, is realistic when the dynamics vary
more freely and continuously. It was largely motivated by physical processes
based on stochastic partial differential equations with time-varying parameters.

The experiments showed that the proposed LSSM with time-varying dynam-
ics can capture changes in the underlying dynamics of complex processes and
significantly improve over the classical LSSM. If these changes are continuous
rather than discrete jumps between a few states, it may achieve better mod-
elling performance than the LSSM with switching dynamics. The experiment on
a stochastic advection-diffusion process showed how the proposed model adapts
to the current dynamics at each time and finds the current velocity field which
defines the dynamics.

The proposed model could be further improved for challenging real-world
spatio-temporal modelling problems. First, the spatial structure could be taken
into account in the prior of the loading matrix using, for instance, Gaussian
processes [19]. Second, outliers and badly corrupted measurements could be
modelled by replacing the Gaussian observation noise distribution with a more
heavy-tailed distribution, such as the Student-t distribution [20].

The method was implemented in Python as a module for an open-source
variational Bayesian package called BayesPy [21]. It is distributed under an open
license, thus making it easy for others to apply the method. In addition, the
scripts for reproducing all the experimental results are also available.3
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