

School of Science

Fast Variational Bayesian Linear State-Space Model

Jaakko Luttinen, jaakko.luttinen@aalto.fi Department of Information and Computer Science, Aalto University

Summary

- *Model:* Linear state-space model
 - used for multivariate dynamical systems
- *Problem:* Variational Bayesian (VB) estimation is slow because
 - the variables are strongly coupled
 - the variables are updated one at a time
 - the iteration zigzags and proceeds slowly
- *Solution:* Jointly optimize several variables based on how they are coupled
 - that is, optimize the rotation of the latent subspace
 - in general, known as parameter expansion
- *Effect:* 100–10000 times faster convergence

Model

• A sequence of high-dimensional observations $(\mathbf{y}_1, \dots, \mathbf{y}_N)$ is assumed to be generated from latent low-dimensional states $(\mathbf{x}_1, \dots, \mathbf{x}_N)$:

$$\mathbf{y}_n = \mathbf{C}\mathbf{x}_n + \text{noise}.$$

where **C** is the loading matrix

• The latent states follow a first-order Markov process:

$$\mathbf{x}_n = \mathbf{A}\mathbf{x}_{n-1} + \text{noise}.$$

where \mathbf{A} is the state dynamics matrix.

• Variables \mathbf{x}_n , **A** and **C** are unknown and estimated from the data.

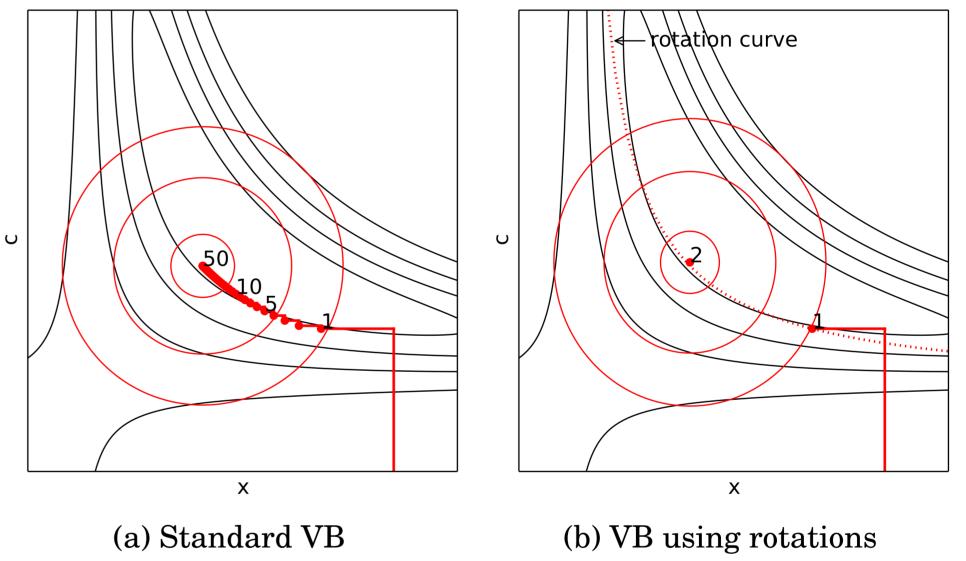
Speed-up rotation / Parameter expansion

- Motivate the parameter expansion by the rotational ambiguity of the latent sub-space.
- The states can be rotated by compensating it in the loadings:

 $\mathbf{y}_n = \mathbf{C}\mathbf{x}_n = \mathbf{C}\mathbf{R}^{-1}\mathbf{R}\mathbf{x}_n,$

thus rotate as $\mathbf{C} \to \mathbf{C}\mathbf{R}^{-1}$ and $\mathbf{x}_n \to \mathbf{R}\mathbf{x}_n$.

• Keep the dynamics of the latent states unaffected:


$$\mathbf{R}\mathbf{x}_n = \mathbf{R}\mathbf{A}\mathbf{R}^{-1}\mathbf{R}\mathbf{x}_{n-1}$$

thus rotate as $\mathbf{A} \rightarrow \mathbf{R}\mathbf{A}\mathbf{R}^{-1}$.

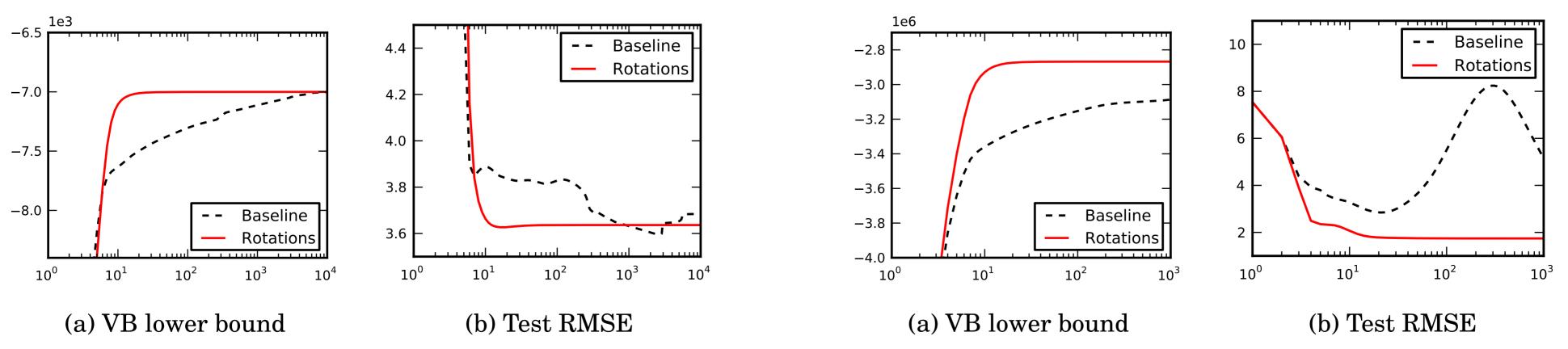
• Parameterize the VB posterior by **R** and maximize the VB lower bound with respect to **R**.

Simple illustration

- VB for a simple 1-dimensional model y = cx + noise
- Rotate as $x \to Rx$ and $c \to c/R$
- Compare the VB iterations with and without rotation:

Artificial experiment

- 400 observations with 30 dimensions
- 8-dimensional latent space


Weather data experiment

• 89202 observations with 66 dimensions

• Performance as a function of VB iterations (log-scale):

• 10-dimensional latent space

• Performance as a function of VB iterations (log-scale):

The method was implemented as a part of a variational Bayesian Python package, BayesPy, available at GitHub and PyPI. The scripts and data for reproducing the results are available at http://users.ics.aalto.fi/jluttine/ecml2013.