
HELSINKI UNIVERSITY OF TECHNOLOGY
DISSERTATIONS IN COMPUTER AND INFORMATION SCIENCE

Report D1 Koskela, M., Interactive Image Retrieval Using
Self-Organizing Maps, 2003.

Report D2 Sinkkonen, J., Learning Metrics and Discriminative
Clustering, 2003.

Report D3 Hurri, J., Computational Models Relating Properties of
Visual Neurons to Natural Stimulus Statistics, 2003.

Report D4 Bingham, E., Advances in Independent Component Analysis
with Applications to Data Mining, 2003.

Report D5 Himberg, J., From Insights to Innovations: Data Mining,
Visualization and User Interfaces, 2004.

Report D6 Särelä, J., Exploratory Source Separation in Biomedical
Systems, 2004.

Report D7 Peltonen, J., Data Exploration with Learning Metrics,
2004.

Report D8 Könönen, V., Multiagent Reinforcement Learning in
Markov Games: Asymmetric and Symmetric Approaches, 2004.

Report D9 Inki, M., Extensions of Independent Component Analysis
for Natural Image Data, 2004.

Report D10 Honkela, A., Advances in Variational Bayesian
Nonlinear Blind Source Separation, 2005.

Report D11 Nikkilä, J., Exploratory Cluster Analysis of Genomic
High-Throughput Data Sets and Their Dependencies, 2005.

ISBN 951-22-7908-8

Helsinki University of Technology
Dissertations in Computer and Information Science

Espoo 2006 Report D12

USING AND EXTENDING ITEMSETS IN DATA MINING:
QUERY APPROXIMATION, DENSE ITEMSETS, AND TILES

Jouni K. Seppänen

ISBN 951-22-8201-1

ISSN 1459-7020

R
eport D

12 Jouni K
. S

eppänen: U
S

IN
G

 A
N

D
 E

X
T

E
N

D
IN

G
 IT

E
M

S
E

T
S

 IN
 D

A
T

A
 M

IN
IN

G
: �Q

 U
E

R
Y

 A
P

P
R

O
X

IM
A

T
IO

N
, D

E
N

S
E

 IT
E

M
S

E
T

S
, A

N
D

 T
IL

E
S

Helsinki University of Technology
Dissertations in Computer and Information Science
Espoo 2006 Report D12

USING AND EXTENDING ITEMSETS IN DATA MINING:
QUERY APPROXIMATION, DENSE ITEMSETS, AND TILES

Jouni K. Seppänen

Dissertation for the degree of Doctor of Science in Technology to be presented

with due permission of the Department of Computer Science and Engineering

for public examination and debate in Auditorium T2 at Helsinki University of

Technology (Espoo, Finland) on the 31st of May, 2006, at 12 o’clock noon.

Helsinki University of Technology
Department of Computer Science and Engineering
Laboratory of Computer and Information Science

Distribution:
Helsinki University of Technology
Laboratory of Computer and Information Science
P.O. Box 5400
FI-02015 TKK
FINLAND
Tel. +358-9-451 3272
Fax +358-9-451 3277
http://www.cis.hut.fi

Available in PDF format at http://lib.tkk.fi/Diss/2006/isbn951228202X/

© Jouni K. Seppänen

ISBN 951-22-8201-1 (printed version)
ISBN 951-22-8202-X (electronic version)
ISSN 1459-7020

Otamedia Oy
Espoo 2006

Seppänen, J. K. (2006): Using and extending itemsets in data min-
ing: query approximation, dense itemsets, and tiles. Doctoral thesis,
Helsinki University of Technology, Dissertations in Computer and Infor-
mation Science, Report D12, Espoo, Finland.

Keywords: data mining, frequent itemset, query selectivity, Boolean
formulas, Bonferroni inequality, error-tolerant itemset

Abstract

Frequent itemsets are one of the best known concepts in data mining,
and there is active research in itemset mining algorithms. An itemset is
frequent in a database if its items co-occur in sufficiently many records.
This thesis addresses two questions related to frequent itemsets. The
first question is raised by a method for approximating logical queries by
an inclusion-exclusion sum truncated to the terms corresponding to the
frequent itemsets: how good are the approximations thereby obtained?
The answer is twofold: in theory, the worst-case bound for the algorithm
is very large, and a construction is given that shows the bound to be
tight; but in practice, the approximations tend to be much closer to the
correct answer than in the worst case. While some other algorithms based
on frequent itemsets yield even better approximations, they are not as
widely applicable.

The second question concerns extending the definition of frequent item-
sets to relax the requirement of perfect co-occurrence: highly correlated
items may form an interesting set, even if they never co-occur in a single
record. The problem is to formalize this idea in a way that still admits
efficient mining algorithms. Two different approaches are used. First,
dense itemsets are defined in a manner similar to the usual frequent
itemsets and can be found using a modification of the original itemset
mining algorithm. Second, tiles are defined in a different way so as to
form a model for the whole data, unlike frequent and dense itemsets. A
heuristic algorithm based on spectral properties of the data is given and
some of its properties are explored.

Tiivistelmä

Yksi tiedon louhinnan tunnetuimmista käsitteistä ovat kattavat joukot, ja
niiden etsintäalgoritmeja tutkitaan aktiivisesti. Joukko on tietokannassa
kattava, jos sen alkiot esiintyvät yhdessä riittävän monessa tietueessa.
Väitöskirjassa käsitellään kahta kattaviin joukkoihin liittyvää kysymys-
tä. Ensimmäinen liittyy algoritmiin, jolla arvioidaan loogisten kyselyjen
tuloksia laskemalla inkluusio-ekskluusio-summa pelkästään kattavilla
joukoilla; kysymys on, kuinka hyviä arvioita näin saadaan. Väitöskirjassa
annetaan kaksi vastausta: Teoriassa algoritmin pahimman tapauksen raja
on hyvin suuri, ja vastaesimerkillä osoitetaan, että raja on tiukka. Käy-
tännössä arviot ovat paljon lähempänä oikeaa tulosta kuin teoreettinen
raja antaa ymmärtää. Arvioita vertaillaan eräisiin muihin algoritmeihin,
joiden tulokset ovat vielä parempia mutta jotka eivät ole yhtä yleisesti
sovellettavissa.

Toinen kysymys koskee kattavien joukkojen määritelmän yleistämistä
siten, että täydellisen yhteisesiintymisen vaatimuksesta tingitään. Joukko
korreloituneita alkioita voi olla kiinnostava, vaikka alkiot eivät koskaan
esiintyisi kaikki samassa tietueessa. Ongelma on tämän ajatuksen muutta-
minen sellaiseksi määritelmäksi, että tehokkaita louhinta-algoritmeja voi-
daan käyttää. Väitöskirjassa esitetään kaksi lähestymistapaa. Ensinnäkin
tiheät kattavat joukot määritellään samanlaiseen tapaan kuin tavalliset
kattavat joukot, ja ne voidaan löytää samantyyppisellä algoritmilla. Toi-
seksi määritellään laatat, jotka muodostavat koko datalle mallin, toisin
kuin kattavat ja tiheät kattavat joukot. Laattojen etsimistä varten kuva-
taan datan spektraalisiin ominaisuuksiin perustuva heuristiikka, jonka
eräitä ominaisuuksia tutkitaan.

iii

Contents

1 Introduction 1

2 Preliminaries 7

3 Approximating Boolean queries 15
3.1 The support estimation problem 15
3.2 Inner product representation 17
3.3 Truncated inclusion-exclusion 23
3.4 Disjunctions of attributes . 24
3.5 Experimental evaluation . 32
3.6 Arbitrary queries . 44
3.7 Experimental evaluation with arbitrary queries 46
3.8 Correcting the truncation . 50
3.9 Other approaches to Approximate Query 56

4 Dense itemsets 59
4.1 Intersection counts . 60
4.2 Intersection statistics . 62
4.3 Algorithms . 67
4.4 Empirical results . 71
4.5 Discussion . 76

5 Tile models 83
5.1 Geometric tiles . 83
5.2 Combinatorial tiles . 89
5.3 Empirical results . 98
5.4 Discussion . 100

6 Conclusion 105

Bibliography 107

v

Preface

I have had the privilege of working toward this dissertation at

CIS∩ FDK,

where CIS denotes the Laboratory of Computer and Information Science
at the Helsinki University of Technology (TKK), and FDK is the From Data
to Knowledge research unit at TKK and the University of Helsinki. The
organizational chart is further complicated by my affiliation to

BRU ⊂ HIIT,

the Basic Research Unit of the Helsinki Institute for Information Tech-
nology. I am grateful to all of these organizations for the use of their
facilities. Financial support for this work has been provided by the ComBi
graduate school and the Academy of Finland. Personal grants from the
Foundation of Technology (TES) are also gratefully acknowledged.

Thanks are due to my advisor Heikki Mannila both for his expert guidance
in the field of data mining and for his supportive mentorship. Jaakko
Hollmén deserves thanks for the plenty of practical assistance rendered
during my years at CIS, as well as for the scientific collaboration that has
improved much of the material in this dissertation. The same is true of
my other collaborators, including Aris Gionis, Ella Bingham, and Artur
Bykowski, to all of whom I am grateful. A manuscript of this dissertation
was reviewed by Gautam Das from the University of Texas at Arlington
and Bart Goethals from the University of Antwerp, whom I thank for their
constructive and encouraging comments. Any errors are, naturally, my
own.

vi

In addition to those already mentioned, I thank past and present members
of our group at CIS ∩ FDK, including Hannes Heikinheimo, Heli Hiisilä,
Johan Himberg, Mikko Korpela, Anne Patrikainen, Kai Puolamäki, Antti
Rasinen, Salla Ruosaari, and Janne Toivola, for the wonderful working
environment. The coworkers in CIS\FDK and FDK\CIS are too numerous
to list here, but they too have contributed to the atmosphere.

Above all, I wish to express my gratitude to my wife Elina and my son
Otso for their patience during the many long nights I have been working
on this dissertation, and for the joy they have brought to my life.

Otaniemi, May 2006

Jouni K. Seppänen

vii

Chapter 1

Introduction

The topic of this dissertation belongs to the research area of data mining.
Data mining has been defined by Hand, Mannila and Smyth as

the analysis of (often large) observational data sets to find
unsuspected relationships and to summarize the data in novel
ways that are both understandable and useful to the data
owner.

[HMS01]

Some elaboration on the definition may be in order. First, the observa-
tional nature of the data differentiates data mining from most statistics:
in data mining one does not typically have the luxury of setting up a
careful experiment yielding data that allows rejecting or accepting a null
hypothesis. Instead, the data is observed opportunistically, possibly
because it is collected primarily for a purpose other than analysis. In
contrast to hypothesis testing, data mining addresses tasks such as

1. exploratory data analysis,

2. descriptive modeling,

3. predictive modeling,

4. discovering patterns and rules, and

5. retrieval by content. [HMS01]

Of course, tools for these tasks are also provided by statistics, machine
learning, and database research, and the borders between these areas are
not rigid, or indeed clearly drawn at all. All such tools naturally aspire to
the goals of understandability and usefulness, but the question whether
the goals are attained is to a large degree subjective, and can in the end

1

1. Introduction

only be evaluated in the context of some application. Another aspect
of data mining alluded to in the definition is the focus on large data
sets: when developing data mining methods, one must keep in mind the
practical issues of implementability and scalability.

More specifically, the topic of the dissertation is “using and extending
itemsets”. The concept of itemsets has its roots in what is perhaps
the most famous class of the “patterns and rules” mentioned above,
association rules. The problem of association rule mining, which dates
back to at least 1993, is to find all rules such as

a customer who buys milk and cookies also buys coffee

that concern a sufficiently large portion of the data and hold with a suffi-
cient confidence [AIS93]. The way to solve this problem is to reduce it to
finding frequent itemsets, i.e., sets such as

{milk, cookies, coffee }

of items that co-occur in a sufficiently large part of the data set. The
original algorithm to find frequent itemsets is an elegant application of
breadth-first search called Apriori [AMS+96]. Testimony to the useful-
ness, real or perceived, of association rules is that research into more
advanced algorithms continues [GZ03, BGZ04]; however, some have ar-
gued that the gains of the new algorithms are only evident in artificial
settings and do not translate into practical advantages [ZKM01].

Association rules were the original motivation for frequent itemset
mining, but of course a frequent itemset is a pattern in itself, and perhaps
even better by virtue of not specifying a direction that could be misinter-
preted as causality. The descriptive models and patterns in the preceding
list of data mining tasks are distinguished by the local nature of patterns,
which only pertain to some part of the data, while a descriptive model
should pertain to the whole. A natural question, then, is whether a col-
lection of local patterns can constitute a global description. The seminal
paper Multiple uses of frequent itemsets and condensed representations by
Mannila and Toivonen [MT96] approaches this question by viewing the
itemsets as a surrogate for the data, which can be used to answer queries
approximately.

This may seem a convoluted way of answering queries—why add
the extra phase of itemset mining to obtain approximations instead of
looking at the data itself for exact results? The obvious answer is that the
frequent itemset collection may be much smaller than the original data,
but even then, a sample of the data could be a much better surrogate than

2

itemsets. However, there may be some practical circumstances where
using itemsets is warranted. Sometimes there may not be an explicit data
set that can be queried. For instance, in mining event sequences [MTV97]
or more complicated structures such as graphs [KK01], it may be practical
to find the itemsets directly without constructing an intermediate data
matrix. Another possibility arises in privacy-preserving data mining: the
owner of the data may only allow access to frequent itemsets and not to
the original data.

The cases mentioned can be seen as manifestations of the observa-
tional quality of the data, a recurring theme in data mining. A more
abstract motivation is that of building a theory of frequent itemsets.
Parts of this theory exist: there is a connection to hypergraph transver-
sals, which implies some results on the complexity of itemset min-
ing [BGKM02, GKM+03]. Another part of the theory are various condensed
representations such as free-sets [BBR00, CG03], closed sets [PBTL99] and
non-derivable sets [CG02, Cal04], which allow a data mining system to
store only some of the frequent itemsets and infer the others when
needed. The query approximation problem is one formulation of the
question of what information the itemsets contain about the original
data.

A related research area is that of inductive databases, which had
its beginnings in the 1996 paper A database perspective on knowledge
discovery by Imielinski and Mannila [IM96] and is under active research in
e.g. the KDID workshops [Bou04]. The aim of inductive database research
is to enable general-purpose systems to support data mining queries
analogously to the way that current relational database management
systems support SQL queries: ad-hoc queries can be entered by the user,
or they can be part of an application, and it is the purpose of the database
management system to optimize and answer the query. A comprehensive
theory of itemsets should allow the system to choose an optimal way to
answer itemset-related queries.

The truncated inclusion-exclusion algorithm of Mannila and Toivonen
is analyzed in Chapter 3. The algorithm is shown to have bad worst-
case behavior in that there is a large bound for the error that is actually
achievable. However, experiments with both real and generated data
sets show that the error bound does not reflect typical behavior of the
algorithm. The algorithm is also generalized to arbitrary Boolean queries
from the disjunctions originally presented by Mannila and Toivonen. In
addition to the results of the analysis, the methods used could be of
relevance in the theory of inductive databases.

3

1. Introduction

Another question addressed in this dissertation is how to extend the
definition of frequent itemsets to allow for incomplete occurrence of the
items. Intuitively, the requirement that all items of a set must co-occur
for the set to be frequent may exclude interesting sets whose items are
strongly correlated but never co-occur perfectly. It is not obvious how to
transform this intuition to a useful mathematical definition. The problems
that arise are discussed in Chapter 4, and a definition is given for dense
itemsets. Dense itemsets can be found by a simple generalization of the
Apriori algorithm, but they can be very different from frequent itemsets.

Chapter 5 presents a different solution to finding highly but non-
perfectly correlated itemsets. This solution, termed tile mining, forms
a model for the complete data from local patterns, unlike frequent or
dense itemsets. Furthermore, it encompasses negative patterns, i.e., sets
of items that are together absent from a record more often than other
items. “Geometric” tiles are usable when the data has a natural order,
but this is not usually the case. “Combinatorial” tiles are more general,
but also much more difficult to find. A heuristic algorithm is presented
that seeks an order for the data such that combinatorial tiles become
geometric.

In summary, the dissertation addresses questions related to discover-
ing local patterns, to descriptive modeling, and to combining these two
tasks. While experiments are used to demonstrate the methods, the main
thrust of this work is theoretical: Chapter 3 aims to advance the theory of
frequent itemsets, and Chapters 4 and 5 seek to discover new data-mining
concepts in addition to frequent itemsets. Possible future applications for
the methods could be found in e.g. the analysis of biological data sets. For
example, microarray experiments yield high volumes of gene expression
data, which could be mined for patterns such as dense itemsets or tiles.

Contributions of the thesis. While the algorithm for query estimation
is by Mannila and Toivonen [MT96], the theoretical analysis and the
experiments are a new contribution. The main results of the theoretical
analysis are Theorems 3.16 and 3.18, which constitute a complete answer
to the question of how large the worst-case approximation error can be in
terms of the negative border. Furthermore, the paper [MT96] discussed
only the case where the queries are disjunctions of attributes; Section 3.6
generalizes it to arbitrary Boolean queries. This generalization is based on
the inner product representation of Section 3.2, which allows writing the
frequency of an arbitrary Boolean formula as a sum of itemset frequencies
with integer coefficients. Such a representation was mentioned in the

4

paper as “of course well known”, but no way to compute it was given.
This author has not found as complete a description as in Section 3.2 of
it in the literature, although the representation is (at least implicitly) used
in various papers that use the theory of linear programming to attack
similar problems; a description and references are given in Section 3.9.

The definition of dense itemsets along with the discussion and experi-
ments on them are a novel contribution, although similar ideas have been
published in the past. These ideas are discussed along with the exposition
of dense itemsets in Chapter 4, and connections to other work are made
in Section 4.5. The first algorithm for finding dense itemsets is an obvious
generalization of Apriori, but a slightly more complicated algorithm that
avoids the need to specify a parameter is new. Experiments show that the
algorithms are practical and that the results are interesting itemsets that
could not have been found with traditional frequent itemset mining.

The tile models are also novel. The algorithm for finding an order for
the data matrix is a fairly straightforward application of spectral graph
theory, but the analysis in the case of tiles is new. See Section 5.4 for
related work.

Relationship to other publications of the author. Chapter 3 has some
overlap with the author’s Master’s thesis, which addressed similar ques-
tions. A weaker form of Theorem 3.18 was shown, and the inner product
representation of Section 3.2 was developed. A paper corresponding to
the theoretical parts of Chapter 3 has been published in a book [SM05].
There is some thematic overlap with a paper published originally in
a workshop on inductive databases [BSH02] and then, revised, in a
book [BSH04]; that paper uses linear programming, which Chapter 3
only mentions. A paper on combining mixture models and frequent
itemsets [HSM03] is somewhat related thematically but not overlapping
in content: frequent itemsets were mined in clusters discovered by a
mixture modeling technique and combined into a new model of the data.

The dense itemsets of Chapter 4 were originally introduced in a con-
ference poster with a related publication [SM04]. Chapter 4 is much
expanded from the publication. The tile models of Chapter 5 were pub-
lished in another conference [GMS04]. Again, Chapter 5 is a more exten-
sive treatment. Tangentially related to these chapters are two papers on
topic models [BMS02, SBM03], which discuss a probabilistic approach to
defining sets of correlated variables, and give some heuristic algorithms.
The maximum-entropy model, used as a reference in Chapter 3, also had
a minor role in the first of the two papers.

5

Chapter 2

Preliminaries

This chapter presents a more formal view of the concepts mentioned in
the previous chapter and introduces some notation. In particular, we
review the basics of frequent itemset mining in preparation for Chapters 3
and 4. These chapters also share their example data sets, which are
described here. While Chapter 5 discusses a problem similar to that of
Chapter 4, the context and notation are different and thus presented
within the chapter itself.

Binary data. In this dissertation, only binary data is considered. For
example, the data set could record which customers bought which items
in a supermarket, or which documents used which words of a dictionary,
or which genes were expressed in which conditions, or which users visited
which web pages. What is not recorded is numerical information such as
the number of milk cartons bought by a customer, or the number of times
a word is used in a document. Also ignored is any external information
such as the prices of items or the language of words; such information
could naturally be useful in some data mining tasks, but it is not used in
frequent itemset mining.

The restriction to binary data allows us to adopt a simplified definition
of a relational database. We will denote a set of attributes by U (for
“Universe”); these are the items sold by the supermarket or the words in
the dictionary. Each customer or document is represented by a subset T
of U , called a tuple. The tuples form a binary relation r over U ; thus a
relation is a multiset1 of tuples.

1We must allow different customers to buy the same set of products; therefore
the relation is a multiset instead of a set. Another way to allow this would be to say
that each tuple carries with it a unique identifier.

7

2. Preliminaries

Milk Coffee Cookies Diapers

1 1 0 0
0 1 1 0
0 1 1 0
0 0 0 1
1 0 0 1

Table 2.1. Example data matrix. Columns correspond to items available in a
grocery store, rows to customers. An entry of 1 means that the customer bought

the item, an entry of 0 that they did not.

Binary data, as described, can be seen as a matrix of zeros and ones
as pictured in Table 2.1. This view may be misleading in at least two
ways. First, it suggests that the rows and columns are arranged in some
meaningful order, which may be true for some data, but we make no such
assumption. Second, the numbers 0 and 1 could be seen as symmetric:
subtracting each element of the matrix from 1 creates another matrix that
seems in a way equivalent to the original one. However, the meanings of 0
and 1 are not symmetric: if 1 means that an item was included in a basket
or that a word was used in a document, inverting the values would give
for each customer the list of items she did not buy, or for each document
the list of dictionary words it did not use. Usually, the latter lists would
be much longer than the former ones. Note that in Chapter 5 we do adopt
the view of a data matrix, with symmetric interpretations of 0 and 1.

Itemsets. Arbitrary subsets of U are called itemsets (even if their con-
tents are words or genes). We denote items by letters A,B,C, . . . from
the beginning of the alphabet, and itemsets by the letters X, Y and Z . In
Chapter 4 we occasionally use also I and J for itemsets. An itemset is
frequent if it appears as a subset of sufficiently many tuples in r . Put
more precisely, the frequency of X ⊂ U is

f(X) =
∣∣{T ∈ r | X ⊂ T }∣∣

|r | ,

where the cardinality notation | · | refers to multiset cardinality, and an
itemset X is frequent if f(X) ≥ σ , where σ is a predefined frequency
threshold.

The collection of σ -frequent itemsets is denoted Fσ . As is well known,
this collection is downward closed: given itemsets X ⊂ Y ∈ Fσ , we
have X ∈ Fσ . We will in general denote by F an arbitrary downward
closed collection of itemsets, and by G its complement.

8

Apriori(U, r ,σ)
Input: Attribute set U , relation r , threshold σ
Output: Family F of σ -frequent itemsets

F ← {∅}
C ← {{A } | A ∈ U}
while C 6= ∅:
F ← Compute-Frequencies(C, r)
D← {X ∈ C | F[X] ≥ σ }
F ← F ∪D
C ← Generate-Candidates(D)

return F

Algorithm 2.1. Mine frequent itemsets (Apriori).

Compute-Frequencies(C, r)
Input: Candidate family C, relation r
Output: Array F containing frequency of each

candidate set in C

F[X]← 0 ∀X ∈ C
for each T ∈ r :

for each X ∈ C:
if T ⊂ X:
F[X]← F[X]+ 1/|r |

return F

Algorithm 2.2. Compute frequencies of all candidates (subroutine of Apriori).

It will also be useful to talk about the number of times that an itemset
appears in the relation without any other items. We will call this quantity
the exact frequency of X and denote it by g(X); thus,

g(X) =
∣∣{T ∈ r | X = T }∣∣

|r | ,

and

f(X) =
∑
Y⊃X

g(X).

9

2. Preliminaries

Generate-Candidates(D)
Input: Family D of itemsets of equal size k
Output: Family C of size (k+ 1) itemsets

whose all size k subsets are in D

C ←∅
for each X,Y ∈ D:
Z ← X ∪ Y
ok← True
for each A ∈ Z :

if Z \ {A } ∉D:
ok← False
break

if ok:
C ← C ∪ {Z }

return C

Algorithm 2.3. Generate next level of candidates (subroutine of Apriori).

Apriori algorithm. The traditional way to find frequent itemsets is by
the Apriori algorithm, described as pseudocode in Algorithm 2.1. The
algorithm performs a level-by-level search starting from the single-item
sets and proceeding to larger sets. The variable C holds the family of
candidate itemsets, whose frequencies are counted in one database pass
by Algorithm 2.2. The frequent candidates are selected into D, which is
the input to Algorithm 2.3. This algorithm computes the next level of
candidates: if the sets in D have size k, the new candidates are those
sets of size k+ 1 whose all size-k subsets are in D. The version shown is
easy to understand, but it wastes some time in trying all pairs of sets. It
is possible to reduce the number of pairings significantly [AMS+96].

Note that the Apriori algorithm examines not only all frequent item-
sets but also those non-frequent itemsets whose all subsets are frequent.
We will define the family of these sets the negative border of the frequent
itemset collection, and denote it by Bd−.

Data used in experiments. The experiments presented in Chapters 3
and 4 have been performed on a number of data sets, which are sum-
marized in Table 2.2. The Course data consists of course registration
records at the Department of Computer Science, University of Helsinki.
The attributes correspond to courses and the tuples to students; the
presence of an attribute means that the student registered for the course.

10

Data set name Attributes Tuples Density

Course 98 3506 0.0468
Abstracts 25335 128804 0.0032
T10I4D100K 870 100000 0.0116
T40I10D100K 942 100000 0.0420
Chess 75 3196 0.4933
Connect 129 67557 0.3333
Kosarak 41269 99002 0.0020
Mushroom 119 8124 0.1933
Pumsb 2113 49046 0.0350
Pumsb* 2088 49046 0.0242

Table 2.2. Statistics on the data sets. The first column gives the name of each
data set, the second and third its dimensions, i.e., how many attributes and
how many tuples it has, and the final column gives the average proportion of
attributes contained in a tuple, i.e., the mean of all values in the 0–1 matrix
representation of the data.

The primary reason for using this data set here is that the author, hav-
ing studied at the Department, has a subjective understanding of the
meanings of many of the attributes.

The Abstracts data from the UCI KDD repository [HBM98] is a bag-of-
words representation of abstracts of National Science Foundation awards
for basic research. The attributes correspond to words indexed in the
abstracts.

The remaining data sets were downloaded from the web site of FIMI,
the Frequent Itemsets Mining Implementations workshop.2 They have
been used as benchmarks in the Frequent Itemset Mining Implementations
workshops [GZ03, BGZ04]. The preprocessed data sets do not contain
information on the semantics of the data. According to the fimi web site,
the T10I4D100K and T40I10D100K data sets have been generated with
the IBM Almaden generator; Chess, Connect, and Mushroom originate in
the UCI KDD repository [HBM98]; and Kosarak is anonymized clickstream
data. The Pumsb and Pumsb* data sets appear to be derived from the
Public-use Microdata Sample provided by the Bureau of the Census of the
United States government.

Frequent itemsets were mined from each data set. Different values
of the threshold σ had to be used to obtain a reasonable number of
itemsets. This is depicted in Figure 2.1, which shows the number of
frequent itemsets in the data sets at various thresholds.

2http://fimi.cs.helsinki.fi/data/

11

2. Preliminaries

Pumsb*

Kosarak

Mushroom

T40I10D100K

Course
Chess

PumsbAbstracts
T10I4D100K

Connect

10-3 10-2 10-1 100

Frequency threshold

100

101

102

103

104

105

106

N
u

m
b

e
r

o
f

fr
e
q

u
e
n

t
it

e
m

s
e
ts

Figure 2.1. Number of frequent itemsets as a function of the frequency thresh-
old in each data set. Both axes are logarithmically scaled.

12

Notation. To close this chapter, we list some deviations from standard
mathematical notation that are used later. First, when discussing itemsets
such as {A,B,C }, the braces and commas are usually omitted: thus ABC
means the same itemset. Second, the shadow ∂X of an itemset X is
defined as the family of size |X| − 1 subsets of X. Third, we occasionally
need to refer to the set {1,2, . . . , n }, which we denote by [n]. Fourth, we
also use brackets for the “Iverson notation”

[predicate] =

1, predicate is true

0, predicate is false,

which helps avoid complicated subscripts in sums. It has been advocated
for this purpose by Knuth [Knu92]. As an example of the Iverson notation,
consider the sum

n∑
i=0
i∉X

i2 =
n∑
i=0

[i ∉ X] i2.

In the right-hand form, the second subscript has been moved to the
baseline in order to improve readability. We will not take the notation to
the extreme of ∑

i
[i ∈ Z \X] [0 ≤ i ≤ n] i2,

but will use it when it helps avoiding excessive or complicated subscripts,
mainly in sums taken over sets: for example, in∑

X
[|X| ≤ 5] · · ·

the sum is taken over all sets X of size at most 5 that are subsets of some
base set, which should be clear from the context.

13

Chapter 3

Approximating
Boolean queries
using frequent itemsets

In this chapter we consider the problem of how one can estimate the
support of Boolean queries given a collection of frequent itemsets. We
describe an algorithm that truncates the inclusion-exclusion sum to in-
clude only the frequencies of known itemsets, and give bounds for its
performance in two cases: disjunctions of attributes, and general queries.
In the disjunction case we show that our bound is in fact achievable.

3.1 The support estimation problem

The task considered in this chapter is that of estimating the result of a
Boolean query φ. We define the syntax of Boolean queries (or formulas,
or polynomials) as it is defined in logic: a Boolean query φ is one of the
following:

• an item: φ = A for some A ∈ U ,

• the negation of a Boolean query: φ = (¬ψ) for some ψ,

• the conjunction of two Boolean queries:
φ = (ψ∧ θ) for some ψ and θ, or

• the disjunction of two Boolean queries:
φ = (ψ∨ θ) for some ψ and θ.

We use standard shorthand notation; for example, for a set X, we denote
by

∨
X the disjunction over all the elements of X.

15

3. Approximating Boolean queries using frequent itemsets

The semantics of a Boolean query are defined as fractions of the size
of the relation. We interpret tuples as truth assignments, such that a
tuple T supports φ, denoted T î φ, as follows:

• T î A if and only if A ∈ T ,

• T î (¬ψ) if and only if T 6î ψ,

• T î (ψ∧ θ) if and only if T î ψ and T î θ, and

• T î (ψ∨ θ) if and only if T î ψ or T î θ.
Now the frequency f(φ) of a query φ is the fraction of tuples that
support the query:

f(φ) =
∑
T [T ∈ r] [T î φ]

|r | .

An immediate consequence of the definitions is that the frequency of an
itemset X coincides with the frequency of the conjunction of all items
in X. This justifies using the same notation f(·) for the two concepts. In
contrast, there is no simple generalization of exact frequency g(X) for
general formulas.

The problem, then, is to find approximations to f(φ) for some class of
queries φ, given the collection Fσ of σ -frequent itemsets. We formalize
the problem as follows:

Definition 3.1. Given the collection Fσ of σ -frequent itemsets, their fre-
quencies f(X) for all X ∈ Fσ , and a Boolean queryφ, the problem Approx-
imate Query(Fσ , f (·),φ) is to find an estimate f̂ (φ) that should be close
to f(φ). The error of such an estimate is defined as e(φ) = f(φ)− f̂ (φ).

The error as defined above depends both on the particular data set
and on the input: in particular, as σ decreases, the family Fσ will con-
tain more sets, and one expects the absolute error to decrease. We are
interested in bounding the absolute value of the error over a wide variety
of data sets and inputs.

An obvious algorithm for query approximation without using frequent
itemsets at all is to evaluate the query on the relation r , or if r is too
large, on a random sample thereof. However, the motivation behind the
Approximate Query problem is to make the best use of frequent item-
sets, in the spirit of data mining as secondary data-analysis: by mining
frequent itemsets, one hopes to gain some information about the data. In
some circumstances, the original data may not be available because of
limitations in storage capacity, or a privacy policy may call for deleting
the raw data and retaining only aggregate information such as frequent
itemsets. Furthermore, the question is relevant to the development of
a theory of data mining. Since the inception of association rule mining

16

Inner product representation

in 1993 [AIS93], techniques for computing frequent sets have formed
a significant part of the published data mining research, and continue
to be a popular research subject [GZ03, BGZ04]. Much of the theory
encompassing frequent itemsets has concentrated on speeding up the
algorithms, but a theory of frequent itemsets should also consider the
uses that the itemsets can be put to.

The algorithm that we analyze in this chapter is combinatorial in
nature, and reasonably fast (relative to the size of the input). This is in
contrast to the model-based algorithms widely used in machine learning.
For the Approximate Query problem, probably the most fashionable
model is the Markov random field, or maximum entropy [PMS00, PS01].
The scope of this chapter is limited to our combinatorial algorithm, but
we give a comparison to maximum entropy in Sections 3.5 and 3.7.

In the next section we develop some mathematical machinery to handle
the problem, and in Section 3.3 we present an algorithm, which we
proceed to analyze in the subsequent sections.

3.2 Inner product representation

The frequency of a query φ in a relation r can be represented as an inner
product of two vectors, one depending only on the query, the other only
on the relation. To see this, start from the disjunctive normal form (dnf):
write the query as a disjunction of conjunctions,

φ =
∨
i

∧
j
Lij ,

where each literal Lij is either an item or a negated item. Then rewrite the
dnf query by the following rule: if a conjunction

∧
j Lij does not include

an item A in any literal, replace it by the two conjunctions
(∧

j Lij
)
∧A

and
(∧

j Lij
)
∧¬A. The rewriting does not change the semantics of the

query. When no more rewriting is possible, each conjunction includes
every item, either positively or negatively: for a fixed value of i,∧

j
Lij =

∧
A∈Pi

A∧
∧
A∈Ni

¬A

with Pi ∪ Ni = U . But this shows that f
(∧

j Lij
)

counts the number of
tuples T that are equal to Pi, i.e., f

(∧
j Lij

)
= g(Pi). Delete any repetitions

of the same conjunction; then

f(φ) =
∑
i
g(Pi),

17

3. Approximating Boolean queries using frequent itemsets

because no tuple can support more than one of the conjunctions. For the
ith conjunction to be included in the sum, it is necessary and sufficient
that Pi î φ. Therefore, we can rewrite the sum as a sum over all possible
itemsets:

f(φ) =
∑
X⊂U

[X î φ]g(X). (3.1)

Interpreting this sum as a dot product of two vectors, we make the
following definition.

Definition 3.2. Impose some canonical order on the subsets of U and
define vectors ~g =

(
g(X)

∣∣ X ⊂ U) and ~ζφ =
(
[X î φ]

∣∣ X ⊂ U) whose
components are ordered by the canonical order of X ⊂ U ; we call the
components of ~ζφ, denoted ζφ(X), the exact-frequency coefficients of φ.

The term “exact-frequency coefficient” is meant to convey that the
numbers ζφ function as coefficients of the exact frequencies; while they
form a vector of the same length as ~g, they are not frequencies them-
selves. Specifically, the coefficients are always either 0 or 1. We can now
rewrite (3.1) as follows.

Proposition 3.3. f(φ) = ~ζφ · ~g.

As pointed out above, the coefficients are either 0 or 1, Also the
converse holds: any binary vector of length 2|U| is a possible vector ~ζφ
for some Boolean formula φ. The exact frequencies g(X) must obviously
sum up to 1, but they are otherwise independent. This independence
prevents us from proving inequalities for cases where only some of
the exact frequencies are known. To solve this problem, we use linear
algebra: the subsets X of U are identified with the basis vectors of a
2|U|-dimensional vector space. Boolean formulas correspond bijectively
via their dnf representations to vertices ~ζ of the unit hypercube, and
binary relations correspond to (rational) points ~g in the simplex spanned
by the basis vectors. We next change the basis of the space to introduce
dependencies between the coordinates of vectors.

Definition 3.4. The frequency coefficients of a query φ, denoted ξφ(X),
are defined via the following alternating sum of exact-frequency coeffi-
cients:

ξφ(X) =
∑
Y⊂X
(−1)|X\Y |ζφ(Y). (3.2)

We denote by ~ξφ the vector of frequency coefficients in the canonical order
of subsets of U .

18

Inner product representation

For example, consider the simple queryφ = A∧B. The exact-frequency
coefficients of this query are obviously ζφ(Y) = 1 if Y includes A and B,
and 0 otherwise. For the set AB, the alternating sum (3.2) yields 1,
and for any other set, it yields 0; and of course the frequency of φ is
exactly f(AB). The following proposition shows that the new coefficients
can be similarly used for any query.

Proposition 3.5. The frequency of φ can be represented as the inner
product f(φ) = ~ξφ · ~f , where ~ξφ is the vector of frequency coefficients as

defined above and ~f is the vector of frequencies.

Proof. By the inclusion-exclusion principle, we have

g(X) =
∑
Y⊃X
(−1)|Y\X|f(Y), (3.3)

or in matrix notation, ~g = B ~f , where

B = (bX,Y | X,Y ⊂ U), bX,Y = [X ⊂ Y] (−1)|Y\X|.

Substituting this into Proposition 3.3 and applying the associativity of
matrix multiplication yields

f(φ) = ~ζφ · ~g = ~ζφ
T
(B ~f) = (BT ~ζφ)Tf = ~ξφ · ~f .

From Eq. (3.2), one easily sees that ξφ(X) is largest for parity-type
formulas φ. For example, let Y î φ if and only if |X \ Y | is even;
then ξφ(X) = 2|X|−1. Clearly, this is the largest absolute value possible,
because every coefficient ζφ(X) must be either 0 or 1. This answers
Problem 9 in [Man02].

While the exact-frequency coefficients ζφ can be either 0 or 1 indepen-
dently of each other, the frequency coefficients ξφ are more constrained,
and it may not be immediately obvious what value combinations are
possible for the coefficients. We can answer this question by attempting
to reconstruct the exact-frequency coefficients, as follows.

Proposition 3.6. Given a vector ~ξ of length 2|U|, there exists a Boolean
formula φ such that ~ξ = ~ξφ if and only if the sum∑

Y
[Y ⊂ X]ξ(Y)

is either 0 or 1 for every X ⊂ U .

19

3. Approximating Boolean queries using frequent itemsets

Proof. Necessity follows by representing ~ζφ in terms of ~ξφ. We start from
the representation of frequencies as sums of exact frequencies,

f(X) =
∑
Y⊃X

g(Y),

which is also a matrix product: ~f = C ~g with C = (cX,Y), cX,Y = [X ⊂ Y].
In the proof of Proposition 3.5 a matrix B was introduced such that ~g = B ~f
for any vector ~g of exact frequencies; because ~g = BC ~g, C must be the
inverse of B. Since ~ξφ = BT ~ζφ, we have ~ζφ = CT ~ξφ, which in sum form is

ζφ(X) =
∑
Y
[Y ⊂ X]ξφ(Y). (3.4)

Since ζφ(X) is either 0 or 1, we have shown that the condition is necessary.

To show sufficiency, we construct a Boolean formula φ from the vector ~ξ.
For any tuple T ⊂ U , let T î φ if and only if

∑
Y [Y ⊂ T]ξ(T) = 1. This

determines the exact-frequency coefficients of φ, and applying Proposi-
tion 3.5 shows that the frequency coefficients ξφ coincide with ξ.

As a byproduct of the proof, we obtained Eq. (3.4). The following
special case of this equation is useful later.

Corollary 3.7. For any Boolean formula φ, the sum of all its frequency
coefficients is [U î φ], i.e.,∑

X⊂U
ξφ(X) = ζφ(U) = [U î φ].

We next discuss a question related to using the inner product repre-
sentation: if we are given a formula such as (A∨ B)∧¬(B ∨ C), we can
obviously obtain its frequency coefficients by first computing the exact-
frequency coefficients and then summing, but is there a more direct way?
Our definition of the frequency coefficients is semantic in that it depends
only on the truth values of φ on various itemsets. It is also possible to
describe the coefficients syntactically, recursing on the structure of the
formula.

Proposition 3.8. The frequency coefficients of a Boolean query φ can be
expressed as follows.

1. If φ = A for A ∈ U , then ξφ(X) = [X = {A }].
2. If φ = ¬ψ for a Boolean query ψ, then

ξφ(X) =

1− ξψ(∅), X = ∅,
−ξψ(X), X 6= ∅.

20

Inner product representation

3. If φ = ψ∧ θ, then

ξφ(X) =
∑
W,Z
[W ∪ Z = X]ξψ(W)ξθ(Z). (3.5)

Proof. 1. This case follows directly from Definition 3.4.
2. If φ is the negation of ψ, we trivially have ζφ(X) = 1− ζψ(X), and

by substituting into Definition 3.4 obtain the claim.
3. If φ is the conjunction of ψ and θ, we have for the exact-frequency

coefficients that ζφ(X) = ζψ(X)ζθ(X). Substituting this into Defini-
tion 3.4, we obtain

ξφ(X) =
∑
Y⊂X
(−1)|X\Y |ζψ(Y)ζθ(Y). (3.6)

From Equation (3.4), we obtain

ζψ(Y)ζθ(Y) =
(∑
W⊂Y

ξψ(W)
)(∑
Z⊂Y

ξθ(Z)
)
=

∑
W,Z⊂Y

ξψ(W)ξθ(Z). (3.7)

Combining (3.6) and (3.7) and changing the order of summation now
yields

ξφ(X) =
∑

W,Z⊂X

(∑
Y
[W ∪ Z ⊂ Y ⊂ X] (−1)|X\Y |

)
ξψ(W)ξθ(Z).

The alternating sum in parentheses cancels out whenever W ∪ Z 6= X.
If W ∪ Z = X, the sum is equal to 1. This proves Equation (3.5).

We illustrate the syntactic characterization of frequency coefficients
by two examples.

Example 3.9. We construct the frequency representation of (A ∨ B) ∧
¬(B ∨C). We start by transforming the disjunctions by de Morgan’s laws:
A∨ B ≡ ¬(¬A∧¬B) and B ∨ C ≡ ¬(¬B ∧¬C). From the base case and
the rule for negation, we obtain

f(¬A) = f(∅)− f(A),

and similarly for the other attributes.
For the sake of convenience, we express the frequencies of the queries

as polynomials in the frequencies of itemsets: in the notation of Proposi-
tion 3.8, the formula above would be written as

ξ¬A(X) =


1, X = ∅,
−1, X = {A },
0, otherwise.

21

3. Approximating Boolean queries using frequent itemsets

In the polynomial notation, Equation (3.5) can be written as a special kind
of multiplication: define the product ⊗ for single terms as(

ξψ(W)f(W)
)
⊗
(
ξθ(Z)f(Z)

)
=
(
ξψ(W)ξθ(Z)

)
f(W ∪ Z)

and extend it for sums of such terms so that the distributive law holds.
Then Equation (3.5) has the form

f(ψ∧ θ) =
∑
X
ξψ∧θ(X)f(X) =

(∑
Y
ξψ(Y)f(Y)

)
⊗
(∑
Z
ξθ(Z)f(Z)

)
.

Returning to the example, we use the ⊗ product to obtain

f(¬A∧¬B) =
(
f(∅)− f(A)

)
⊗
(
f(∅)− f(B)

)
= f(∅)− f(A)− f(B)+ f(AB).

The rule for negation yields

f(A∨ B) = f(¬(¬A∧¬B)) = f(A)+ f(B)− f(AB).

Similarly we obtain

f(¬(B ∨ C)) = f(∅)− f(B)− f(C)+ f(BC).

Putting these results together using the ⊗ product yields, after simplifica-
tion, the goal:

f((A∨ B)∧¬(B ∨ C)) = f(A)− f(AB)− f(AC)+ f(ABC).

Example 3.10. If the query is a disjunction of attributes, φ =
∨
D, we

can transform it by de Morgan’s laws to∨
D ≡ ¬

(∧
A∈D

¬A
)

and apply Eq. (3.5) to obtain

f
(∨
D
)
= f(∅)−

O
A∈D

(f (∅)− f(A)) =
∑
X
[∅ 6= X ⊂ D] (−1)|X|+1f(X).

This is, of course, the inclusion-exclusion principle.

In this section we have shown how one can exactly evaluate arbitrary
Boolean queries using the frequencies of itemsets: by Proposition 3.5, the
frequency of the query is representable as an inner product between a
vector depending only on the query and another vector that contains the
frequencies of all itemsets. This is of course only useful if all the itemset
frequencies are known. Otherwise, we need to find approximate answers,
which is the subject of the next section.

22

Truncated inclusion-exclusion

3.3 Truncated inclusion-exclusion

We now return to the support estimation problem, and present the ap-
proach of truncating the sum ~ξφ · ~f to the known terms. In this approach,
which we name Truncate Sum, we compute

f̂ (φ) = ~ξφ · ~f0, (3.8)

where ~f0 is a vector where the unknown frequencies are replaced by
zeros,

f0(X) =

f(X), X ∈ Fσ ,0, otherwise.

This approach was originally suggested by Mannila and Toivonen [MT96].
Compared to their work, we give a more thorough analysis: we first
consider the case of disjunctions and derive a bound which we show to
be tight, and then generalize the bound to arbitrary queries.

First, we give a simple example. Assume that φ =
∧
C for some

itemset C ⊂ U , i.e., f(φ) = f(C). Then we have ζφ(Y) = [C ⊂ Y] and

ξφ(X) =
∑
Y⊂X
(−1)|X\Y |[Y ⊃ C] =

1, X = C,
0, X 6= C,

and therefore f̂ (φ) = f(φ) if C ∈ Fσ and f̂ (φ) = 0 otherwise. In the
former case, the error is zero, and in the latter case, it is bounded by σ .
We thus have the following result.

Proposition 3.11. For a conjunction of attributes φ =
∧
C, Truncate

Sum yields results to Approximate Query that have maximal absolute
error σ .

In Section 3.4, we analyze the Truncate Sum algorithm for disjunc-
tions of attributes (φ =

∨
D for D ⊂ U), and show experimental results in

Section 3.5. In Section 3.6 we address the problem for arbitrary queries,
also with experimental results in Section 3.7. We conclude this section
by looking briefly into how the Truncate Sum algorithm can be imple-
mented.

To compute the truncated sum (3.8), we need of course the frequencies
of all frequent itemsets and the coefficients ~ξφ of the query φ. Given
these inputs, the computation is a simple inner product, which can be
performed in time that is linear in the size of the inputs. If the query
belongs to a suitably restricted class (such as the disjunctions of attributes
considered in the following section), the coefficients ~ξφ can be computed

23

3. Approximating Boolean queries using frequent itemsets

on the fly. In the general case, we must compute these coefficients from
the query.

We assume that the query is represented by listing the exact-frequency
coefficients ζφ(X) for every frequent itemset X. This is the most general
way to represent Boolean queries, but may not be the simplest. If the
query is given as a (syntactic) formula, we can either obtain the coefficients
in a manner similar to (but simpler than) Proposition 3.8, or simply
evaluate the query for each frequent itemset; the number of evaluations
needed is the size of Fσ , and thus linear in the size of the input.

Given the exact-frequency coefficients ζφ(X) for frequent itemsets X,
we can apply Eq. (3.2) to obtain the frequency coefficients needed for the
truncated sum (3.8). The simplest possible way to evaluate the formula is
inefficient: to compute ξφ(X), we need to sum 2|X| numbers. However,
we can trade a little space to reduce the computation time. Define for
each set X and integer j, 0 ≤ j ≤ |X|, the number Sj(X) as the sum

Sj(X) =
∑
Y
[Y ⊂ X] [|Y | = j]ζφ(Y).

If we can compute these numbers, we can easily obtain the coefficients
ξφ(X) =

∑
j(−1)|X|−jSj(X). In the case j = |X|, the definition reduces

to Sj(X) = ζφ(X), and for j < |X|, we have

Sj(X) =
1

|X| − j
∑
Y
[Y ∈ ∂X]Sj(Y).

To see this, note that a j-element set Z ⊂ X is included in every set Y ∈ ∂X
except those that lack an element of Z .

Thus we can compute the numbers Sj from the bottom up: first,
S0(∅) = ζφ(∅); second, for singletons X, S0(X) = S0(∅) and S1(X) =
ζφ(X); etc. For each set X, we thus need to sum up O(|X|2) numbers,
much fewer than the 2|X| required by the naive approach.

3.4 Disjunctions of attributes

We first attack the case where the query is a disjunction of attributes. We
show a tight bound for the worst-case error of Truncate Sum; the bound
depends exponentially on the size of the negative border.

We denote the disjunctive query by φ =
∨
D, where D is a set of

attributes. The frequency of φ is the fraction of tuples that support φ; a
tuple T ∈ r supports φ if D ∩ T 6= ∅. We can derive the coefficients ξφ
from Eq. (3.2), as in Example 3.10:

f(φ) =
∑
X⊂D

[X 6= ∅] (−1)|X|+1f(X). (3.9)

24

Disjunctions of attributes

The Truncate Sum algorithm computes the shorter sum

f̂ (φ) =
∑
X⊂D

[∅ 6= X ∈ Fσ] (−1)|X|+1f(X). (3.10)

This, essentially, is the query approximation approach proposed by Man-
nila and Toivonen [MT96]. In their Theorem 5, they give an error bound
of C

∑
X∈Bd− f(X) with C = 2b−2 /b, where b denotes the size of the

negative border, b = |Bd−|. We improve the factor C to(
b

db/2e

) /
b

in our Theorem 3.16, and in Theorem 3.18 show that our bound is tight.
The disjunctive query φ =

∨
D ignores attributes outside D. It is

therefore useful to have a notation for the exact frequency of an itemset
when attributes outside D are ignored.

Definition 3.12. The exact frequency of X relative toD, denoted by gD(X),
is defined for X ⊂ D as the fraction of tuples in r whose intersection with D
is X.

Observe that we can write gD as the frequency of a Boolean query:

gD(X) = f
(∧
A∈X

A ∧
∧

A∈D\X
¬A

)
.

The error made in the approximation (3.10) is

e(φ) = f(φ)− f̂ (φ) =
∑
X⊂D

[X ∈ G] (−1)|X|+1f(X), (3.11)

where by G we denote the family of non-frequent sets, i.e., the comple-
ment of Fσ . We seek bounds that relate the error to the negative bor-
der Bd−; the intuition behind such bounds is provided by the well-known
Bonferroni inequalities, which state that if our collection Fσ happens to
contain exactly the itemsets of size at most k, then the error is bounded
by the sum of frequencies of itemsets of size k+1 [GS96]. We start from a
simple lemma that we can use directly to obtain a rather weak inequality
(Corollary 3.14) but that finds more use in the proof of Theorem 3.16.

Lemma 3.13. Let G ⊂ P(U) be an arbitrary upward-closed family of
itemsets not including the empty set. Then

∣∣∣ ∑
X∈G
(−1)|X|

∣∣∣ ≤ (|U|
d|U|/2e

)
.

25

3. Approximating Boolean queries using frequent itemsets

Proof. One way of proving the Bonferroni inequalities is based on pairing
up most of the tuples in G so that each pair cancels out; we proceed
similarly. We first introduce some notation: let t = |U| and t′ = dt/2e. It
is well known that the power set P(U) can be written as a union of

(
t
t′

)
disjoint chains, where a chain means a collection C of sets where for any
two sets X,Y ∈ C , either X ⊂ Y or Y ⊂ X [Bol88, Theorem 1 of Section 4].
The construction of Bollobás yields chains that are symmetric and consist
of consecutive sets: if we write C = {X1, X2, . . . , Xk } with X1 ⊂ X2 ⊂
. . . Xk, then |X1| + |Xk| = t and |Xj+1| = |Xj| + 1 for all 1 ≤ j < k.
Thus, if t is odd, each chain C is of even length, and the alternating
sum

∑
X∈C(−1)|X|+1 is zero. If t is even, the chains from the construction

are of odd length. However, in that case we can remove one attribute A
from U , perform the construction on U \ {A } to obtain a collection
of
(
t−1
t′−1

)
chains, and then add to the collection a duplicate of each chain

with A added to every set: the result is a partition of P(U) into 2
(
t−1
t′−1

)
=(

t
t′

)
chains, each of which consists of an even number of consecutive sets.

We can thus assume that there is a partition U = C1 ∪ C2 ∪ · · · ∪ Cm
of U into m =

(
t
t′

)
disjoint chains such that

∑
X∈Cj(−1)|X|+1 = 0 for each

chain Cj . Now

∑
X⊂U

[X ∈ G] (−1)|X| =
m∑
j=1

∑
X∈Cj

[X ∈ G] (−1)|X|.

Every chain Cj that is wholly contained in either G or its complement
contributes 0 to this sum. Every other chain contributes either 0 or ±1.
Therefore, ∣∣∣ ∑

X⊂U
[X ∈ G] (−1)|X|+1

∣∣∣ ≤m.
Corollary 3.14. For a disjunction of attributes φ =

∨
D,

|e(φ)| ≤
∑
X∈G

(
|X|⌈
|X|/2

⌉)gD(X).
Proof. We write the frequency as a sum over tuples:

f(X) = |r |−1
∑
T∈r
[T ⊃ X],

and therefore the error (3.11) is

e(φ) = |r |−1
∑
T∈r

∑
X⊂T∩D

[X ∈ G] (−1)|X|+1.

26

Disjunctions of attributes

Applying Lemma 3.13, we obtain

|e(φ)| ≤ |r |−1
∑
T∈r

(
|T ∩D|

d|T ∩D|/2e

)
.

The claim follows by observing that gD(X) = |r |−1
∑
T∈r [T ∩D = X].

Recall that the Bonferroni inequalities, which apply to the case where
the family Fσ consists of all itemsets of size at most k, give an error
bound related to the itemsets of size k+1. A natural analogue of the size
k+ 1 itemsets is the negative border Bd− [MT96]. Recall that it is defined
as the family of minimal non-frequent sets:

Bd− = {X ∈ G | Y ∈ Fσ ∀Y ⊊ X }.

If Fσ consists of sets of size at most k, then Bd− is obviously the family
of sets of size k+ 1. Thus, the negative border is a generalization of the
Bonferroni bound.

We prove a lemma connecting the negative border to the error e(φ).
First, we need to introduce some more notation: GD is the set of non-
frequent subsets of D,

GD = {X | X ∈ G, X ⊂ D },

and the negative border relative to D, denoted Bd−D, consists of the min-
imal sets in GD. Note that Bd−D ⊂ Bd−, since if X is minimal in GD, all
subsets of X are in Fσ , and therefore X is minimal also in G.

Lemma 3.15. Consider the query φ =
∨
D. If Bd−D 6= {∅}, the algorithm

Truncate Sum has an error of

e(φ) =
∑

∅6=E⊂Bd−D

(−1)|E|+|
⋃
E|gD

(⋃
E
)
. (3.12)

Before proving the lemma, we illustrate it by considering some simple
cases. If Bd−D consists of a single set B 6= ∅, the error is an inclusion-
exclusion sum

e(φ) =
∑
X
[B ⊂ X ⊂ D] (−1)|X|+1f(X),

which is exactly the inclusion-exclusion expression for (−1)|B|+1gD(B).
Likewise, if Bd− is the two-set family {B1, B2 } with Bj ∩D 6= ∅ for j =

1,2, we obtain

e(φ) =
∑
X
[B1 ⊂ X ⊂ D or B2 ⊂ X ⊂ D] (−1)|X|+1f(X).

27

3. Approximating Boolean queries using frequent itemsets

We can use inclusion-exclusion to decompose the condition on X:

[B1 ⊂ X ⊂ D or B2 ⊂ X ⊂ D]
= [B1 ⊂ X ⊂ D]+ [B2 ⊂ X ⊂ D]− [B1 ∪ B2 ⊂ X ⊂ D]

Thus we can break the formula for e(φ) into three components, which
sum up to gD(B1), gD(B2) and −gD(B1 ∪ B2). The proof of the lemma is
a straightforward extension of this idea.

Proof of Lemma 3.15. Recall that the error is given by

e(φ) =
∑
X
[X ∈ GD] (−1)|X|+1f(X). (3.13)

We can rewrite the condition X ∈ GD in terms of the minimal sets in GD
as follows. We have X ∈ GD if and only if X ⊃ B for some B ∈ Bd−D. We
apply inclusion-exclusion on the Iverson function:

[X ∈ GD] =
∑

B∈Bd−D

[B ⊂ X ⊂ D]−
∑

B1,B2∈Bd−D

[B1 ∪ B2 ⊂ X ⊂ D]+ · · ·

=
∑

∅6=E⊂Bd−D

(−1)|E|+1 [⋃E ⊂ X ⊂ D].
Substituting this into the error sum (3.13) and changing the order of
summation, we obtain

e(φ) =
∑

∅6=E⊂Bd−D

(−1)|E|+1
∑
X

[⋃
E ⊂ X ⊂ D

]
(−1)|X|+1f(X).

It now suffices to show that for Y ⊂ D,

(−1)|Y |gD(Y) =
∑
X
[Y ⊂ X ⊂ D] (−1)|X|f(X), (3.14)

for then letting Y =
⋃
E yields (3.12). To establish (3.14), we consider

a tuple T ∈ r and write T = R ∪ S with R ⊂ D, S ⊂ U \ D. The tuple
contributes (−1)|R| to all terms on the right-hand side where Y ⊂ X ⊂ R.
In the case R = Y , there is only one such X and the contribution is
exactly (−1)|Y |. In all other cases, the contributions cancel out.

Based on the lemma, we can prove an analogue to the Bonferroni
inequalities that gives, however, rather large bounds compared to the
Bonferroni case.

Theorem 3.16. For a disjunction of attributes φ =
∨
D, the absolute

error |e(φ)| of Truncate Sum is bounded by(
|Bd−D|⌈
|Bd−D|/2

⌉)|Bd−D|−1
∑

X∈Bd−D

f(X).

28

Disjunctions of attributes

Proof. Arrange the sum (3.12) in the form

e(φ) =
∑
X∈GD

ν(X)gD(X).

For the coefficients ν(X) we have

ν(X) = (−1)|X|
∑

E⊂Bd−X

[⋃
E = X

]
(−1)|E|.

In this sum, the condition
[⋃
E = X

]
defines an upwards-closed subfamily

of the powerset of Bd−X . We know from Lemma 3.13 that the absolute value

of this alternating sum is bounded by
(
m
m′

)
with m = |Bd−X| and m′ =

dm/2e.
Arrange also the sum

∑
X∈Bd−D

f(X) in the form∑
X∈GD

µ(X)gD(X).

We have for the coefficients µ(X)

µ(X) =
∑

Y∈Bd−D

[Y ⊂ X] = |Bd−X| > 0

for all X ∈ GD. The ratio |ν(X)|/µ(X) is bounded by
(
m
m′

)
/m, and this

bound is largest for X = D. Thus

|e(φ)| ≤
∑
X∈GD

|ν(X)|gD(X) ≤
∑
X∈GD

(
max

|ν(X)|
µ(X)

)
µ(X)gD(X)

≤
(
|Bd−D|⌈
|Bd−D|/2

⌉)|Bd−D|−1
∑

X∈Bd−D

f(X).

Using the inequality f(X) < σ for X ∈ Bd−, we can obtain a form of
the bound that is independent of the actual frequencies of sets in the
border.

Corollary 3.17. For a disjunction of attributes φ =
∨
D,

e(φ) ≤
(
|Bd−|⌈
|Bd−|/2

⌉)σ.
Thus, the bound depends superpolynomially on the size of the border.

A natural question is whether the bound can be improved. The answer is
negative: the bound is in the worst case tight. To prove this, we construct
an example with a small negative border and a large approximation error.

29

3. Approximating Boolean queries using frequent itemsets

The key part in the construction is arranging for equality to hold when
Lemma 3.13 is used in the proof of Theorem 3.16. This is the case when
the minimal families E ⊂ Bd−X that satisfy the condition

⋃
E = X are

exactly of size
⌈
|Bd−X|/2

⌉
.

Theorem 3.18. Given any positive integer m, there exists a set U , a re-
lation r over U , and a downward-closed collection of itemsets F such
that |Bd−| ≥m, and for the disjunctive query φ =

∨
U the absolute error

of Truncate Sum is

|e(φ)| =
(
|Bd−|⌈
|Bd−|/2

⌉)|Bd−|−1
∑

X∈Bd−
f(X).

Proof. Choose integer parameters p > k > dm/2e; p will be the number of
sets in the negative border, and we will see later that choosing p = 2k+ 1
suits our purposes well. We need n =

(
p
k

)
attributes: let U = [n] =

{1, . . . , n }. We set up Bd− so that for all families E ⊂ Bd−, |E| ≤ k
implies

⋃
E 6= U , and |E| > k implies

⋃
E = U . To achieve this, we first

enumerate all the k-element subsets of [p]; there are n of them, and we
name them K1, K2, . . . , Kn in some arbitrary order. Then for all q ∈ [p],
we define Wq as the set of those i such that q ∉ Ki. Let Bd− = {Wq |
q ∈ [p] }. Note that Bd− is an antichain, since all sets Wq have the same
number of elements; thus we can define F as the downward-closed
collection of sets that are not supersets of any sets in Bd−, and Bd− will
automatically be the negative border corresponding to F .

We must now prove the assertion that for E ⊂ Bd−,
⋃
E = U if and

only if |E| > k. Given any collection E of border sets, we can write E =
{Wq | q ∈ Q } for some index set Q ⊂ [p]. If |E| = |Q| ≤ k, some set Ki
must be a superset of the index set Q, since we have enumerated all k-
element subsets of [p]. But then we have that i ∉

⋃
E, and thus

⋃
E 6= U .

Conversely, if
⋃
E 6= U , there must be some i ∉

⋃
E, and therefore

for all q ∈ Q we must have q ∈ Ki, because i ∉ Wq. But this means
that Q ⊂ Ki, and therefore |E| = |Q| ≤ |Ki| = k. We have thus shown
that

⋃
E = U if and only if |E| > k.

For the query φ, we select the disjunction of all attributes, φ =
∨
U .

The terms gD(X) reduce to the usual exact frequencies g(X), and the
family Bd−D to the usual negative border Bd−. We make all sets in the
complement of F equally frequent by letting g(U) = c and g(X) = 0
for all X ∉ F , X 6= U . To ensure that F = Fσ for some value of σ and
that

∑
X g(X) = 1, we let g(X) = (1 − c)/|Bd+| for all X ∈ Bd+, where

by Bd+ we denote the sets in F that are maximal with respect to subset
containment (the “positive border”).

30

Disjunctions of attributes

Now we are in a position to apply Lemma 3.15. The sum over E ⊂ Bd−

becomes a sum over those E for which
⋃
E = U , since g(

⋃
E) = 0

otherwise. By the construction, these are exactly those E such that |E| >
k. Thus

e(φ) =
∑

E⊂Bd−
(−1)|E|+|r | [|E| > k]c = (−1)|r |

n∑
j=k+1

(−1)j
(
p
j

)
c.

It is an easy proof by induction that

n∑
j=k+1

(−1)j
(
p
j

)
= (−1)k+1

(
p − 1
k

)
.

If we now let p = 2k+ 1, we have

|e(φ)| =
(

2k
k

)
=
(
|Bd−|
|Bd−|/2

)
c.

Since we have f(X) = c for all X ∈ Bd−, the frequency sum of sets in the
border is

∑
X[X ∈ Bd−] f (X) = |Bd−|c = |Bd−D|c.

While the construction creates a small number of sets in the border,
there are of course many sets that are “almost” in the border, which is
not true in the usual Bonferroni situation. Thus, we can define another
kind of border, which in fact gives rise to a Bonferroni-like inequality.

Definition 3.19. The thick negative border Bd−∗ is the family of itemsets X
that are not frequent but that have at least one attribute A such that X \
{A } is frequent.

Theorem 3.20. For a disjunction of attributes φ =
∨
D,

|e(φ)| ≤
∑

X∈Bd−∗

f(X).

Proof. We write the error e(φ) as a sum over all tuples T ∈ r , e(φ) =
|r |−1

∑
T [T ∈ r]κ(T), and show that the contribution κ(T) made by T

towards e(φ) is bounded by the number of subsets of T in Bd−∗, which
implies the claimed upper bound. The contribution is

κ(T) =
∑

X⊂T∩D
[X ∈ G] (−1)|X|+1, (3.15)

where, again, G is the complement of Fσ . Select any attribute A ∈ T ∩D,
and delete from the sum (3.15) all pairs X,Y ∈ G such that Y = X ∪ {A }.
The sum becomes

κ(T) =
∑

X⊂T∩D
[X ∈ G] [X \ {A } ∈ Fσ] (−1)|X|+1.

31

3. Approximating Boolean queries using frequent itemsets

All sets fulfilling both conditions of the sum are in Bd−∗ ∩P(T ∩D), and
therefore

|κ(T)| ≤
∑
X
[X ⊂ T ∩D] [X ∈ Bd−∗] ≤

∑
X⊂T
[X ∈ Bd−∗].

For the error we obtain by changing the order of summation

|r | · |e(φ)| ≤
∑
X
[X ∈ Bd−∗]

∑
T∈r
[X ⊂ T] = |r |

∑
X
[X ∈ Bd−∗] f (X).

We have proved two theorems for upper-bounding the absolute error:
Theorems 3.16 and 3.20. Both theorems are problematic in practice:
the bound of Theorem 3.16 grows exponentially, and the thick border
of Theorem 3.20 can be very large. It would be useful to find a bound
for Truncate Sum in-between these two theorems. Note that the con-
struction of Theorem 3.18 creates a large number of maximal frequent
sets. By analogy with the negative border, one can define the positive
border Bd+ as the collection of these sets. For the construction, Bd+ is
large and Bd− is small; in many practical cases, Bd+ is smaller and Bd−

larger. The set Bd+ ∪ Bd− seems worth investigating, and we conjecture
(as in [Man02, SM05]) that

e(φ) ≤
∑
X
[X ∈ Bd− ∪ Bd+] f (X).

3.5 Experimental evaluation

To see how well Truncate Sum works in practice, it was evaluated on
the data sets described in Chapter 2. The overall test procedure was
as follows. For each data set, a number of random disjunctive queries
were prepared; frequent itemsets were mined at various thresholds σ ;
the algorithm was run to find its estimates for the queries; and these
estimates were compared to the correct values and to the estimates of two
other algorithms, described later. Details are provided in the following.

Test data. For each data set, a threshold σ was selected. As can be
observed from Figure 2.1 on page 12, it would not be reasonable to use
the same threshold for every data set: at σ = 0.1, no set in T10I4D100K
is frequent, but at σ = 0.9, thousands of sets in Pumsb are frequent.
The values of σ used are listed in Table 3.1, along with the sizes of the
frequent set collections and the negative borders.

32

Experimental evaluation

Data set Threshold Frequent sets Border sets

T10I4D100K 0.01 386 70741
Kosarak 0.01 384 42580
Course 0.02 2349 1516
Abstracts 0.03 3019 202430
T40I10D100K 0.08 138 10179
Mushroom 0.30 2736 415
Pumsb* 0.60 168 7166
Chess 0.90 623 125
Connect 0.90 27128 395
Pumsb 0.95 173 7183

Table 3.1. Thresholds σ with corresponding sizes |Fσ | and |Bd−| of frequent
itemset collections and negative borders.

Queries. Two sets of test queries were prepared, Disjunctions 1 and
Disjunctions 2. Both sets contain only disjunctions of attributes, i.e.,
formulas of the form

φ =
∨
D

with D a set of attributes. In both sets, the number of attributes in a
disjunction varies from 2 to 20, and there are 100 queries of each size.
The difference between the sets is that in Disjunctions 1 the attributes
are selected completely randomly, and in Disjunctions 2, the selection
probability of each attribute A is weighted by f(A); that is, attributes
that occur often in the data also occur often in the queries. Both ways
of selecting the queries could be argued to simulate real life: in some
cases, users could be equally interested in all attributes, while in other
cases, the most frequently occurring attributes could also be the most
interesting.

Algorithms. The Truncate Sum algorithm described in the previous
sections was the main focus of the test. Since it sometimes gives answers
outside the range [0,1], its results were clipped into this range. For com-
parison, two model-based algorithms were implemented: Independence
and Iterative Proportional Fitting. The Independence algorithm is
based on the assumption that the attributes are independent, regardless
of the information in the frequent itemsets: for the query φ =

∨
D, the

algorithm returns

f̂ (φ) = 1−
∏
A∈D

(
1− f(A)

)
.

33

3. Approximating Boolean queries using frequent itemsets

The algorithm does not really implement a solution of the Approximate
Query problem, as it needs the frequencies of all attributes, even the in-
frequent ones. However, all these frequencies are discovered by Apriori,
as every itemset of size 1 must be either frequent or in the border.

The second algorithm is a generalization of the first one. One argu-
ment for the Independence algorithm is that if only the single-attribute
frequencies are known, the independence assumption provides the max-
imum-entropy distribution fitting the frequencies. If, however, more
frequencies are known, the task of finding the maximum-entropy distribu-
tion fitting the input is equally well-defined, and somewhat surprisingly,
there is an elegant algorithm that discovers the distribution. Once the
distribution is known, it is easy to find the estimate f̂ (φ) from the
distribution.

To formalize the task, we interpret the vector ~g as a probability
distribution over U , and define the Shannon entropy

H(~g) = −
∑
X
g(X) logg(X)

for each possible distribution. We seek the distribution that maximizes
the entropy subject to the constraints arising from the frequent itemset
collection: every set in Fσ must have the correct frequency. This is solved
by the Iterative Proportional Fitting algorithm, which starts from the
uniform distribution and iterates correcting the distribution to comply
with each constraint. Each correction may break earlier constraints, but
the algorithm has been proved to converge to the maximum-entropy
distribution [DS40, IK68]. This algorithm has been used in the frequent
itemset context by Pavlov et al. [PMS00, PS01].

The Iterative Proportional Fitting algorithm is elegant and easy to
implement, but there are some disadvantages. The most serious problem
is scalability. Since the algorithm keeps in memory the full distribution ~g,
consisting of 2|U| numbers, the method as described above is clearly only
applicable for very few attributes. The natural way to cope with this is to
project the data to the subset of attributes appearing in the query. For
more than about 13 attributes, the algorithm was impractically slow. As
the slowdown is exponential, it is unlikely that any simple optimizations
of the algorithm would allow processing significantly larger queries; thus
the algorithm was only run for queries having at most 13 attributes.

Another problem is that if only the frequent itemsets are used as input,
the algorithm often gives results that are very far off the mark. This prob-
lem is an analogue of the need in Independence to include all attributes
in the input, not only frequent ones. If an infrequent attribute is omitted,
the maximum-entropy assumption is that its frequency is 0.5. Similar

34

Experimental evaluation

situations can also happen at higher levels of the itemset lattice: if we are
estimating the frequency of, say A∨ B, and A and B are frequent but AB
is not, the maximum-entropy assumption is that f(AB) = f(A)f(B),
no matter how low the frequency threshold σ is. To alleviate this kind
of problems, the negative border was added to the input. It is obvious
from Table 3.1 that in many cases the input becomes considerably larger,
sometimes by two orders of magnitude. Even the number of sets of size 1
(see Table 2.2 on page 11) is sometimes much larger than the number
of frequent itemsets. In order to make a fair comparison, results for
Truncate Sum were also computed with the border sets included in its
input.

Another implementation detail is the convergence criterion: the al-
gorithm was deemed to have converged when the L1 distance between
successive distributions falls below 0.001, or after 100 iterations.

Results. Figures 3.1 and 3.2 display the errors for the three algorithms
for the two sets of queries in the various data sets. The errors are
visualized using a “box and whiskers” plot, which shows the median
value as a horizontal line and the interquartile range as a box around the
median; that is, the lower end of the box shows the 25th percentile and
the upper end the 75th percentile. The whiskers (dashed lines ending in
a short horizontal bar) show the range of the data outside the box, but
the distance between the whiskers is restricted to be at most 1.5 times
the interquartile range; points outside this range are plotted individually.
For example, the Course panel of Figure 3.1 shows that in the Course data
the Truncate Sum algorithm without border sets (leftmost plot) makes
a median error of about 0.02, most of the errors are below 0.05, but the
maximal errors are about 0.18; and when the border sets are included
(second plot), the majority of the errors are smaller, but the maximal
errors reach over 0.25.

Overall, these results show that the Independence algorithm usually
outperforms Truncate Sum on the data sets and queries tested, with the
thresholds used. The exceptions occur in the Course and Kosarak data
sets: in Course, Truncate Sum is clearly better than Independence on
both query sets even without the border sets, and similarly in Kosarak in
the Disjunctions 2 queries, where the most frequently occurring attributes
are weighted. Interestingly, there are some cases where including the
border sets increases the errors made by Truncate Sum; this occurs
clearly in Disjunctions 2 in Course, Kosarak, and Mushroom, and to some
extent in Disjunctions 1 in Mushroom; there, the median and maximum
errors increase, although the third quartile decreases slightly. We will
return to this issue in Section 3.8.

35

3. Approximating Boolean queries using frequent itemsets

Abstracts

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09
Chess

0.0

0.2

0.4

0.6

0.8

1.0
Connect

0.0

0.2

0.4

0.6

0.8

1.0
Course

0.00

0.05

0.10

0.15

0.20

0.25

0.30
Kosarak

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

Mushroom

0.0

0.2

0.4

0.6

0.8

1.0
Pumsb

0.0

0.2

0.4

0.6

0.8

1.0
Pumsb*

0.0

0.2

0.4

0.6

0.8

1.0
T10I4D100K

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
T40I10D100K

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 3.1. Results on Disjunctions 1 in all data sets. In each subfigure, the
leftmost plot shows the absolute error of Truncate Sum without the border sets,
the second plot shows the corresponding results with the border sets included,
the third plot shows the absolute error of Independence, and the rightmost plot
the absolute error of Iterative Proportional Fitting. Note that Iterative Proportional
Fitting could only be run for 1200 of the 1900 queries (those with at most 13
attributes), and that the scaling differs between the subfigures.

The Iterative Proportional Fitting algorithm was overall the best
of the three. This result is not surprising, since Independence coincides
with the the σ = 1 special case of Iterative Proportional Fitting:
in this case the input consists of exactly the sets of size 1 (except if
some sets other than ∅ have frequency 1, which does not occur in the
test data sets), in which case the maximum entropy principle reduces to
the independence assumption. It must be remembered, however, that it
was possible to run Iterative Proportional Fitting only for the 1200
queries with at most 13 attributes, and the results are thus not directly
comparable. Also, as was pointed out in the description of the algorithms,
it needs more input than Truncate Sum: if the sets in the border are
omitted, many of the results (not shown) are much worse. When the sets
in the border are included, the results of Truncate Sum are in many
cases close to those of Iterative Proportional Fitting.

Figures 3.3 and 3.4 illustrate the dependence of the results on the
number of attributes in the queries in two of the data sets. Figure 3.3
depicts errors in Course data, Figure 3.4 in T10I4D100K. In each figure,

36

Experimental evaluation

Abstracts

0.0

0.1

0.2

0.3

0.4

0.5

0.6
Chess

0.0

0.2

0.4

0.6

0.8

1.0
Connect

0.0

0.2

0.4

0.6

0.8

1.0
Course

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Kosarak

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Mushroom

0.0

0.2

0.4

0.6

0.8

1.0
Pumsb

0.0

0.2

0.4

0.6

0.8

1.0
Pumsb*

0.0

0.2

0.4

0.6

0.8

1.0
T10I4D100K

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16
T40I10D100K

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Figure 3.2. Results on Disjunctions 2 in all data sets. As in Figure 3.1, the plots
correspond from left to right to Truncate Sum without and with the border sets,
Independence, and Iterative Proportional Fitting.

the errors on the Disjunctions 1 queries are displayed as a function
of the number of attributes in the queries. Figure 3.3 shows that the
improvement observed in Truncate Sum when adding the border sets is
mainly due to the queries with few attributes. In the longer queries, both
the large outliers and the majority of the errors are in fact larger than
without the border sets. The results shown in Figure 3.4 are dramatically
different: adding the border sets improves the results across all queries.

In both cases, the absolute error of Truncate Sum increases with
the length of the query. There are at least two possible explanations.
First, when the set D of attributes in the query φ =

∨
D increases, the

number |GD| of non-frequent subsets of D increases, and so does the
size of the border relative to D, Bd−D. Indeed, the limit of Theorem 3.16
depends on the size of the border. The second possible explanation is that
the error could depend on the result f(φ), which also increases with |D|.
For example, an algorithm that always returns the estimate f̂ (φ) = 0
would behave like this. The first explanation is suggested by Figure 3.5,
where the errors e(φ) are plotted against the correct results f(φ) for
different-length queries in Disjunctions 1 and 2 in Course data. The figure
exhibits a clear dependence between the query length and the correct
result, and this dependence seems to explain the increase in the error.

37

3. Approximating Boolean queries using frequent itemsets

Truncate Sum

2 4 6 8 10 12 14 16 18 20
0.00

0.05

0.10

0.15

0.20

0.25

0.30
Truncate Sum with border

2 4 6 8 10 12 14 16 18 20
0.00

0.05

0.10

0.15

0.20

0.25

0.30

Independence

2 4 6 8 10 12 14 16 18 20
0.00

0.05

0.10

0.15

0.20

0.25

0.30
Iterative Prop. Fitting

2 4 6 8 10 12 14 16 18 20
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Figure 3.3. Errors conditioned on the number of attributes in a query in Course
data, Disjunctions 1 queries, threshold σ = 0.02. Note the different scale in the
last panel.

Truncate Sum

2 4 6 8 10 12 14 16 18 20
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
Truncate Sum with border

2 4 6 8 10 12 14 16 18 20
0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

Independence

2 4 6 8 10 12 14 16 18 20
0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018
Iterative Prop. Fitting

2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7
×10-3

Figure 3.4. Errors conditioned on the number of attributes in a query in
T10I4D100K data, Disjunctions 1 queries, threshold σ = 0.01. Note the dif-
ferent scale in the first and last panels.

38

Experimental evaluation

5 attributes

0.0 0.2 0.4 0.6 0.8 1.0

0.1

0.2

0.3

10 attributes

0.0 0.2 0.4 0.6 0.8 1.0

0.1

0.2

0.3

15 attributes

0.0 0.2 0.4 0.6 0.8 1.0

0.1

0.2

0.3

20 attributes

0.0 0.2 0.4 0.6 0.8 1.0

0.1

0.2

0.3

5 attributes

0.0 0.2 0.4 0.6 0.8 1.0

0.1

0.2

0.3

10 attributes

0.0 0.2 0.4 0.6 0.8 1.0

0.1

0.2

0.3

15 attributes

0.0 0.2 0.4 0.6 0.8 1.0

0.1

0.2

0.3

20 attributes

0.0 0.2 0.4 0.6 0.8 1.0

0.1

0.2

0.3

Disjunctions 1 Disjunctions 2

Figure 3.5. Dependence of errors on real frequencies in Disjunctions 1 and 2,
Course data, σ = 0.02. Correct frequency f(φ) on x-axis, error e(φ) of Truncate
Sum on y-axis.

In order to further investigate this phenomenon and to test how close
the upper bound of Theorem 3.16 is to reality, Figures 3.6 and 3.7 display
the errors relative to the border. The quantity depicted in the box-and-
whiskers plots is |e(φ)|/

∑
X[X ∈ Bd−D] f (X), the error relative to the sum

of the frequencies of the sets in the negative border. To prevent division
by zero, cases where e(φ) = 0 were plotted as 0, regardless of the value
of the border sum. When computing the error e(φ), the estimate f̂ (φ)
was not clipped to the interval [0,1]. Thus, Theorem 3.18 implies that
this quantity could be as high as

(
m

dm/2e

)
/m with m = |Bd−D|. Remarkably,

the highest values are approximately 1.0, showing that the construction
of Theorem 3.18 is quite artificial.

To check against implementation errors, an end-to-end test was run,
using as input the construction of Theorem 3.18 with parameters p = 7,
k = 2, c = 1/2, and computing the error relative to the sum of frequencies
in the border, as in Figure 3.6. The result was 2.14 ≈

(
6
2

)
/7, as predicted

by the theorem. With these parameters, there were 2096730 frequent
itemsets, close to the 221 possible. Testing the case k = 3 proved compu-
tationally difficult, as the number of frequent itemsets would have been
of the order of 235.

39

3. Approximating Boolean queries using frequent itemsets

Abstracts

5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

Chess

5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

Connect

5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

Course

5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

Kosarak

5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

Mushroom

5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

Pumsb

5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

Pumsb*

5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

T10I4D100K

5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

T40I10D100K

5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

Figure 3.6. Error of Truncate Sum relative to the sum of frequencies of sets
in the border, |e(φ)|/

∑
X[X ∈ Bd−D] f (X) for Disjunctions 1. In computing the

error e(φ), the result f̂ (φ) of Truncate Sum is not clipped into [0,1]. Length of
query on x-axis.

Abstracts

5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

Chess

5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

Connect

5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

Course

5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

Kosarak

5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

Mushroom

5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

Pumsb

5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

Pumsb*

5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

T10I4D100K

5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

T40I10D100K

5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

Figure 3.7. Error of Truncate Sum relative to the sum of frequencies of sets
in the border, |e(φ)|/

∑
X[X ∈ Bd−D] f (X) for Disjunctions 2. In computing the

error e(φ), the result f̂ (φ) of Truncate Sum is not clipped into [0,1]. Length of
query on x-axis.

40

Experimental evaluation

A fact partially obscured by the box-and-whiskers plots in Figures 3.6
and 3.7 is that the distribution of errors is bimodal, especially in the dense
data sets such as Chess and Connect: one mode is close to 0, another
is higher. To investigate the effect of the threshold σ on the results,
the errors for a small number of queries were plotted in Figures 3.8,
3.9 and 3.10, for the data sets Abstracts, Mushroom, and T40I10D100K,
respectively. The two rows show results for the query sets Disjunctions 1
and 2, and the three columns correspond to three different queries
selected from each of the query sets. The queries were selected by the
absolute difference in the errors of Independence and Truncate Sum:
the first column shows the query where Independence wins by the largest
margin, the second the median query, and the third the query where
Truncate Sum wins by the largest margin. The number of attributes
in each selected query is indicated in the subfigures. In each subfigure,
the x-axis corresponds to σ and the y-axis to absolute frequencies. The
solid line displays the real frequency f(φ) and the dotted line the result
of Independence (which always uses all sets of cardinality 1 and thus
does not depend on σ). The circles display the estimate of Truncate
Sum, again not clipped to [0,1], and without using the border sets. The
crosses display the estimate if the border sets are included.

Figure 3.8 shows that the query in Disjunctions 1 where Independence
most beats Truncate Sum is one where the individual attributes have
low frequencies that have a relatively large sum. The algorithms that use
the individual frequencies as input do very well in this case. The median
case is similar, only with a lower frequency of the query. The third case,
where Truncate Sum wins Independence by the largest margin, clearly
shows the result dropping by about 0.04 when σ increases from 0.03
to 0.05. The compensation by the border sets (the crosses) helps in this
case, as in the preceding ones. In Disjunctions 2, where attributes are
chosen with a weight proportional to their frequency, the worst case for
Truncate Sum is fairly bad, and adding the border is an improvement as
often as not. In the best case, however, adding the border is definitely an
improvement with all values of σ used except for the smallest (and even
then the degradation is slight).

Figure 3.9, generated from the fairly dense Mushroom data set, shows
that in both of the worst cases increasing σ improves the results. This
seeming paradox may be caused by the selection criterion: these are the
cases where the results of Truncate Sum at σ = 0.3 are extremely bad,
and reducing the number of terms in the sum is likely to improve the
result. In the median cases the results are better, and the performance
degrades with increasing σ , as would be expected. In most cases including
the border in the sum causes severe degradation in the results.

41

3. Approximating Boolean queries using frequent itemsets

18 attributes

0.03 0.05 0.07 0.09 0.11

0.00

0.02

0.04

0.06

0.08

0.10

19 attributes

0.03 0.05 0.07 0.09 0.11

0.000

0.005

0.010

0.015

15 attributes

0.03 0.05 0.07 0.09 0.11

0.20

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

20 attributes

0.03 0.05 0.07 0.09 0.11

0.4

0.6

0.8

1.0

1.2

1.4

3 attributes

0.03 0.05 0.07 0.09 0.11

0.00

0.01

0.02

0.03

0.04

4 attributes

0.03 0.05 0.07 0.09 0.11

0.35

0.40

0.45

0.50

D
is

ju
n

c
ti

o
n

s
1

D
is

ju
n

c
ti

o
n

s
2

Figure 3.8. Estimates for single queries in Abstracts with varying thresholds σ .
Solid line: real frequency; dotted line: Independence; circles: Truncate Sum;
crosses: Truncate Sum with border sets; diamonds: Iterative Proportional Fitting
(when possible). Note the different vertical scales in subfigures, and see the text
on how the queries were selected.

20 attributes

0.3 0.4 0.5 0.6 0.7 0.8

-2

0

2

4

6

6 attributes

0.3 0.4 0.5 0.6 0.7 0.8

0.0

0.5

1.0

1.5

2.0

3 attributes

0.3 0.4 0.5 0.6 0.7 0.8
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

15 attributes

0.3 0.4 0.5 0.6 0.7 0.8

-4

-2

0

2

4

6

8

9 attributes

0.3 0.4 0.5 0.6 0.7 0.8

0

1

2

3

4

2 attributes

0.3 0.4 0.5 0.6 0.7 0.8
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

D
is

ju
n

c
ti

o
n

s
1

D
is

ju
n

c
ti

o
n

s
2

Figure 3.9. Estimates for single queries in Mushroom with varying thresholds σ .
Symbols as in Figure 3.8. Note the different vertical scales in subfigures, and see
the text on how the queries were selected.

42

Experimental evaluation

19 attributes

0.08 0.09 0.10 0.11 0.12

0.0

0.2

0.4

0.6

0.8

5 attributes

0.08 0.09 0.10 0.11 0.12

0.00

0.05

0.10

0.15

0.20

18 attributes

0.08 0.09 0.10 0.11 0.12

0.2

0.4

0.6

0.8

1.0

20 attributes

0.08 0.09 0.10 0.11 0.12

0.5

1.0

1.5

2.0

18 attributes

0.08 0.09 0.10 0.11 0.12

0.0

0.5

1.0

1.5

17 attributes

0.08 0.09 0.10 0.11 0.12

0.2

0.4

0.6

0.8

1.0

1.2

D
is

ju
n

c
ti

o
n

s
1

D
is

ju
n

c
ti

o
n

s
2

Figure 3.10. Estimates for single queries in T40I10D100K with varying thresh-
olds σ . Symbols as in Figure 3.8. Note the different vertical scales in subfigures,
and see the text on how the queries were selected.

Figure 3.10 is based on the T40I10D100K data, which has the lowest
number of frequent itemsets at the threshold σ = 0.08 used. Thus it
is not surprising that the worst case in Disjunctions 1 has zero as the
estimate of Truncate Sum, and many attributes in the query. The worst
case in Disjunctions 2 is similar to the one in the Mushroom data. Again,
including the border in the sum helps in the bad cases in Disjunctions 1
but mostly makes the result worse in other cases.

Conclusions. With the query models used in this experiment, Truncate
Sum performs much better on the sparser data sets tested. Adding the
border sets usually improves the performance of Truncate Sum, but not
consistently. The Independence algorithm often beats Truncate Sum,
with some exceptions, and Iterative Proportional Fitting is usually
even better on those queries where it can be run in a reasonable time.

The errors increase with the length of the query, which is more likely
attributable to the increase in the size of the border than to a dependence
on the error on the frequency of the query. However, the error does not
increase nearly as fast as the sum of the frequencies of the sets in the
border for any of the data sets tested, although the theoretical upper
bound of Theorem 3.16 suggests that the inverse could be true. As a
function of σ , the performance of Truncate Sum is fairly unstable.

43

3. Approximating Boolean queries using frequent itemsets

3.6 Arbitrary queries

In this section we generalize the discussion of Section 3.4 by proving
counterparts of Lemma 3.15 and Theorem 3.16. The bounds provided by
these results can be even larger than the disjunction-specific bounds of
Section 3.4.. We start by proving a generalization of Lemma 3.15, which
represents the error using inclusion-exclusion on itemset families E ⊂
Bd−.

Lemma 3.21. When φ is a Boolean formula with exact-frequency coeffi-
cients ζ(X) = [X î φ] and the border Bd− does not contain the empty
set,

e(φ) =
∑
X
ν(X)g(X),

where

ν(X) = (−1)|X|
∑

∅6=E⊂Bd−X

(−1)|E|+1
∑
Y

[
X \

⋃
E ⊂ Y ⊂ X

]
(−1)|Y |ζ(Y).

Proof. The error is

e(φ) =
∑
X
[X ∈ G] ξ(X)f(X)

=
∑
X,Y
[X ∈ G] f (X) [Y ⊂ X] (−1)|X\Y |ζ(Y).

Again we apply inclusion-exclusion on the condition X ∈ G:

[X ∈ G] =
∑

∅6=E⊂Bd−
(−1)|E|+1 [X ⊃⋃E],

obtaining

e(φ) =
∑

∅6=E⊂Bd−
(−1)|E|+1

∑
X,Y

[
X ⊃

⋃
E
]
f(X) [Y ⊂ X] (−1)|X\Y |ζ(Y)

=
∑

∅6=E⊂Bd−
(−1)|E|+1

∑
Y
(−1)|Y |ζ(Y)

∑
X

[
X ⊃

⋃
E ∪ Y

]
(−1)|X|f(X)

=
∑

∅6=E⊂Bd−
(−1)|E|+1

∑
Y
(−1)|Y |+|

⋃
E∪Y |ζ(Y)g

(⋃
E ∪ Y

)
.

Regrouping the terms yields

e(φ) =
∑
X
g(X)(−1)|X|

∑
∅6=E⊂Bd−X

(−1)|E|+1
∑
Y

[
X \

⋃
E ⊂ Y ⊂ X

]
(−1)|Y |ζ(Y),

which is the claim.

44

Arbitrary queries

To see that this generalizes Lemma 3.15, let φ =
∨
D. Then ζ(X) =

[X ∩D 6= ∅]. Consider the sum over Y :∑
Y

[
X \

⋃
E ⊂ Y ⊂ X

]
(−1)|Y |[Y ∩D 6= ∅]. (3.16)

We may assume that
⋃
E ⊂ X, since the outer sum is taken over E ⊂ Bd−X .

Furthermore, if
⋃
E contains any attribute A that is not in D, we can pair

up terms corresponding to Y 3 A and Y \ {A }, and thus show that the
sum (3.16) is 0. On the other hand, if X contains any attributes that are
in D but not in

⋃
E, the Iverson function [Y ∩D 6= ∅] is always 1, and

the sum (3.16) is seen to compute the difference in number of even and
odd subsets of

⋃
E, which is of course 0 since

⋃
E 6= ∅.

Assume now that X =
⋃
E ∪ Z with

⋃
E ⊂ D and Z ∩D = ∅. We thus

have for Z ⊂ Y ⊂ X that [Y ∩ D 6= ∅] = [Y 6= Z], and the sum (3.16)
becomes −(−1)|Z| = (−1)|X\

⋃
E|+1 = (−1)|X|+|

⋃
E|+1, since

⋃
E ⊂ X.

We have shown for all X that∑
∅6=E⊂Bd−X

(−1)|E|+1
∑
Y

[
X \

⋃
E ⊂ Y ⊂ X

]
(−1)|Y |ζ(Y)

=
∑

∅6=E⊂Bd−X

[⋃
E ⊂ D

] [
(X \

⋃
E)∩D = ∅

]
(−1)|E|+|

⋃
E|.

The result of Lemma 3.15 follows by noting that for X ⊂ D

gD(X) =
∑
Y
[Y ∩D = ∅]g(X ∪ Y)

and rearranging terms.
The coefficients ν(X) used in the statement of the lemma have already

played a role in proving Theorem 3.16: the key part was showing that

|ν(X)| ≤
(|Bd−X |
d|Bd−X |/2e

)
for disjunctions φ. A natural question then is, how

large can |ν(X)| be for general queries? To answer this question, we
rearrange the sum as

ν(X) = (−1)|X|
∑
Y
[Y ⊂ X] (−1)|Y |ζ(Y)

∑
∅6=E⊂Bd−X

(−1)|E|+1 [X \⋃E ⊂ Y].
(3.17)

Denote by S the innermost sum. We can rewrite it in the form

S =
∑

∅6=E⊂Bd−X

[
X \ Y ⊂

⋃
E
]
(−1)|E|+1, (3.18)

which is seen to be an inclusion-exclusion sum over the upwards-closed
subfamily {

E ⊂ Bd−X
∣∣∣ ⋃E ⊃ X \ Y } (3.19)

45

3. Approximating Boolean queries using frequent itemsets

of the powerset of Bd−X . We have for |S| an upper bound of
(

m
dm/2e

)
,

where m = |Bd−X|, by applying Lemma 3.13 to this sum. Combining this
with the fact that ζ(Y) is always 0 or 1, we obtain

|ν(X)| ≤ 2|X|−1

(
|Bd−X|

d|Bd−X|/2e

)
.

We thus have the following analogue of Theorem 3.16.

Theorem 3.22. For an arbitrary query φ, the absolute error |e(φ)| of
Truncate Sum is bounded by

2|U|−1

(
|Bd−|

d|Bd−|/2e

)
|Bd−|−1

∑
X∈Bd−

f(X).

The bound in the general case is even larger than the one in the
disjunction case. The disjunctive bound is tight, but how close to the
general bound can we come? Consider the sum (3.17). The form of the
alternating sum over Y suggests that a parity-like function would be a
difficult case: if ζ(Y) = 1 if and only if |Y | is even, the sum becomes

ν(X) = (−1)|X|
∑
Y⊂X

[
|Y | even

]
S,

where S is the inclusion-exclusion sum (3.18). The bound for |S| used
Lemma 3.13, where it is easy to see that equality holds if the upwards-
closed family (3.19) consists of those sets E ⊂ Bd−X that have |E| =⌈
|Bd−X|/2

⌉
. But for Y = ∅ exactly this is achieved by the construction in

the proof of Theorem 3.18. For larger sets Y ⊂ X, S is smaller, implying
that this example falls short of the bound; however, the example suffices
to show that if the statement of Theorem 3.22 is to be strengthened,
one cannot simply decrease the general bound for |S|, but more careful
analysis of the double sum (3.17) would be required.

3.7 Experimental evaluation with arbitrary

queries

The results of the previous section indicate that the Truncate Sum algo-
rithm can give significantly worse results in the general case, compared
to the disjunction case. However, from the experimental evaluation in
Section 3.5 we see that the results in that case are much better than
the theoretical bounds. Thus it is interesting to see how the algorithm
performs on arbitrary queries.

46

Experimental evaluation with arbitrary queries

Queries. It is obviously impossible to test any significant fraction of
the 22|U| possible queries. Instead, queries were generated randomly for
each data set from several variations of a query model. In order to mimic
queries that are likely to occur in practice, the models generate queries in
conjunctive normal form, and are more likely to generate queries with
relatively short normal forms. In the first model, which we term Model 1,
a query is a conjunction of disjunctions of attributes; for example, the
query

((A∨ B ∨ C ∨D ∨ E)∧ (A∨ C ∨ F ∨G)∧ (H))

could be generated from this model. The number of disjunctions is dis-
tributed exponentially with parameter λ = 1/5; thus the average number
of disjunctions is 5, but the number varies considerably for individual
queries. The number of attributes in each disjunction is also distributed
exponentially with parameter λ = 1/5, and each attribute is selected ran-
domly from the set U ; the selection is done without replacement within
each disjunction, but the disjunctions are allowed to overlap. Model 2
is otherwise similar, but it allows negations and can thus in principle
generate any Boolean query. In each disjunction each attribute is negated
with probability 1/2. Model 3 modifies Model 1 by weighting the selection
of attributes: the probability that an attribute A is picked is again pro-
portional to f(A). Model 4 combines the modifications of Models 2 and 4:
for each disjunction, the attributes are randomly negated, and they are
picked with probability proportional to their frequency.

Algorithms. The algorithms evaluated were Truncate Sum both with
and without the border sets, and Iterative Proportional Fitting for
queries with at most 13 attributes. The Independence algorithm is not di-
rectly applicable to general queries. Recall that the idea in this algorithm
is to assume that f(

∨
D) = 1−

∏
A∈D(1− f(A)). It could be generalized

for arbitrary queries φ by approximating g(X) in a similar manner for
all X î φ and summing these approximations (or approximating g(X) for
all X 6î φ and subtracting from 1), but since there are in general an expo-
nential number of summands, this was not considered an improvement
upon Iterative Proportional Fitting.

Results. Figures 3.11 to 3.14 show an overview of all results. The gen-
eral trend is that adding negations improves the results of all algorithms,
and weighting the attributes by frequency makes the results worse. Over-
all, the Truncate Sum algorithm performs much better on the sparse
data sets than on the dense ones. This is natural, since the frequency
thresholds that are usable on dense data sets are very high.

47

3. Approximating Boolean queries using frequent itemsets

Abstracts

0.00

0.01

0.02

0.03

0.04

0.05

0.06
Chess

0.0

0.2

0.4

0.6

0.8

1.0
Connect

0.0

0.2

0.4

0.6

0.8

1.0
Course

0.00

0.05

0.10

0.15

0.20

0.25

0.30
Kosarak

0.000

0.002

0.004

0.006

0.008

0.010

Mushroom

0.0

0.2

0.4

0.6

0.8

1.0
Pumsb

0.0

0.2

0.4

0.6

0.8

1.0
Pumsb*

0.0

0.2

0.4

0.6

0.8

1.0
T10I4D100K

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045
T40I10D100K

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Figure 3.11. Results on Model 1 in all data sets. In each subfigure, the first plot
shows the absolute error of Truncate Sum without border sets, the second plot
the results with the border sets included, and the third plot the absolute error of
Iterative Proportional Fitting (for queries with at most 13 attributes, 36.6% of all
queries on average).

Abstracts

0.000

0.005

0.010

0.015

0.020

0.025

0.030
Chess

0.0

0.2

0.4

0.6

0.8

1.0
Connect

0.0

0.2

0.4

0.6

0.8

1.0
Course

0.00

0.01

0.02

0.03

0.04

0.05

0.06
Kosarak

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

Mushroom

0.0

0.1

0.2

0.3

0.4

0.5

0.6
Pumsb

0.0

0.2

0.4

0.6

0.8

1.0
Pumsb*

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
T10I4D100K

0.000

0.005

0.010

0.015

0.020

0.025

0.030
T40I10D100K

0.00

0.05

0.10

0.15

0.20

0.25

Figure 3.12. Results on Model 2 in all data sets. As in Figure 3.11, the plots
show the absolute errors of Truncate Sum without and with the border sets, and
Iterative Proportional Fitting for the queries with at most 13 attributes, which is
36.2% of all queries on average.

48

Experimental evaluation with arbitrary queries

Abstracts

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
Chess

0.0

0.2

0.4

0.6

0.8

1.0
Connect

0.0

0.2

0.4

0.6

0.8

1.0
Course

0.0

0.1

0.2

0.3

0.4

0.5

0.6
Kosarak

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Mushroom

0.0

0.2

0.4

0.6

0.8

1.0
Pumsb

0.0

0.2

0.4

0.6

0.8

1.0
Pumsb*

0.0

0.2

0.4

0.6

0.8

1.0
T10I4D100K

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16
T40I10D100K

0.0

0.1

0.2

0.3

0.4

0.5

Figure 3.13. Results on Model 3 in all data sets. As in Figure 3.11, the plots
show the absolute errors of Truncate Sum without and with the border sets, and
Iterative Proportional Fitting for the queries with at most 13 attributes, which is
36.7% of all queries on average.

Abstracts

0.00

0.02

0.04

0.06

0.08

0.10

0.12
Chess

0.0

0.2

0.4

0.6

0.8

1.0
Connect

0.0

0.2

0.4

0.6

0.8

1.0
Course

0.00

0.02

0.04

0.06

0.08

0.10

0.12
Kosarak

0.000

0.005

0.010

0.015

0.020

0.025

0.030

Mushroom

0.0

0.2

0.4

0.6

0.8

1.0
Pumsb

0.0

0.2

0.4

0.6

0.8

1.0
Pumsb*

0.0

0.2

0.4

0.6

0.8

1.0
T10I4D100K

0.000

0.005

0.010

0.015

0.020
T40I10D100K

0.00

0.05

0.10

0.15

0.20

0.25

Figure 3.14. Results on Model 4 in all data sets. As in Figure 3.11, the plots
show the absolute errors of Truncate Sum without and with the border sets, and
Iterative Proportional Fitting for the queries with at most 13 attributes, which is
36.5% of all queries on average.

49

3. Approximating Boolean queries using frequent itemsets

With these query models there is no strong dependence between the
number of attributes in a query and the error made by Truncate Sum.
This is evidenced by Figures 3.15, which shows the results of Abstracts
as an example of a sparse data set, and 3.16, which shows the results
of Pumsb as an example of a dense one. Since box-and-whiskers plots
would be poorly visible with this range of x-coordinates, the interquartile
range is simply drawn as a line, and points falling outside the range are
plotted. Where there are at most five points at a single x-coordinate, all
of them are plotted. Figures 3.17 and 3.18 show the (unclipped) errors
of Truncate Sum divided by the sum of the frequencies of the sets in
the border on the same two data sets. Again we notice that these errors
start out smaller than the theoretical bound and decrease rapidly with
the increasing number of attributes.

Conclusions. The very large error bound of Theorem 3.22 is not even
approached with these query models. Also the absolute errors are a lot of
the time comparable to the threshold σ . The Iterative Proportional
Fitting algorithm works very well but is only usable for a fairly small
number of attributes in the query. Also at least the obvious generalization
of the Independence algorithm would incur an exponential slowdown as
a function of the number of attributes.

3.8 Correcting the truncation

In this section we present a fairly obvious modification of the Truncate
Sum algorithm motivated by two issues discovered in the experiments:
the fact that adding information (the border sets) can degrade the results
of Truncate Sum, and the instability of the algorithm as a function
of the threshold σ . We motivate the algorithm and give experimental
results that show that while the algorithm does address the issues to
some degree, it is not consistently better than Truncate Sum.

Motivation. The Truncate Sum algorithm essentially makes the as-
sumption that the unknown frequencies are zero. In reality, they are of
course some small numbers from zero to σ . Another reasonable assump-
tion could be that the unknown frequencies are all σ ′, for e.g. σ ′ = σ
or σ ′ = σ/2. We thus have yet another algorithm, which we name Trun-
cate And Correct: compute first f̂ (φ) according to Truncate Sum,
and then add a correction term to counteract the error caused by the
non-frequent itemsets. Which exact value of σ ′ to use is not obvious.
Note that for the upper bound construction of Theorem 3.18, a correction

50

Correcting the truncation

using σ ′ = σ would be right. In practice, we can try to strike a balance
between the basic version of Truncate Sum and the one with the border
sets included: let σ ′ be the largest frequency of the sets in the border.
This makes the estimate of Truncate And Correct a continuous func-
tion of σ : when σ increases past the frequency of an itemset, this set is
removed from the estimate of Truncate Sum but the correction term
counterbalances the change.

To compute the correction, we use Corollary 3.7 to obtain the sum of
all frequency coefficients, and then subtract the coefficients of frequent
itemsets. In other words, we compute

e(φ) =
∑
X
[X ∈ G] ξφ(X)σ ′

= σ ′
(∑
X
[X ⊂ U]ξφ(X)−

∑
X
[X ∈ F] ξφ(X)

)
= σ ′

(
ζφ(U)−

∑
X
[X ∈ F] ξφ(X)

)
where ζφ(U) is computable by evaluating the query on an all-attributes
tuple, and the remaining sum is easy to compute at the same time as the
truncated sum.

Experiments. Similar experiments were performed for Truncate And
Correct as for the other algorithms. Figures 3.19 and 3.20 compare
the errors to those of Truncate Sum with and without the border sets
on Disjunctions 2 and Model 4; the other query sets had fairly similar
results. Generally, it seems that Truncate And Correct has a smaller
maximum error than Truncate Sum at the cost of increasing the error
on the bulk of the results. However, in the most notable cases where
including the border sets made the results worse (Course and Kosarak,
Disjunctions 2) the new algorithm is a definite improvement. It is also
better on some of the denser data sets, but not consistently. Its results
on the two generated data sets are notably bad.

Figures 3.21 and 3.22 show the estimates for a few single queries as
a measure of σ for the Course and T40I10D100K data sets and the two
query sets shown in the preceding figures. The queries were selected
using the difference in errors of Truncate Sum with the border sets
and Truncate And Correct: in each row, the first subfigure shows
the case where Truncate Sum won Truncate And Correct by the
largest margin, the second the median case, and the third the case where
Truncate And Correct won by the largest margin. The figures show
that Truncate And Correct tends to behave in a more stable manner
than Truncate Sum, even if its solution is not better.

51

3. Approximating Boolean queries using frequent itemsets

0 50 100 150 200 250
0.0

0.2

0.4

0.6

0 50 100 150 200 250

0.00

0.01

0.02

0.03

0 50 100 150 200 250

0.0

0.1

0.2

0 50 100 150 200 250

0.00

0.04

0.08

0.12

Figure 3.15. Dependence of error of Truncate Sum on the number of attributes
in a query in Model 1 through 4 for Abstracts. Number of attributes on x-axis,
error (after clipping result of Truncate Sum to [0,1]) on y-axis. Lines show the
interquartile range, unless there are at most five points at a single x-coordinate.
Other points are plotted. Note the varying scales of the subfigures.

0 50 100 150 200 250

0.0
0.2
0.4
0.6
0.8
1.0

0 50 100 150 200 250

0.0
0.2
0.4
0.6
0.8
1.0

0 50 100 150 200 250

0.0
0.2
0.4
0.6
0.8
1.0

0 50 100 150 200 250

0.0
0.2
0.4
0.6
0.8
1.0

Figure 3.16. Dependence of error of Truncate Sum on the number of attributes
in a query in Model 1 through 4 for Pumsb. Number of attributes on x-axis,
error (after clipping result of Truncate Sum to [0,1]) on y-axis. Lines show the
interquartile range as in Figure 3.15.

52

Correcting the truncation

0 50 100 150 200 250

0.0
0.2
0.4
0.6
0.8
1.0

0 50 100 150 200 250

0.0
0.2
0.4
0.6
0.8
1.0

0 50 100 150 200 250

0.0
0.2
0.4
0.6
0.8
1.0

0 50 100 150 200 250

0.0
0.2
0.4
0.6
0.8
1.0

Figure 3.17. Error of Truncate Sum relative to border for Model 1 through 4
for Abstracts. Number of attributes on x-axis, error relative to the sum of
frequencies of sets in the border (as in Figure 3.6) on y-axis. Lines show the
interquartile range as in Figure 3.15. Result of Truncate Sum is not clipped
into [0,1].

0 50 100 150 200 250

0.0
0.2
0.4
0.6
0.8
1.0

0 50 100 150 200 250

0.0
0.2
0.4
0.6
0.8
1.0

0 50 100 150 200 250

0.0
0.2
0.4
0.6
0.8
1.0

0 50 100 150 200 250

0.0
0.2
0.4
0.6
0.8
1.0

Figure 3.18. Error of Truncate Sum relative to border for Model 1 through 4 for
Pumsb. Number of attributes on x-axis, error relative to the sum of frequencies
of sets in the border (as in Figure 3.6) on y-axis. Lines show the interquartile
range as in Figure 3.15. Result of Truncate Sum is not clipped into [0,1].

53

3. Approximating Boolean queries using frequent itemsets

Abstracts

0.0

0.1

0.2

0.3

0.4

0.5

0.6
Chess

0.0

0.2

0.4

0.6

0.8

1.0
Connect

0.0

0.2

0.4

0.6

0.8

1.0
Course

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Kosarak

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Mushroom

0.0

0.2

0.4

0.6

0.8

1.0
Pumsb

0.0

0.2

0.4

0.6

0.8

1.0
Pumsb*

0.0

0.2

0.4

0.6

0.8

1.0
T10I4D100K

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16
T40I10D100K

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 3.19. Error of Truncate And Correct on Disjunctions 2 for all the data
sets. In each subfigure, the leftmost column shows the error of Truncate Sum
without the border sets, the second with the border sets, and the third the error
of Truncate And Correct. Note the different scales in the subfigures.

Abstracts

0.00

0.02

0.04

0.06

0.08

0.10

0.12
Chess

0.0

0.2

0.4

0.6

0.8

1.0
Connect

0.0

0.2

0.4

0.6

0.8

1.0
Course

0.00

0.02

0.04

0.06

0.08

0.10

0.12
Kosarak

0.000

0.005

0.010

0.015

0.020

0.025

0.030

Mushroom

0.0

0.2

0.4

0.6

0.8

1.0
Pumsb

0.0

0.2

0.4

0.6

0.8

1.0
Pumsb*

0.0

0.2

0.4

0.6

0.8

1.0
T10I4D100K

0.00

0.01

0.02

0.03

0.04

0.05

0.06
T40I10D100K

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Figure 3.20. Error of Truncate And Correct on Model 4 for all the data sets. In
each subfigure, the leftmost column shows the error of Truncate Sum without the
border sets, the second with the border sets, and the third the error of Truncate
And Correct. Note the different scales in the subfigures.

54

Correcting the truncation

5 attributes

0.02 0.04 0.06 0.08 0.10

0.20

0.25

0.30

0.35

0.40

8 attributes

0.02 0.04 0.06 0.08 0.10

0.40

0.45

0.50

0.55

0.60

20 attributes

0.02 0.04 0.06 0.08 0.10
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

13 attributes

0.02 0.04 0.06 0.08 0.10

0.85

0.90

0.95

1.00

32 attributes

0.02 0.04 0.06 0.08 0.10

-1.5

-1.0

-0.5

0.0

×10-17
44 attributes

0.02 0.04 0.06 0.08 0.10

-0.1

0.0

0.1

0.2

0.3

D
is

ju
n

c
ti

o
n

s
2

M
o
d

e
l
4

Figure 3.21. Estimates for single queries in Course with varying thresholds σ .
Solid line: real frequency; circles: Truncate Sum; crosses: Truncate Sum with
border sets; triangles: Truncate And Correct. Note the different vertical scales in
subfigures, and see the text on how the queries were selected.

15 attributes

0.08 0.09 0.10 0.11 0.12

0.0

0.5

1.0

1.5

18 attributes

0.08 0.09 0.10 0.11 0.12
0.0

0.2

0.4

0.6

0.8

1.0

1.2

20 attributes

0.08 0.09 0.10 0.11 0.12

0.5

1.0

1.5

2.0

39 attributes

0.08 0.09 0.10 0.11 0.12
-0.05

0.00

0.05

0.10

0.15

0.20

0.25

19 attributes

0.08 0.09 0.10 0.11 0.12

0.00

0.05

0.10

29 attributes

0.08 0.09 0.10 0.11 0.12

0.00

0.05

0.10

D
is

ju
n

c
ti

o
n

s
2

M
o
d

e
l
4

Figure 3.22. Estimates for single queries in Course with varying thresholds σ .
Symbols as in Figure 3.21. Note the different vertical scales in subfigures, and
see the text on how the queries were selected.

55

3. Approximating Boolean queries using frequent itemsets

3.9 Other approaches to Approximate Query

In this section we briefly examine other possible approaches to the Ap-
proximate Query problem, both related work and possible future direc-
tions.

Given the frequencies of the frequent itemsets and a Boolean query,
the approach we have taken is to start from a formula describing the query
(the principle of inclusion and exclusion) and discarding the unknown
terms. This sometimes leads to approximations that are outside the
interval [0,1] of possible frequencies. A question that has not been
addressed in this chapter is that of what frequencies are possible for the
query given the frequent itemsets. This question is easily formulated as a
linear program, using the inner product representation:

minimize/maximize ~ζφ · ~g

subject to ~fσ = A~g
and ~1 · ~g = 1.

Here ~fσ is a vector of length |Fσ |, containing the frequencies of frequent
itemsets, and A = (aX,Y) is a matrix with entries aX,Y = [X ⊂ Y]. This
approach was taken in [BSH02, BSH04], but in fact it has a long history,
dating back at least to [Hai65]. There the main result is the use of linear
programming to derive bounds for the probability of a Boolean formula
over a set of variables, given the probabilities of the variables, corre-
sponding in our case to the frequencies of single attributes.1 In [Hai65]
Hailperin also gives the generalization to the case where the input con-
sists of the probabilities of arbitrary Boolean formulas (or upper and
lower bounds thereof) and traces the ideas back to George Boole himself.

Solving the linear program numerically is, of course, infeasible for
even moderate-sized data, since the length of ~g is exponential in the
number of attributes. However, if the query φ contains a small number
of attributes, the program may be reduced. Interestingly, it is not safe to
drop all attributes that do not appear in φ, but in some conditions some
attributes may be dropped [Tat06].

The theory of linear programming can also be applied to obtain var-
ious kinds of extensions of the Bonferroni bounds, e.g. [Kwe75, KM76,
TM80, Pré88, Pré90, LN90, GP02, PG05]. All of these approaches attack
the Bonferroni case where the frequencies of all k-wise conjunctions
are known for k = 1, . . . ,m. However, they yield coefficients for the

1The three-variable case was solved in “about one minute” on an “electronic com-
puter”, but the four-variable case was deemed too complex.

56

Other approaches to Approximate Query

frequencies that are not ±1 and obtain better approximations than the
truncated inclusion-exclusion sum. Similarly, Kessler and Schiff use a
method that is not based on linear programming but still only handles
the Bonferroni case [KS02]. It would thus be interesting if these methods
could be generalized to the case of arbitrary frequent itemset collections.

An interesting approach is taken by Jaroszewicz et al. [JSR04], who
use Bonferroni-type inequalities but recursively estimate the values that
are missing from the Bonferroni case. A concern here is that using
the information from, say, one ten-element itemset requires filling in
estimates for

(
n
10

)
other itemsets where n is the length of the query.

However, in some contexts a solution like this could be useful.
The Truncate Sum algorithm is combinatorial in nature. In Sec-

tions 3.5 and 3.7 we compared it to the iterative scaling algorithm, which
is model-based: it finds the maximum-entropy distribution that can give
rise to the observed frequencies. This can be seen as a Markov Random
Field model [PMS00]. The curse of dimensionality is a problem for this ap-
proach, because the iterative scaling algorithm represents the probability
distribution as a vector of 2|U| numbers.

A simpler model was also seen in the experiments: if we use only
the frequencies of attributes and apply maximum entropy, we obtain the
independence model. This model ignores the higher-order information,
but is applicable in the disjunction case to high dimensions.

An important open question for future research is whether a middle
ground between the combinatorial and model-based approaches can be
found. One way to seek such a compromise could be as follows: if we
could detect that a family Fσ is structured so that Truncate Sum yields
a large error, but filling in a small number of the truncated frequencies
would change the structure so as to reduce the error, we could do this
filling-in by applying a probabilistic model, such as the independence
assumption or suitably restricted maximum entropy.

A different route to better approximations is to change the setting
of the problem: what if we were not restricted to using the frequencies
of the frequent itemsets but could ask for a little extra information that
could be gathered at the same time as the itemsets? Such information
might be the exact frequencies g(X), or the average number of attributes
in a tuple containing X, or perhaps the parity functions

t(X) =
∑
Y
[|Y ∩X| is odd]g(Y).

As an example of using g(X) as extra information, note that

f
(∨
D
)
=

∑
X∈M

g(X)

57

3. Approximating Boolean queries using frequent itemsets

with
M = {X ⊆ U | X ∩D 6= ∅}.

Therefore,
s ≤ f

(∨
D
)
≤ s + e,

where
s =

∑
X
[X ∈ Fσ ∩M]g(X)

and
e =

∑
X
[X minimal in M \ Fσ] f (X).

The sum s could be used as the estimate for f(
∨
D), if the error e can

be shown to be small. It will of course be large in the presence of noise,
but with some sparseness assumptions this approach might be made
practical.

More generally, we would like to divide the data into a large part where
we can obtain good approximations and a small part that we can bound.
For example, if most of the tuples contain few attributes, Truncate Sum
could be used on those, and the remaining tuples could be remembered
as extra information.

58

Chapter 4

Dense itemsets

This chapter addresses a limitation of frequent itemsets: that they require
all their attributes to co-occur perfectly, without any provision for errors
or noise. For example, Figure 4.1 shows some binary data where there
are three local patterns, highlighted in the figure. Such co-occurrence
patterns are traditionally mined using frequent itemsets, but in this case
the itemsets corresponding to the patterns have very low frequency: it is
the occurrence of their various subsets that characterizes the patterns.
The aim of this chapter is to generalize frequent itemsets to allow for
this kind of patterns. Because of the ordering of rows and columns,
the patterns are contiguous, and thus easily visible; however, we do not
assume this contiguity to hold in real data, or indeed that the rows and
columns have any natural ordering.

Figure 4.1. Synthetic data displaying three obvious local patterns not discover-
able as frequent itemsets.

59

4. Dense itemsets

We start in Section 4.1 by developing a framework for talking about
approximate frequency, where the central concept is that of intersection
counts. We show in Section 4.2 how some existing definitions of ap-
proximately frequent itemsets fall into the framework, and discuss their
shortcomings. We then define our new solution, dense itemsets, avoiding
these shortcomings. We discuss algorithms for mining dense itemsets
in Section 4.3, and show empirical results in Section 4.4. We show using
these results how one can select a concise subfamily of the dense itemsets
that describes a large part of the data. Finally, in Section 4.5 we discuss
various possible extensions of the ideas.

4.1 Intersection counts

To generalize the concept of frequent itemsets, we first need to generalize
the concept of subset containment. A tuple provides support to those
itemsets that are its subsets; this definition must be generalized so
that a tuple provides some kind of partial support to itemsets that are
close to being its subsets. Such closeness needs to be measured in
a numerical way, and a numerical definition of the subset relation is
obtained via the intersection operator: a set I is a subset of J if and only
if the intersection I ∩ J has the same cardinality as I. We thus define
intersection counts as follows.

Definition 4.1. Let I be an itemset over a relation r . Then the intersection
counts of I in r are the numbers

iν =
∑
T∈r
[|I ∩ T | = ν],

for ν ∈ N. We denote by ~ı(I, r) the vector (i0, i1, . . . , i|I|).

That is, the intersection count iν of I in r is the number of tuples T
in r such that |I ∩ t| = ν. To simplify examples, we use the convention
that I and J are itemsets, ~ı stands for ~ı(I, r) and ~ for ~ı(J, r). The
intersection count vector ~ı summarizes the occurrence of I’s items in
the relation r . This summary loses some information in that it does not
indicate which of I’s items tend to occur in the relation.

An example of intersection counts is shown in Table 4.1. The column
titled # in subtable (a) shows the number of times that the row in question
is repeated in the data, and the other columns correspond to items. When
there are only three attributes, it is possible to list all 23 possible tuples
and give the number of repeats, but in general a vector of 2|U| numbers is
too large to be practical. In subtable (b), each itemset is displayed along

60

Intersection counts

A B C

5 1 1 1
5 1 1 0

15 1 0 1
10 0 1 1

5 1 0 0
20 0 1 0
10 0 0 1
30 0 0 0

(a) Example data.

∅
(100)

A B C
(70,30) (60,40) (60,40)

AB AC BC
(40,50,10) (55,25,20) (35,50,15)

ABC
(30,35,30,5)

(b) Intersection counts.

Table 4.1. Example intersection counts.

I i0 i1 i2 i3

∅ 100
↓ ↘

A 70 30
↓ ↘ ↓ ↘

AB 40 50 10
↓ ↘ ↓ ↘ ↓ ↘

ABC 30 35 30 5

Table 4.2. Evolution of intersection counts as we add the attributes A,B,C to
the empty set in the data of Table 4.1.

with its intersection counts: for example, since A appears in 5+5+15+5 =
30 tuples, we have i1(A) = 30, and since the number of tuples with
exactly one of A, B, and C is 5+20+10 = 35, we have i1(ABC) = 35. The
intersection counts are clearly easier to store than the repeat counts of
all tuples, but they lose some information.

Notice that the intersection counts of a given set and its immediate
superset cannot be very far apart. This is explained by the following
simple observation: given two itemsets I ⊂ J with |J| = |I| + 1, the
database rows that contribute to iν must contribute to either jν or jν+1.
This is illustrated in Table 4.2, which shows the evolution of intersection
counts as the items A, B, and C are added to the empty set. The arrows
leading out from each count denote that each row contributing to that
count must contribute to one of the numbers pointed to; likewise, each
row contributing to a count with incoming arrows must contribute to one
of the counts where the arrows originate.

61

4. Dense itemsets

4.2 Intersection statistics

Even though intersection counts compress the subset occurrence infor-
mation exponentially, summaries that are single numbers would often be
even more useful. In this section we define such a concept of intersection
statistics and discuss several such statistics, among them two existing
measures of approximate frequency. Then we derive a new measure that
avoids some problems of the existing measures.

Definition 4.2. Consider itemsets I over a relation r . An intersection statis-
tic is any real-valued function defined on the intersection vectors ~ı(I, r).

Some simple examples of intersection statistics are |I|, the length of
the vector minus one, and |r |, the sum of the vector. It is also easy to see
that itemset frequency is an intersection statistic, as it can be defined as1

f(I) = i|I|(I, r).

An abuse of notation that will often simplify formulas is to write statistics
as functions of I and r directly:

f(I, r) = f(~ı(I, r)).

The property of intersection counts that was illustrated in Table 4.2
yields a very simple proof of the monotonicity of itemset frequency: a
diagonal line drawn under the last elements of the intersection count
vectors only meets arrows that point pointing away from these elements.
The same proof, which we formalize in the following lemma, can be used
to show the monotonicity of a slightly more general intersection statistic,
which we call k-fault frequency after [PTH01].

Lemma 4.3. For any integer k, the k-fault frequency intersection statistic
defined by

faultk(~ı) =
|I|∑

ν=|I|−k
iν

is decreasing with respect to subset inclusion.

Proof. We break the definition of the intersection statistic into a sum over
all tuples,

faultk(I) =
∑
T∈r

|I|∑
ν=|I|−k

[|T ∩ I| = ν].

1Frequency, like many intersection statistics, could be defined either absolutely
(as a number of tuples) or relatively (as a fraction of tuples), as in Chapter 2. In this
chapter we use the absolute variant, which simplifies many formulas.

62

Intersection statistics

We wish to prove that for any J = I \ {A} for A ∉ I,

∑
T∈r

|I|∑
ν=|I|−k

[|T ∩ I| = ν] ≤
∑
T∈r

|J|∑
ν=|J|−k

[|T ∩ J| = ν].

Consider a tuple T whose intersection with I is of size ν ≥ |I| − k.
If A ∈ T , then the intersection T ∩ J has size ν − 1, and if A ∉ T , the
intersection T ∩ J has size ν. In both cases, T contributes to the right-
hand side sum. (The reverse is not true: if |T ∩ J| = |J| − k and A ∉ T ,
T does not contribute to the sum on the left-hand side. Thus equality
does not hold in general.)

Ordinary itemset frequency is the special case of 0-fault frequency.
With larger values of k, we obtain a statistic that counts lines on which
the itemset occurs with at most k omitted attributes. Itemsets fulfilling
this property, together with another requirement (described in the next
paragraph) were called fault-tolerant itemsets by Pei et al. [PTH01].

The monotonicity property allows using an Apriori-like algorithm to
compute fault-tolerant itemsets; however, this is not very practical. At
the root of the problem is the fact that any set of at most k attributes
has a k-fault frequency of 100%. Thus the algorithm must examine all
itemsets of k elements in order to find the (k+ 1)-element fault-tolerant
itemsets. In fact, the extra requirement of Pei et al. is that each item
appear on sufficiently many rows in the “fault-tolerant support” of the
itemset, which allows them to restrict the search to frequent items. Even
then, in most practical cases the search will be infeasible with large k.

If the problem with fault-tolerant itemsets lies in the fixed number k
of errors allowed, it would seem reasonable to change the definition to
allow a fixed fraction of errors. This leads to a very appealing concept
that we call ε-approximate frequency: let d = |I| and c = b(1− ε)dc, and
define

fε(I) =
d∑
ν=c
iν(I).

This definition has been used by Yang et al. [YFB01], in whose termi-
nology an ε-approximately frequent itemset would be called a “strong
error-tolerant itemset”, or strong eti for short. This approach also has at
least two problems. First, it admits “free riders”, an example of which is
displayed in Table 4.3(a). In the depicted database, the itemset ABCDE
is a frequent one, so ε = 0 would be a suitable value for discovering the
itemset. If, however, we select ε = 0.17, the sets ABCDEF , ABCDEG,
and ABCDEH will also be ε-approximately frequent, but the extra at-
tributes do not reflect any pattern in the data—they have gained a free ride

63

4. Dense itemsets

A B C D E F G H

1 1 1 1 1 0 0 0
1 1 1 1 1 0 0 0
1 1 1 1 1 0 0 0
1 1 1 1 1 0 0 0
1 1 1 1 1 0 0 0
1 1 1 1 1 0 0 0

(a) The free-rider problem

A B C D

1 1 0 0
1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1
0 0 1 1

(b) The non-monotonicity problem

Table 4.3. Two example databases that illustrate two problems with different
definitions of approximate frequency.

along with the actual pattern ABCDE. As ε increases, we get more and
more sets: with ε = 0.5, there are 187 itemsets, not subsets of ABCDE,
that are ε-approximately frequent, and none of them tells us anything
interesting about the data. Of course, in this example data the pattern
is uniquely found using the correct value of ε = 0, but this is no help in
real data: first, the correct value is not known a priori; second, no single
correct value may exist for a data set with many patterns at different
noise rates.

Of course, it would be easy to remove attributes that only have zero
values in the whole database, but this does not help. A more realistic
variant of Table 4.3(a) would be one where the extra attributes F , G, and H
do occur in some parts of the relation, just not usually together with the
other attributes.

The second problem is illustrated by Table 4.3(b). The itemset ABCD
has 0.5-approximate frequency 6, but its subsets have lower frequencies:
for example, the set ABC has half of its elements present on 3 rows only.
Thus, ε-approximate frequency is not decreasing. This non-monotonicity
becomes a problem if we want to use an Apriori-style mining algorithm:
to find 4-element sets at 0.5-approximate frequency σ , we must first find
3-element sets at 0.5-approximate frequency σ/2.

The non-monotonicity problem is essentially caused by the row-by-row
definition of ε-approximate frequency: “half of 3” becomes 2, since a row
cannot have a fractional number of items present. A natural solution,
therefore, is to change the definition from a row-by-row basis to an
average-of-rows one. This is a slightly more complicated concept than the
previous ones, and is defined in two parts. The first part takes an average
over the whole relation, and the second part localizes the average to the
best part of the relation.

64

Intersection statistics

Definition 4.4. The weak density of an itemset I in a relation r is the
average fraction of attributes of I in the tuples of r :

wdens(I, r) = (|I| · |r |)−1
∑
T∈r
|I ∩ T |.

Thus, weak density in a relation is a measure of overall density of an
itemset. It is an intersection statistic, having the form of a first moment:

wdens(~ı(I, r)) = (|I| · |r |)−1
∑
ν
νiν .

The second part of the definition brings the frequency parameter into play:
to mine local patterns, a support threshold is introduced. Again, in this
chapter it simplifies formulas to use frequencies and thus thresholds σ
that are integers from 0 to |r | instead of fractions from 0 to 1.

Definition 4.5. Let I be an itemset over relation r . The weak density of I
at support σ is the maximum weak density in all subrelations of r that
have size at least σ ,

wdens(I, σ) = max
r ′⊆r
|r ′|≥σ

wdens(I, r ′).

We next show that weak density is an intersection statistic, i.e., it can
be computed from the intersection counts.

Proposition 4.6. Weak density at support σ is an intersection statistic.

Proof. Consider an intersection count vector ~ı(I, r). Define the inverse
intersection count i′σ for every integer 0 ≤ σ ≤ |r | as the greatest integer
such that ∑

[ν ≥ i′σ] iν ≥ σ.

In other words, if we take all the rows whose intersection with I is at least
of size i′σ , the number of rows is at least σ , but if we leave out the rows
with intersection size exactly i′σ , the number of rows is less than σ .

For computing the weak density, we need a collection of exactly σ
rows that have maximal intersection with I. In that collection we first
include all rows with intersection size greater than i′σ , and then top it up
with rows of intersection size i′σ until we have σ rows. Then the weak
density at support σ is

σ−1|I|−1
((∑

ν
[ν > i′σ] ν

)
+
(
σ −

∑
ν
[ν > i′σ] iν

)
i′σ
)
,

which is an intersection statistic.

65

4. Dense itemsets

The reason for labeling this statistic “weak” density is that it suffers
from the free-rider and non-monotonicity problems, just as ε-approximate
frequency does. However, the situation is not quite as bad, since we can
prove a weak form of monotonicity.

Proposition 4.7. If an itemset X with |X| ≥ 2 is weakly dense, then it has
a weakly dense subset Y ⊂ X with |Y | = |X| − 1.

Proof. Let r ′ ⊆ r , |r ′| ≥ σ , be a subrelation where wdens(X, r ′) ≥ δ.
Consider the frequencies in r ′ of singletons {A} ⊆ X; at least one of them
must be at most average. Removing such a singleton yields a set Y =
X\{A} with wdens(σ , Y , r) ≥ wdens(σ , Y , r ′) ≥ wdens(σ ,X, r ′) ≥ δ.

Corollary 4.8. Every weakly dense itemset X is accessible by starting
from the empty set and adding the items of X in some order, so that each
intermediate itemset is weakly dense.

Accessibility allows one to construct an algorithm for mining all weakly
dense itemsets, but in any data set there are so many of these sets and
even more candidates that need to be tested that the algorithm is not
practical. This is partly due to the free-rider problem, which we avoid by
the following definition.

Definition 4.9. Let I be an itemset over relation r . The strong density of I
in r is the minimum of the weak densities of all the subsets of I,

dens(I, r) =min
J⊆I

wdens(J, r),

and likewise the strong density of I at support σ ,

dens(I, σ) =min
J⊆I

wdens(J,σ).

Strong density is not an intersection statistic since it depends on the
intersection counts of all subsets of the itemset in question.2 However,
strong density is easy to compute using an Apriori-like algorithm by
keeping track of the minimum weak density of all subsets, as shown in
Section 4.3. In the sequel, we will call strong density simply density.

Yang et al. attack the problems of free riders and non-monotonicity
of strong etis (i.e., ε-approximately frequent sets) in a somewhat similar
way: they define “weak etis”, which are the same concept as our weakly

2As a simple example, if the itemset AB has an intersection count vec-
tor (0,100,0), there is no way based on this fact alone to tell the difference between
the situations where the itemset A has a vector of (0,100), or (50,50), or (100,0).

66

Algorithms

dense itemsets, and prove that the strong eti property implies the weak
eti property. However, the free-rider problem makes finding all weak
etis a daunting task despite the accessibility result, so Yang et al. resort
to a heuristic algorithm that only discovers a subset of all weak etis and
then prunes them for the strong eti property.

The various intersection statistics covered in this section are summa-
rized in Table 4.4.

Intersection statistic Function of ~ı(I)

Size of relation, |r |
∑
ν
[0 ≤ ν ≤ |I|] iν

Frequency, f(I) i|I|
/
|r |

k-fault tolerant frequency,
faultk(I)

∑
ν
[ν ≥ |I| − k] i|I|

ε-error tolerant frequency,
fε(I)

∑
ν
[ν ≥ (1− ε)|I|] iν

Weak density in r ,
wdens(I, r)

(∑
ν
νiν

) / (
|r | · |I|

)
Inverse intersection count
at support σ , i′σ

arg max
i′σ∈Z

∑
ν
[ν ≥ i′σ] ≥ σ

Weak density at
support σ , wdens(I, σ)

[(∑
ν>i′σ

ν
)
+
(
σ −

∑
ν>i′σ

iν
)
i′σ

] / (
σ |I|

)

Table 4.4. Summary of intersection statistics.

4.3 Algorithms

In this section we consider the task of mining dense itemsets from data.
The basic algorithm is a simple generalization of Apriori, but we also give
a more complicated top-k algorithm for setting one of the two parameters
automatically.

Intersection counts are computed by Algorithm 4.1, a straightforward
generalization of the database pass of Apriori (Algorithm 2.2). Instead
of one counter per itemset, it holds |I| + 1 counters, corresponding to
the |I| + 1 values in the intersection count vector. From the intersection
counts, it is easy to find the weak densities of itemsets using the result
of Proposition 4.6. Algorithm 4.2 is an easy translation of the formula
into pseudocode.

67

4. Dense itemsets

Intersection-Counts(r ,C)
Input: A binary relation r , a collection C of itemsets I
Output: The intersection count vectors ~ı(I, r) of

the given itemsets

for each I ∈ C:
~ı(I, r)← [0,0, . . . ,0]

for each T ∈ r :
for each I ∈ C:
S ← |T ∩ I|
iS(I, r)← iS(I, r)+ 1

return ~ı(I, r) for all I ∈ C

Algorithm 4.1. Find the intersection counts of itemsets.

Weak-Densities(r ,C, σ)
Input: A binary relation r , a collection C of itemsets,

a support threshold σ
Output: The weak densities at σ of the given itemsets

H ← Intersection-Counts(r ,C)
for each X ∈ C:
Nrows ← 0
Nitems ← 0
for j ← |X| to 0:
Nrows ← Nrows +H(X)[j]
Nitems ← Nitems + j ·H(X)[j]
if Nrows ≥ σ :
Nitems ← Nitems − j · (Nrows − σ)
break

if Nrows < σ :
error “σ larger than |r |”

else:
W(X)← Nitems/(σ · |X|)

return W

Algorithm 4.2. Find the weak densities of itemsets.

68

Algorithms

Dense-Sets(r , δ,σ)
Input: A binary relation r , a density threshold δ,

a support threshold σ
Output: All (σ , δ)-dense itemsets in r

C ← {{A} | A ∈ U }
F ← ∅
while C is nonempty:
W ← Weak-Densities(r ,C, σ)
D← {X ∈ C | W(X) ≥ δ }
F ← F ∪D
C ← Generate-Candidates(D)

return F

Algorithm 4.3. Find strongly dense itemsets.

Since strong density is decreasing with respect to set inclusion, we
can easily modify Apriori for use as the high-level algorithm for dense
itemset mining, yielding Algorithm 4.3. This algorithm returns the weak
densities of the itemsets; the strong densities are easily obtained from
these, but not vice versa, and the weak densities may be useful for
some of the filtering techniques of Section 4.5. The candidate generation
subroutine is exactly the same as in Apriori (Algorithm 2.3).

The Apriori approach to mining dense itemsets has a weakness: it
is very sensitive to the two parameters σ and δ. An example of this is
given in Section 4.4. Searching for suitable values of the parameters for
a given data set can be difficult. One way to solve this problem is to
fix not the two parameters but only one of them, and start finding the
itemsets for which the other parameter has the highest possible value.
This is done by Algorithm 4.4 in the case of fixed σ . A corresponding
algorithm for fixed δ is symmetric. The algorithm was partially motivated
by [HWLT02, TYH03].

Algorithm 4.4 maintains a collection of itemsets to be explored next.
They are stored on a heap (i.e., priority queue) H, whence the operation
Heap-Pop removes and returns the set X that has the highest density.
Whenever a set X is added to the result F , new candidates are generated
by the subroutine Generate-Candidates′. It can in principle be almost
the same as Algorithm 2.3, with the exception that it must search among
all sizes of itemsets. However, a simple optimization is to only pair
the recently-added set X with other sets, since any newly introduced
candidates must have X as a subset.

69

4. Dense itemsets

Top-K-Given-Support(r ,σ , k)
Input: A binary relation r , a support threshold σ ,

and a number k
Output: Some k itemsets in r such that they are the

(σ , δ)-dense itemsets for the given σ and some δ

F ← {∅}, δ←∞, H ← empty heap
C ← all single-item sets
while k > 0:
W ← Densities(r ,C, σ)
for each X ∈ C:

Heap-Push(H,W(X),X)
(d,X)← Heap-Pop(H)
F ← F ∪ {X }
δ←min(δ,d)
C ← Generate-Candidates′(F , X)
k← k− 1

if consistent answer is required:
repeat:
(d,X)← Heap-Pop(H)
if d < δ:

break
else:
F ← F ∪ {X }
C ← Generate-Candidates′(F , X)

return F

Algorithm 4.4. Find top-k dense itemsets given σ .

There is a slight complication in that there might not be a family of
(σ , δ)-dense itemsets that has exactly size k and some density thresh-
old δ. This is because weak density is not monotonic, and once the kth
itemset X is found, there can be candidates left whose weak density is
higher than (or equal to) that of X, and thus equal strong density. The
last part of the algorithm finds the “extra” sets that have weak density at
least δ.

70

Empirical results

4.4 Empirical results

This section describes results from experiments using the algorithms
described in the preceding section. The algorithms were implemented in
the Python language, using version 2.4 of the interpreter. Experiments
were performed on the data sets of Chapter 2.

As an example of the difficulties that lead to Algorithm 4.4, Table 4.5
shows how the number of dense itemsets varies with σ and δ in the
Mushroom data set. Missing values in the table indicate that the run was
taking too long and was interrupted. Obviously, the number of dense
itemsets is highly sensitive to the two parameters. However, there are
some values of the parameters for which the number of dense itemsets is
reasonable.

To test Algorithm 4.4, first Apriori was used to determine for each
data set the value of σ that yields 100 frequent itemsets. Algorithm 4.4
was then run with this value of σ and k = 1000 to obtain at least 1000
dense itemsets. Table 4.6 shows the resulting values of σ , δ, the number
of dense itemsets found3 and the size of the border, i.e., the number of
minimal non-dense sets, which the algorithm must process in addition
to the dense sets. The effect of the border sets is considerable in some
of the data sets. In Abstracts and Kosarak the border is naturally large,
because it includes all one-element sets, but the border in the generated
data sets (T10I4D100K and T40I10D100K) consists of larger itemsets. In
contrast, the effect due to the “extra” sets over k = 1000 is small across
all data sets.

Figures 4.2 and 4.3 plot the weak density of itemsets X against the
weak densities of their immediate subsets X \ {A } for all A ∈ X in the
same two data sets as in the previous figures. The sets in Course seem to
have more uniform structure. Adding items to a set is seen to typically
decrease its weak density, but in some cases the density is increased.

Course data and set cover. We examine more closely the Course data,
which contains information about course enrollment at the University of
Helsinki Computer Science Department. Mining dense itemsets with σ =
176 (5% of |r |), δ = 0.75 we found 10243 sets, the largest of which
had 11 items. To better understand this large collection of itemsets, we
selected a small subcollection using a greedy set cover approach.

In the set cover approach, we first select the dense itemset that covers
the largest number of items in a maximal subrelation where the itemset

3As explained in the description of Algorithm 4.4, one usually obtains more than k
sets, since no collection of exactly k sets might be a consistent result for a single
value of δ.

71

4. Dense itemsets

δ

σ 0.5 0.6 0.7 0.8 0.9 1.0

8124 8191 255 31 31 15 1
7312 1791 127 31 31 9
6450 20479 575 95 31 25
5687 4607 255 79 31
4875 18335 1663 207 51
4062 6559 895 153

Table 4.5. Example of the sensitivity of dense itemsets to the parameters:
number of dense itemsets in Mushroom. The data set has 8214 tuples, and σ
varies from 0.5×8124 to 8124 with 0.1×8124 increments. Empty entries signify
that the computation was interrupted because it was taking too long.

Data set σ/ |r | δ Dense sets + border

Abstracts 14622/128820 0.748 1000 + 31562
Chess 3021/ 3196 0.977 1023 + 82
Connect 66443/ 67557 0.994 1007 + 125
Course 210/ 3506 0.829 1044 + 481
Kosarak 22466/990002 0.683 1003 + 41733
Mushroom 4464/ 8124 0.854 1023 + 145
Pumsb 46972/ 49046 0.990 1007 + 2157
Pumsb* 30952/ 49046 0.892 1014 + 2150
T10I4D100K 2614/100000 0.566 1009 + 29762
T40I10D100K 9328/100000 0.664 1006 + 25868

Table 4.6. Parameters found for all data sets with Algorithm 4.4. Parameter σ
was chosen by using Apriori to find the threshold where the number of frequent
itemsets is 100. Parameter δ was then chosen with Algorithm 4.4 with the
chosen σ and k = 1000.

72

Empirical results

0.85 0.86 0.87 0.88 0.89 0.90 0.91 0.92

Weak density of itemset

0.84

0.86

0.88

0.90

0.92

W
e
a
k

d
e
n

s
it

y
o
f

im
m

e
d

ia
te

s
u

b
s
e
ts

Figure 4.2. Weak density of itemsets X with |X| ≥ 7 on x-axis, weak densities
of immediate subsets X \ {A } on y-axis, in Course data.

0.55 0.60 0.65 0.70 0.75 0.80

Weak density of itemset

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

W
e
a
k

d
e
n

s
it

y
o
f

im
m

e
d

ia
te

s
u

b
s
e
ts

Figure 4.3. Weak density of itemsets X with |X| ≥ 2 on x-axis, weak densities
of immediate subsets X \ {A } on y-axis, in T10I4D100K data.

73

4. Dense itemsets

Itemset

Course 1 2 3 4

Introduction to the use of computers *
Introduction to Databases *
Introduction to Programming *
Programming in Java *
Introduction to Application Design *
Software Engineering * *
Data Structures *
Models for Programming and Computing * *
Data Communications * *
Database Management *
Database Application Project *
Concurrent Systems * *
Data Structures Project *
Tutoring *
Operating Systems *
Computer Organization I *

Table 4.7. Four “best” itemsets found in Course using greedy set cover.

has (weak) density δ = 0.75. The items of the set are then removed
from the tuples in the subrelation, and the next itemset is selected.
This is continued until most items have been removed. The four first
itemsets found cover 39% of the all items, and are listed in Table 4.7.
The first itemset contains introductory courses; the second and third
contain slightly more advanced courses that are common to most sub-
programmes at the Department, with the second itemset slightly oriented
toward theoretical and the third toward practical courses; the fourth
itemset has two courses that discuss low-level knowledge about operating
systems. Most of the itemsets that are selected after these four contain
only one course, with some two-course exceptions. Thus, the introductory
and otherwise popular courses dominate the dense itemsets found.

In order to discover more interesting details of the students, another
data set was produced, restricting to advanced courses, where the stu-
dents have greater freedom of choice. This data set contains information
on 1739 students (tuples) and 102 courses (items).4 Dense itemsets were
mined with parameters σ = 87, δ = 0.5, producing 4657 sets. The set
cover algorithm was run again, but in order to localize the effects of
removing items, the criterion for ordering itemsets was the number of

4This data was gathered and anonymized at a different time from the main Course
data; thus it is not a subset. In particular, it contains many more courses that had
been introduced between the times when the data were gathered.

74

Empirical results

Dense itemset

Course 1 2 3 4 5 6 7 8

Theory of computation * * * * * *
Software architectures * * *
Software processes & quality * *
Software testing *
Telecommunications II * *
Computer hardware * * *
Operating systems II * *
Distributed systems * *
Structured documents * *
DB structures & algorithms *
Data mining * *
Data warehousing *
Large document collections *
Text mining *
Algorithm design & analysis *
Artificial intelligence * *
Computer graphics * *
String algorithms *
Computer graphics * *
User interfaces * * *
Distributed operating systems * *
Data management II * *
Information retrieval *
Computer-aided learning *
Database modeling *
Compilers *
Object-oriented programming *

Table 4.8. Eight “best” itemsets found in advanced course data using greedy
set cover.

items covered in σ tuples (instead of an arbitrarily large number of tuples
with density δ).

The first eight sets output by this algorithm are shown in Table 4.8.
The densities of these sets vary from 0.52 to 0.58. The first six sets have
frequency 0, i.e., the items never co-occur in the database, the seventh
occurs once and the eighth occurs twice. None of these sets would thus
have been found by a frequent itemset mining algorithm with frequency
threshold more than 0.12.

Some of the sets have clear meanings: the first one represents software
engineering and operating systems, the second information systems,
and the third algorithms. The fourth one is less obvious but equally
interesting: the courses might be seen to have value for programming
web applications. The set excludes the Theory of Computation course,

75

4. Dense itemsets

which all the preceding sets include; this course is required for graduation
but is widely considered to be difficult. A possible conclusion is that
some students have concentrated on web programming, and once they
have the skills needed for employment, they forget about graduation and
the Theory course.

As an illustration of the use of dense itemsets, we also used the
greedy approach to reorder the data matrix. While executing the set cover
algorithm, we reordered the rows and columns to keep the covered 1s as
contiguous as possible; for rows and columns shared between different
sets, ties were broken in favor of the “best” set, i.e., the one chosen
earliest. Figure 4.4a shows the original data, and Figure 4.4b shows the
resulting reordered data matrix.

4.5 Discussion

When mining a data set for frequent patterns, be they frequent itemsets,
dense itemsets, or whatever else, one often obtains a very large collec-
tion that itself is difficult to understand. An interesting solution is to
approximate the collection by a smaller one [AGM04]. Another is to order
the patterns so that each pattern conveys the most information given
all its predecessors: when the user grows tired of looking at patterns,
she will have as much information as possible [MM03]. In Section 4.4 we
used essentially this kind of a method to obtain from the Course data the
concise descriptions in Table 4.8 and Figure 4.4(b). Here we discuss briefly
other possibilities for filtering dense itemsets, and close by mentioning
some possible optimizations for mining the error-tolerant itemsets of
[YFB01].

Density Gap. Consider two disjoint dense itemsets I and J, whose union
K = I∪J is also dense. Should we include I and J in the output, or only K?
A possible way to address this question is provided by Proposition 4.10
below. This proposition gives an upper bound for the weak density of K
given the weak densities of I and J; if the actual density of K is close to
the upper bound, this means that the two sets are highly correlated, but
if it is much lower, even if over the threshold δ, we might keep the two
disjoint sets. Computing the gap between the upper bound and the actual
weak density is a simple postprocessing step to the mining algorithms.
One could thus add another parameter γ to the algorithm: if a set has
density gap ≥ γ, do not output it. However, since the results are sensitive
to the values of the two parameters, adding a third one could make it
even more difficult to determine suitable values.

76

Discussion

0 500 1000 1500
0

20

40

60

80

100

student

c
o
u

r
s
e

(a) Original data.

0 500 1000 1500
0

20

40

60

80

100

student

c
o
u

r
s
e

(b) Reordered data.

Figure 4.4. Advanced course data plotted as a matrix. Subfigure (a) shows
original data in an arbitrary order, subfigure (b) reordered using the 8 itemsets
in Table 4.8.

77

4. Dense itemsets

Proposition 4.10. If I and J are itemsets with I ∩ J = ∅,

wdens(σ , I ∪ J) ≤ |I|wdens(σ , I)+ |J|wdens(σ , J)
|I| + |J| .

Proof. Let rI , rJ , and rI∪J be tuple-multisets of size σ where the weak
densities of I, J, and I ∪ J, respectively, are maximized. Thus

wdens(I, rI∪J) ≤ wdens(I, rI) = wdens(σ , I),

so the number of attributes A ∈ I contained in the rows of rI∪J is at
most σ · |I| ·wdens(σ , I), and symmetrically for J. Thus

∑
T∈rI∪J

|(I ∪ J)∩ T | =
∑

T∈rI∪J

(
|I ∩ T | + |J ∩ T |

)
≤ |I|wdens(σ , I)+ |J|wdens(σ , J),

whence the claim follows.

By induction we immediately obtain the following generalization.

Corollary 4.11. If I =
⋃n
j=1 Ij is a partition of the itemset I, then

wdens(σ , I) ≤
 n∑
j=1

|Ij|
−1 n∑

j=1

|Ij|wdens(σ , Ij).

ROC Curves. A somewhat more principled approach to selecting “good”
itemsets could be based on roc curves.5 As the fixed support threshold σ
causes problems by forcing us to only select patterns of a fixed size,
we will compare itemsets across all values of σ . A roc curve plots
true positives against false positives as functions of some diagnostic
parameter. In our case, this parameter is σ , true positives are the 1s
covered by the itemset in the σ best tuples, and false positives are the 0s
covered in the same tuples. We can easily compute the points on the roc
curve using the intersection counts of a set: point number k = 0, . . . , |I|
corresponds to covering ∑

[ν ≥ |I| − k]ν

ones and ∑
[ν ≥ |I| − k](|I| − ν)

5The ROC abbreviation means either Receiver Operating Characteristic or Relative
Operating Characteristic.

78

Discussion

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

false positive rate

tr
u

e
 p

o
s
it

iv
e
 r

a
te

Figure 4.5. ROC curves in Course data: all-courses itemset (solid line), itemset 1
from Table 4.8 (dashed line).

zeros, and dividing the numbers by the total number of ones and ze-
ros, respectively, yields the required coordinates. Since roc curves are
required to be convex and pass through (0,0) and (1,1), we add these
points to the curve and take the convex envelope. A popular way of
comparing roc curves is the area under the curve, which is also known
as the Wilcoxon statistic [Swe88].

Figure 4.5 shows the roc curves of two different sets in the advanced
Course data: the full itemset that includes all the courses, and the first
“software engineering” itemset from Table 4.8. We see that the full itemset
gets better than the engineering itemset at about a false-positive rate
of 0.15. The area under the curve is clearly larger for the full itemset, a
result that seems to indicate that this is not the best way of comparing
single itemsets: a small itemset can never reach a large number of true
positives, even if it has very few false ones.

It is also possible to define a roc curve for a collection of itemsets
in a similar way. Given the intersection counts of the sets in the family
and all their intersections, we can compute the area under the roc curve.
Using this measure would allow for a more sophisticated comparison,
where the all-items itemset could be outperformed by a good collection of
itemsets. A drawback is that the computation time is exponential in the
number of itemsets in the collection, so that only small collections could
be compared. An interesting question for future research is whether there
is a fast and useful upper-bounding method that could be used to search
among collections of dense itemsets.

79

4. Dense itemsets

Binary Matrix Factorization. We next consider a task that can be seen
as an adaptation of principal component analysis [DH73] or nonnegative
matrix factorization [LS00] for binary data, and similar to ideas recently
used by Geerts et al. [GGM04]. Given a sparse binary matrix M of dimen-
sions p × q, we wish to approximate it by a product of binary matrices R
and S, Mp×q ≈ Rp×kSk×q, with small internal dimension k. Thus for
each j = 1,2, . . . , k, the jth column of R and jth row of S define a matrix
that has only one block of 1s, and the approximation is a sum of these
one-block matrices. (To allow for overlapping blocks, we interpret the
sum as a “logical or” operation.) To evaluate results, we will use a score
function computed over the 1s in RS: if M also has a 1, we add one point,
and if M has a 0, we deduct one point. By extending the definition of
intersection counts we can algorithmically find upper bounds for the
scores of sets, given the extended counts of their subsets. We explain the
idea using a small example.

Consider the 7-item itemset I = ABCDEFG. If only I is used to
approximate M , we have k = 1, and the single row of S has 1s in the
columns corresponding to the items in I. To optimize the score function
defined above we must let those rows of the single-column matrix R have
value 1 where approximating the corresponding row ofM yields a positive
score. This is true of those rows that contain sufficiently many 1s in the
columns corresponding to I: if the number of 1s is 4, the contribution to
the score is 1; if the number is 5, the contribution is 2; etc. Therefore the
score of this approximation is

score(I) = i4 + 3i5 + 5i6 + 7i7.

Similarly, the score of I’s 8-item superset J = I ∪ {H} is

score(J) = 2j5 + 4j6 + 6j7 + 8j8,

and we wish to bound this score without knowing the intersection counts
of J. Define the extended intersection counts E(I) as a two-dimensional
array: E(I)(µ, ν) counts the rows that contain exactly µ items of I and
exactly ν items of the complement of I. It turns out that the score
difference can be bounded using the extended profile of I:

score(J)− score(I) ≤
|R\I|∑
j=1

E(I)(4, j)+ · · · +
|R\I|∑
j=1

E(I)(7, j)

− E(I)(4,0)− · · · − E(I)(7,0).

This allows a levelwise algorithm to find a family of sets (not necessarily
dense sets) whose supersets are guaranteed to have a score below some

80

Discussion

threshold. These could then be used as input to a greedy algorithm
for the matrix-approximation problem. An obvious drawback is that
storing the extended profiles requires quadratic space in the length of
the itemset. Methods such as those in [GGM04] could allow us to find
good approximations.

Decomposition Problems. The matrix-approximation problem suggests
a general class of problems that could be called decomposition problems,
as an extension of Kleinberg et al.’s segmentation problems [KPR04]. Given
n functions f1, . . . , fn, a set D of possible decisions, and an integer k, the
general segmentation problem is to find a set of k decisions x1, . . . , xk to
maximize the sum

n∑
i=1

max
1≤j≤k

fi(xj).

A concrete interpretation of the problem is that each function fi rep-
resents the preferences of a customer, and the decisions are possible
catalogs of items: a business can afford to print k different catalogs
(but copies of the same catalog are cheap), so it clusters the customers
into k segments and prints the optimal catalog for each segment. In a
decomposition problem, the business again prints k catalogs but then
sends a combination of catalogs to each customer. Again, the task is to
choose k decisions x1, . . . , xk, but what needs to be maximized is the sum

n∑
i=1

max
J⊆[k]

fi
(⊕
j∈J
xj
)
, (4.1)

where for each customer a set J ⊆ [k] = {1,2, . . . , k } is chosen to maxi-
mize the benefit of the sum of the decisions in the set J. The meaning of
the sum operator

⊕
may vary between different application domains, but

when dealing with binary vectors the logical or operator suggests itself.
We define Catalog Decomposition as the following problem: Print-

ing a catalog of r items for n customers costs C + nr euros, where C
is a constant. Given an advertising budget B and the preferences of all
customers, send each customer a combination of catalogs to maximize
the number of matches between catalog combinations and preferences.
The greedy algorithm for Budgeted Maximum Coverage would favor
catalogs I with a high value of

α(I) = items covered
C +nr = wdens(I) · 1

1+ C/(nr) .

Thus we could feed the greedy algorithm with output from a modified
version of Algorithm 4.3 where the density threshold is increased with

81

4. Dense itemsets

the size of the set. However, the greedy algorithm can be arbitrarily
bad for Budgeted Maximum Coverage, and a better algorithm, such as
those in [KMN99], is required; greedy optimization is an important part
of those, but for even the (1− 1/e)/2-guaranteed algorithm we also need
to find the submatrix with the maximal number of ones.

Mining weakly dense itemsets. As noted in Section 4.2, accessibility is
a weak form of monotonicity. It therefore allows a weak form of pruning:
if all proper subsets J of a set I have wdens(J,σ) < δ, then I cannot
be weakly dense. Thus one can find all weakly dense sets in a levelwise
manner: Start from the empty set. On level k, add as candidates all sets
of size k which contain as a subset at least one weakly dense set of size
k−1. This approach is essentially equivalent to the Exhaustive Growing
Algorithm of Yang et al. [YFB01].

As noted in [YFB01], a serious problem with this method is the num-
ber of candidates it processes. An optimization is provided by Propo-
sition 4.10: since the algorithm has already computed the densities of
all singletons, both wdens(σ , I) and wdens(σ , {A}) will be known, and
if |I|wdens(σ , I) + wdens(σ , {A}) ≤ (|I| + 1)δ, the set I ∪ {A} can be
pruned without looking at the database. This optimization is, however,
rather weak: for pruning to occur, a necessary but not sufficient condition
is that the weak density of A is lower than δ. A stronger optimization
is possible at a significant cost in both time and space: the algorithm
can examine every partition I = I1 ∪ I2 of I, and using the densities (or
previously computed upper bounds thereof) of Ij ∪ {A} (j = 1,2), check
if the upper bound |I1+1|wdens(σ , I1∪{A})+|I2|wdens(σ , I2) is lower
than δ. Even this does not seem to suffice to make it practical to mine
weakly dense itemsets.

82

Chapter 5

Tile models

This chapter introduces a class of tile models, which have a similar aim
as dense itemsets: to find concentrations of attributes. However, with
tile models we treat the data as a zero–one matrix, and seek submatrices
whose density differs from their surroundings. This has two implications.
First, matrices do not have attributes and tuples but rows and columns,
which can be transposed. Second, we consider a submatrix interesting if
its density is either smaller or larger than that of its surroundings. Thus,
also the zeros and ones of the matrix are interchangeable.

Of the two kinds of tile models we consider, simplest to understand are
geometric tiles where the submatrices are contiguous; these are described
in Section 5.1. In the general case, the ordering of rows and columns may
be irrelevant; then the combinatorial tiles of Section 5.2 are needed. In
both cases, our models are hierarchical, meaning that also tiles within
tiles are mined. We give empirical results in Section 5.3 and conclude in
Section 5.4, where we also review related work.

Throughout this chapter, we consider a data matrix D with n rows
andm columns, which are numbered 1, . . . , n and 1, . . . ,m, respectively.
The value at the intersection of row i and column j is denoted by D[i, j].

5.1 Geometric tiles

Consider the data matrix of Figure 5.1, where the ones and zeros are
encoded as dots and empty spaces. The question “where are the dots?”
can be answered in a fairly obvious way: there are two regions where most
of the dots are, but inside one of the regions there is an almost-empty
region. If the columns are web sites, arranged by the network proximity
of the servers they reside on, and the rows are time intervals, then a

83

5. Tile models

Figure 5.1. Example data matrix.

dot means that some number of users visited that site during that time
interval. We can see two sets of nearby sites that have both been very
popular at some time, except that some subset of one has fallen out
of favor for a while (perhaps a network problem has affected a set of
servers).

To find this kind of patterns automatically, we formulate a model for
geometric tiles. Tiles are defined in terms of rectangles, which we define
first.

Definition 5.1. A rectangle of D is a pair (X, Y), where X ⊆ [n] is a
set of consecutive row numbers and Y ⊆ [m] is a set of consecutive
column numbers. A proper subrectangle of (X, Y) is a rectangle (X′, Y ′)
such that X′ ⊆ X, Y ′ ⊆ Y , and (X′, Y ′) 6= (X, Y). Two rectangles (X, Y)
and (X′, Y ′) are disjoint if either X ∩X′ = ∅ or Y ∩Y ′ = ∅ (or both). The
coordinate pair (i, j) falls within (X, Y), if i ∈ X and j ∈ Y .

A rectangle coupled with a density parameter is a tile. Tiles may also
contain other tiles, which may in turn contain yet other tiles. Thus the
following definition is recursive, with the base case occurring when the
set of contained tiles is empty.

Definition 5.2. A geometric tile of D is a quadruple τ = (X, Y ,p,T),
where

(a) (X, Y) is a rectangle of D, which we call the domain of τ ,
(a) p is a number in [0,1], and
(a) T is a set {τ1, . . . , τk } of geometric tiles, whose domains are pairwise

disjoint proper subrectangles of (X, Y).

For modeling the whole data matrix D, we simply use a tile whose
domain is D, which we call a hierarchical geometric tile model. For

84

Geometric tiles

example, the model depicted in Figure 5.1 is τ0 = (X0, Y0, p0, {τ1, τ2 }),
where X1 and Y2 defines the whole rectangle, and the submodels are
τ1 = (X1, Y1, p1,∅) and τ2 = (X2, Y2, p2, {τ3 }), which has the single
submodel τ3 = (X3, Y3, p3,∅). To fill in the parameters pj , we must
define the semantics of tile models. To facilitate this definition, we
introduce one more concept: the exclusive domain of a tile τ is the
domain of τ with the domains of its subtiles removed.

Definition 5.3. Let τ = (X, Y ,p,T) be a tile and let the coordinate
pair (i, j) fall within the domain of τ. If (i, j) falls within the exclusive
domain of τ , the prediction of τ at (i, j), denoted τ[i, j], is defined to be p.
Otherwise, the prediction of τ is defined recursively: τ[i, j] = τk[i, j] for
the sub-tile τk ∈ T in whose domain (i, j) falls.

By this definition, a hierarchical tile model τ has a prediction for
every coordinate pair (i, j) of the data matrix. A good model should
predict values τ[i, j] that are close to the actual data values D[i, j].
To quantify the goodness of a model, we interpret the prediction as a
Bernoulli parameter, and thus we get the simple likelihood function

L(τ | D) =
∏
i,j
τ[i, j]D[i,j](1− τ[i, j])1−D[i,j]. (5.1)

In other words, the values in the data matrix are assumed to be in-
dependent, with the probability of the event D[i, j] = 1 given by the
prediction τ[i, j]. It is often easier to work with the log-likelihood,

logL(τ | D) =
∑
i,j

(
D[i, j] logτ[i, j]+(1−D[i, j]) log(1−τ[i, j])

)
. (5.2)

How should we choose the parameters pj of the example model to fit
the data as well as possible, i.e., to maximize the likelihood (5.1)? The
following result shows that we must simply take the average of each tile’s
exclusive domain.

Proposition 5.4. To maximize the likelihood of a hierarchical (geometric)
tile model when the domains of all tiles are fixed, each tile τ should have
prediction p = the average of D[i, j] for all coordinates (i, j) in the
exclusive domain of τ .

Proof. We will break down the log-likelihood (5.2) by the exclusive domain
of each tile. Consider a tile τ with exclusive domain r and prediction p.
The part of the log-likelihood contributed by τ is

logp
∑

(i,j)∈r
[D[i, j] = 1]+ log(1− p)

∑
(i,j)∈r

[D[i, j] = 0]

= N1 logp +N0 log(1− p),

85

5. Tile models

where N1 is the number of 1s in r and N0 is the number of 0s. The
derivative with respect to p is

N1

p
− N0

1− p =
N1 − p(N0 +N1)

p(1− p) ,

which is 0 if and only if

p = N1

N0 +N1
= 1
|r |

∑
(i,j)∈r

D[i, j],

which is the average claimed. If p is smaller, the derivative is positive,
and if p is greater, the derivative is negative; thus, the log-likelihood
attains a maximum at this value of p.

The log-likelihood of a geometric tile that has no sub-tiles can be com-
puted from the data in constant time, after a linear-time preprocessing
step. The preprocessing, done by Algorithm 5.1, consists of finding the
cumulative sums

D+[i, j] =
i∑
ν=0

j∑
µ=0

D[ν, µ]

for all 0 ≤ i ≤ n, 0 ≤ j ≤ m. (The values D+[0, j] = D+[i,0] = 0 help
avoid special cases.) Once these sums are known, the number N1 of ones
inside a tile {a, . . . , b } × { c, . . . , d } is simply

N1 =
b∑
ν=a

d∑
µ=c
D[ν, µ]

= D+[b,d]−D+[b, c − 1]−D+[a− 1, d]+D+[a− 1, c − 1].

Then the log-likelihood of the tile is given by

logL(X,Y) = N ·H(N1/N), (5.3)

where N = |X| · |Y | is the overall size of the tile, and H is the negative
entropy function for a Bernoulli distribution, H(p) = p logp + (1 −
p) log(1 − p). We denote by Geometric-Log-Likelihood the simple
subprogram for computing (5.3).

We are now ready to describe our first algorithm for discovering
geometric tiles. For the sake of simplicity, we only show algorithms for
discovering a single tile with a high contribution to the log-likelihood
of the model. A complete algorithm for finding hierarchical tiles must
of course find several tiles, an issue addressed in Section 5.3. Also,
when selecting a single tile, the algorithm must take into account the

86

Geometric tiles

Cumulative-Sums(D)
Input: A data matrix D of dimensions n×m
Output: A cumulative-sums matrix D+

for ν ← 0 to n:
D+[ν,0]← 0

for µ ← 0 to m:
D+[0, µ]← 0

for ν ← 1 to n:
for µ ← 1 to m:
D+[ν, µ]← D[ν, µ]+D+[ν − 1, µ]

+D+[ν, µ − 1]−D+[ν − 1, µ − 1]
return D+

Algorithm 5.1. Compute cumulative sums for a data matrix.

log-likelihood of the surrounding tile. This is a simple modification
to most of our algorithms. The number of rectangles in a data set of
dimensions m×n is Θ(m2n2). Thus an exhaustive search can be done
in polynomial time, as illustrated by Algorithm 5.2.

However, with realistic-sized data sets, quadratic time can be too
much. Thus we next describe a local search approach and prove that it
can at least in some “easy” cases discover good tiles. The overall approach
is shown in Algorithm 5.3. The variable b holds the best log-likelihood
seen so far, and the variable B the corresponding tile. The algorithm tries
moving all edges of the rectangle by one step, and selects the one with
best log likelihood.

Naturally, nothing guarantees that the local search does not get stuck
at a local optimum. However, we can prove the following result, which
shows that when data matrices are sampled from a model and the size
of the data approaches infinity, the method does have a high probability
of ending up at the global optimum. Here we must take into account the
log-likelihoods of both the tile and the rest of the matrix.

Lemma 5.5. Assume that the data matrix D contains i.i.d. bits with proba-
bility q, with the exception of one geometric rectangle R, which contains
i.i.d. bits with probability p 6= q and whose number of rows and columns
is a constant fraction of the number of rows and columns of the matrix
D. Then, the local search method with random restarts finds R with high
probability, i.e., probability bounded away from zero in the limit of infinite
data.

87

5. Tile models

Geometric-Exhaustive-Search(D)
Input: A data matrix D of size n×m
Output: A geometric rectangle (X, Y)

D+ ← Cumulative-Sums(D)
best← −∞
for X1 ← 1 to n:

for X2 ← X1 to n:
for Y1 ← 1 to m:

for Y2 ← Y1 to m:
L← Geometric-Log-

Likelihood(X1, X2, Y1, Y2,D+)
if L > best:

best← L
X ← {X1, X1 + 1, . . . , X2 }
Y ← {Y1, Y1 + 1, . . . , Y2 }

return (X, Y)

Algorithm 5.2. Examine all geometric rectangles and return one that supports
a tile with maximum log-likelihood.

Proof. Since the rectangle R has width and height that are constant frac-
tions of the data width and height, there is a constant probability that a
random rectangle is either completely inside R, or completely contains R.
We will argue that the algorithm then finds R with high probability.

Consider the case where the random starting rectangle, which we
denote by r , falls completely within R. If r 6= R, at least one of its edges
is not at the same position as the corresponding edge of R: e.g., the
right edge of r is located to the left of the right edge of R. Let r ′ be the
rectangle obtained by moving the right edge of r right by one step. We
will show that replacing r by r ′ increases the log-likelihood of the model,
which consists of the background tile and the single tile r .

In the limit of infinite data, we may assume that the proportion of ones
inside R is p and the proportion outside is q. When the log-likelihood is
written as a sum over all cells of the data matrix, the terms corresponding
to the cells inside r do not change, since the proportion of ones inside r is
the same as inside r ′. The terms corresponding to the strip r ′\r improve,
since the proportion of ones inside the strip is p, and the prediction of
the new model for them is p. The terms corresponding to the outside
of r ′ also improve slightly, since the prediction of the new model is closer
to q than the prediction of the old model.

88

Combinatorial tiles

Geometric-Local-Search(D)
Input: A data matrix D of size n×m
Output: A geometric rectangle (X, Y)

D+ ← Cumulative-Sums(D)
(X1, X2)← random numbers such that X1 ≤ X2

(Y1, Y2)← random numbers such that Y1 ≤ Y2

best← −∞
repeat:
L← Geometric-Log-Likelihood(X1, X2, Y1, Y2,D+)
if L ≤ best:

return B
best← L
B ← ({X1, . . . , X2 }, {Y1, . . . , Y2 })
C ← { (X1 − 1, X2, Y1, Y2), (X1 + 1, X2, Y1, Y2),

(X1, X2 − 1, Y1, Y2), (X1, X2 + 1, Y1, Y2),
(X1, X2, Y1 − 1, Y2), (X1, X2, Y1 + 1, Y2),
(X1, X2, Y1, Y2 − 1), (X1, X2, Y1, Y2 + 1) }

(X1, X2, Y1, Y2)←
arg max

R∈C
Geometric-Log-Likelihood(R,D+)

Algorithm 5.3. Find a locally optimal geometric tile.

5.2 Combinatorial tiles

Mining geometric tiles may be useful if the rows and columns of the
data matrix have a natural ordering. This is rarely the case in general
data mining, and therefore we extend the definition to allow for arbitrary
submatrices, which we call combinatorial tiles. The added generality
comes at the price of much slower mining algorithms. Therefore, we
present a method for finding a natural order for the data, allowing the
use of the algorithms designed for geometric tiles.

Definition 5.6. A combinatorial rectangle of D is a pair (X, Y), where X is
a set of row numbers 1, . . . , n and Y is a set of column numbers 1, . . . ,m.
The concepts of proper subrectangle, disjointness, and falling within are
defined identically to Definition 5.1.

We also define a combinatorial tile identically to Definition 5.2, with
the obvious exception that the domain of a tile can be any combinatorial
rectangle. A hierarchical combinatorial tile model is then a combinatorial
tile whose domain is the whole data matrix.

89

5. Tile models

Combinatorial-Exhaustive-Search(D)
Input: A data matrix D of size n×m
Output: A combinatorial rectangle (X, Y)

best← −∞, Xbest ←∅, Ybest ←∅
for each nonempty Y ⊂ {1, . . . ,m }:
D′ ← D[1 . . . n, Y]
r ← Row-Sums(D′)
Sort(r)
for ν to 1 . . . n:

for m ∈ {minimal,maximal }:
X ← any ν rows whose values in r are m
S ← Log-Likelihood(X, Y ,D)
if S > best:

best← S
Xbest ← X, Ybest ← Y

return (Xbest, Ybest)

Algorithm 5.4. Find best combinatorial rectangle.

Finding good combinatorial tiles is much more difficult than finding
good geometric tiles, since there is an exponential number of rectangles
to consider. Thus the most obvious counterpart to Algorithm 5.2 ex-
amines Θ(2m2n) tiles. However, a simple trick allows us to reduce the
number to Θ(2mn). Of course, even this is not practical for most data
sets. The trick is shown in Algorithm 5.4. It examines every set Y of
columns, and takes first the submatrix D′ that has the columns Y and
all the rows in D. It computes the row sums of this submatrix, and sorts
these numbers. It then uses the sorted numbers to select 2n sets of rows:
one set consisting of one row with maximal sum, another consisting of
two rows whose sums are as large as possible, another consisting of three
such rows, etc; and symmetrically one row with minimal sum, etc. The
sorting can be done in time Θ(n logn), and computing the log-likelihood
takes time Θ(|X| · |Y |) = Θ(mn), since the preprocessing of D to D+ that
was used in the case of geometric tiles is not usable for combinatorial
tiles. Thus the time complexity of the algorithm is Θ(2mmn2).

The idea is similar to that of the intersection counts of Section 4.1. In
fact, the log-likelihood of a single tile with fixed columns is an intersection
statistic.

90

Combinatorial tiles

Theorem 5.7. Algorithm 5.4 finds the tile with optimal log-likelihood.

Lemma 5.8. For any given sets X of rows and Y of columns, if either
of the two changes described below is possible, the change improves the
log-likelihood of the tile based on X × Y .

• If the proportion of ones within X × Y is at most 1/2, remove from X
a row and add to X a row that has fewer ones within the columns Y
than the removed row.

• If the proportion of ones within X × Y is at most 1/2, remove from X
a row and add to X a row that has more ones within the columns Y
than the removed row.

Proof. The size of the rectangle does not change as a result of remov-
ing one row and adding another: thus, only the number of ones in
the rectangle changes. Denote by p the proportion of ones before the
change and by p′ the proportion after the change. We can write the
log-likelihood as N ×H(p), where N is the size of the rectangle, and H
is the negative entropy (as in the discussion after Proposition 5.4). But
the derivative H′(p) = logp − log(1 − p) is negative for p < 1/2 and
positive for p > 1/2, so for p′ < p ≤ 1/2 we have H(p′) > H(p) and
for p′ > p > 1/2 also H(p′) > H(p).

Proof of Theorem 5.7. The column-sets considered by the algorithm are
obviously of the kind where the changes of Lemma 5.8 are impossible.
They are also essentially all such sets: if there are several rows with
equally many ones in the column-set Y , the algorithm does not con-
sider every combination of these rows. But such rows are obviously
interchangeable without changing the likelihood.

Algorithm 5.5 is a direct translation of Algorithm 5.3 for combinatorial
tiles. It is considerably slower for two reasons: first, in each step, there are
m+n choices to consider, instead of O(log(m+n)) as in the geometric
case; second, computing the likelihood of a geometric tile takes longer,
since the preprocessing trick of partial sums D+[i, j] is not usable.

To speed up combinatorial tile mining, we next investigate an approach
that reduces the task to geometric tile mining by reordering the database.
The rows and columns are reordered separately. To reorder the rows,
we first compute a similarity matrix S, whose entry sij is the similarity
between rows i and j. The similarity measure can be any symmetric
function, which should take high values for similar rows. We use dot-
product and the Hamming overlap function as similarity measures.

91

5. Tile models

Combinatorial-Local-Search(D)
Input: input
Output: output

(X, Y)← random rectangle
repeat:
(Xbest, Ybest)← (X, Y)
S ← Log-Likelihood(X, Y ,D)
for r ← 0 to n− 1:
X′ ← X ∪ { r } or X′ ← X \ { r }
S′ ← Log-Likelihood(X′, Y ,D)
if S′ > S:
S ← S′, (Xbest, Ybest)← (X′, Y)

for c ← 0 to m− 1:
Y ′ ← Y ∪ { c } or Y ′ ← Y \ { c }
S′ ← Log-Likelihood(X, Y ′,D)
if S′ > S:
S ← S′, (Xbest, Ybest)← (X, Y ′)

if (Xbest, Ybest) = (X, Y):
return (X, Y)

else:
(X, Y)← (Xbest, Ybest)

Algorithm 5.5. Search for a locally optimal combinatorial tile.

From the similarity matrix S, we first compute the Laplacian ma-
trix LS = R − S, where R is a diagonal matrix whose entries are the row
sums of S, rii =

∑
j sij .

Lemma 5.9. [Fie73] For any symmetric matrix S with nonnegative values,
the Laplacian LS is a symmetric positive semidefinite matrix.

Proof. Let ~x be a vector; we will prove that ~xTLS ~x ≥ 0. We have

~xTR~x =
∑
i
riix2

i =
∑
i

(∑
j
sij
)
x2
i =

∑
i,j
sijx2

i

and
~xTS ~x =

∑
i,j
sijxixj ,

whence
~xTLS ~x = ~xTR~x − ~xTS ~x =

∑
i,j

(
sijx2

i − sijxixj
)
.

92

Combinatorial tiles

By using the symmetry assumption sij = sji, we can pair up the symmetric
summands:

~xTLS ~x =
∑
i,j
[i < j]sij(x2

i + x2
j − 2xixj)+

∑
i
siix2

i

=
∑
i,j
[i < j]sij(xi − xj)2 +

∑
i
siix2

i .

Thus the claim is proved.

Lemma 5.9 implies that all eigenvalues of LS are nonnegative. Since the
row sums are zero, the all-ones vector ~1 is an eigenvector with eigenvalue
zero. The second smallest eigenvalue is more interesting, and is called
the Fiedler eigenvalue. The corresponding eigenvector is the Fiedler
eigenvector.

Lemma 5.10. [Fie73] The Fiedler eigenvector ~f minimizes the expression∑
i,j
sij(fi − fj)2

subject to the constraints
∑
i fi = 0,

∑
i f 2
i = 1.

Proof. Since ~f is an eigenvector of LS , we know that LS ~f = λ ~f , where λ
is the Fiedler eigenvalue. Multiplying from the left by ~f T yields ~f TLS ~f =
λ ~f T ~f . Since the scaling of eigenvectors is fixed so that ‖ ~f‖ = ~f T ~f =∑
i f 2
i = 1, we have in fact λ = ~f TLS ~f . We know that λ is the second

smallest eigenvalue, and that the smallest eigenvalue has ~1 as the as-
sociated eigenvector, and thus that ~f must be orthogonal to ~1. We can
express these facts as a minimization task: the Fiedler eigenvalue λ min-
imizes ~f TLS ~f subject to the constraints ‖ ~f‖ = 1 and ~f T~1 =

∑
i fi = 0.

Under these constraints, minimizing the expression

~f TLS ~f =
∑
i
rif 2

i −
∑
i,j
fisijfj = constant−

∑
i,j
sijfifj

is equivalent to minimizing

∑
i,j
sij(fi − fj)2 =

∑
i,j
sij(f 2

i + f 2
j − 2fifj)

=
∑
i,j
sij(f 2

i + f 2
j)− 2

∑
i,j
sijfifj = constant− 2

∑
i,j
sijfifj ,

which proves the result.

93

5. Tile models

We can exploit this result by using the Fiedler eigenvector coordinates
to order the rows: row i appears before row j if fi < fj . We next show
that in some simple cases the algorithm does indeed find a good ordering.
We start with the statement of the result, then explain the assumptions
and prove some lemmas, and finally prove the result.

Theorem 5.11. For a “simple” tile model, with two row (column) blocks,
as defined below, the spectral method will with high probability (over
instantiations of the model) find an ordering in which the rows (columns)
of all combinatorial tiles in the model become contiguous.

A tile model is simply a tile whose domain is the whole data matrix,
as explained after Definition 5.2. Now we are using the model as a
generative one: if we generate a data matrix from the model, there is
a high probability (i.e., a probability bounded away from zero) that we
can order the matrix so that the tiles become geometric. Of course, we
have to exclude models for which no ordering has this property. We
also exclude models where the ordering is “hidden in the noise”: the
information about which tiles occur on the same rows and columns must
be present in the pairwise similarities. To express this condition, we first
define row and column blocks.

Definition 5.12. A row block in a combinatorial tile model is a maximal
set of rows that all intersect exactly the same tiles. Column blocks are
defined symmetrically.

For the blocks to be visible in the pairwise similarities, the similarity
function must be able to differentiate between the blocks. Also, the blocks
must not be too small. The reason for the restriction to two blocks is
explained later, after Lemma 5.16.

Definition 5.13. A combinatorial tile model is simple if it meets the fol-
lowing conditions:

• there exists an ordering of the data matrix in which all tiles in the
model become geometric;

• each row block is at least of size αm;

• there exists a constant σk for each row block k, and a constant σ∗,
such that the similarity sij between rows i and j fulfills E[sij] ≤ σk,
if both rows belong to block k, and E[sij] ≥ σ∗, if the rows belong to
different blocks, and σk − σ∗ ≥ σ # for all k, with a constant σ # > 0;

• symmetric conditions hold for column blocks.

The next tool we need is a characterization of corresponding blocks
in similarity matrices.

94

Combinatorial tiles

Definition 5.14. A similarity matrix S = (sij)1≤i≤n,1≤j≤n has (k,d, s1, s2)-
block structure if the indices 1, . . . , n of the matrix can be partitioned in k
blocks B1, . . . , Bk such that

• the size of each block is at least d;

• for all `, for all i, j ∈ B` we have sij = s̃` ≥ s1;

• for all t 6= `, for i ∈ B`, j ∈ Bt we have sij = s̃`t ≤ s2.

A vector ~x respects the block structure if there is no triple (i, j, h) with xi ≤
xj ≤ xh such that i, h ∈ B`, j ∈ Bt , and t 6= `.

First we prove a technical lemma, then use it to show that with some
assumptions, block-structured matrices have Fiedler eigenvectors that re-
spect the block structure. We denote by FS(x) the Fiedler function xTSx.

Lemma 5.15. Let S be any n× n similarity matrix for which s1i = s2i =
· · · = smi = si for all i = m + 1, . . . , n, and let x = (x1, x2, . . . , xn) be
a vector satisfying xTe = 0 and xTx = 1. Consider the vector x′ =
α(y, . . . , y,xm+1, . . . , xn) obtained from x, where the first m coordinates
have been replaced by their average y = (x1 + · · · + xm)/m, and the
vector has been scaled by α so that it satisfies x′Tx′ = 1. Then x′ satisfies
also the constraint x′Te = 0, and we have FS(x) ≥ FS(x′).

Proof. Notice that the constraint x′Te = 0 is automatically satisfied. The
scaling factor α must satisfy m(αy)2 +

∑n
i=m+1(αxi)2 = 1. Therefore

1
α2
=m

(x1 + · · · + xm
m

)2
+

n∑
i=m+1

x2
i

= 1
m

m∑
i=1

x2
i +

2
m

∑
1≤i<j≤m

xixj +
n∑

i=m+1

x2
i

= 1− m− 1
m

m∑
i=1

x2
i +

2
m

∑
1≤i<j≤m

xixj

= 1+ 1
m

[
m

m∑
i=1

x2
i −

(m∑
i=1

xi
)2
]
.

The expression in square brackets is nonnegative because of the Cauchy–
Schwartz inequality:

m∑
i=1

(
1× xi

)
≤

√√√√ m∑
i=1

12 ×

√√√√ m∑
i=1

x2
i .

Therefore, α2 ≤ 1.

95

5. Tile models

Now we have

FS(x′) =
∑

1≤i,j≤m
sij(αy −αy)2

+m
n∑

i=m+1

si(αxi −αy)2 +
∑

m+1≤i,j≤n
sij(αxi −αxj)2.

The first sum is of course zero. To bound the second sum, we use the
inequality (

w − 1
m

m∑
i=1

xi
)2
≤ 1
m

m∑
i=1

(w − xi)2, (5.4)

which we will prove below. We thus have

FS(x′) ≤ α2
(n∑
i=m+1

si
m∑
j=1

(xi − xj)2
)
+α2

∑
m+1≤i,j≤n

sij(xi − xj)2

≤ α2FS(x).

Because α2 ≤ 1, we have proven the theorem.
It remains to prove inequality (5.4). Both sides contain the terms w2

and −(2w/m)
∑
i xi, so it suffices to prove that

1
m2

(m∑
i=1

xi
)2
≤ 1
m

m∑
i=1

x2
i .

But this is the same inequality that we proved already.

Lemma 5.16. Let S be an n × n similarity matrix that has (2, d, s1, s2)-
block structure. Consider S′ = S + E, where E is a symmetric matrix. Then
the Fiedler vector of LS′ respects the structure of S, provided that ‖LE‖ =
o(d(s1 − s2)), where ‖LE‖ is the norm of the matrix LE .

Proof. We denote by xi the coordinates of vector x that correspond
to objects in the first block (i ∈ B1) and by xj the coordinates that
correspond to the second block (j ∈ B2). Without loss of generality we
assume that s̃1 = s̃2 = s1 = s and s̃12 = s2 = 0. In other words, objects
within blocks have the same similarity value s and objects across blocks
have similarity 0. We treat s as the difference s1 − s2.

The proof is structured as follows. First we find the Fiedler vector v
of LS , for which FS(v) = 0 because of the assumptions made above. Then
we show that if a vector b does not respect the block structure of S,

96

Combinatorial tiles

the Fiedler function is FS(b) ≥ Θ(ds), i.e., significantly higher than the
one of v . Finally we show that perturbing S by E does not affect the
Fiedler function too much, i.e., that any vector b not respecting the block
structure of S has higher FS′(b) than the Fiedler vector v′ of S′.

Consider the vector v with all coordinates vi equal to a constant a
and all coordinates vj equal to another constant b. Constants a and b
can be specified uniquely (up to renaming) so that vTe = 0 and vTv = 1.
It is easy to see that v satisfies FS(v) = 0, therefore v is a Fiedler vector
of S. It is also clear that v respects the block structure of S since a < b
(or b < a).

Next consider a vector b with bTe = 0 and bTb = 1 that does not
respect the block structure of S; we will call such vectors bad. A bad vector
contains at least one violation of the block structure, e.g., vi1 ≤ vj ≤ vi2 .
We call a bad vector bm minimally bad, if (i) in each of the two blocks,
only one coordinate is involved in a violation, and (ii) in each block, all
coordinates except the one involved in the violation are assigned the same
value. From any bad vector b, we can reach a minimally bad vector bm
by performing the local merge moves of Lemma 5.15 that replace some
coordinates by their average. The local merge moves do not increase
the value of the Fiedler function, i.e., FS(b) ≥ FS(bm). Furthermore, in a
minimally bad vector, in at least one block, the coordinate involved in a
violation is at least distance Θ(1) away from the other coordinates. This
implies that FS(bm) ≥ Θ(ds), and therefore FS(b) ≥ Θ(ds) for any bad
vector b.

Finally, consider the Fiedler vector v′ of LS′ , the Fiedler vector v
of LS , and any bad vector b. Notice that FS′(x) = xTLS′x = xTLSx +
xTLEx for all vectors x. For any vector x with xTx = 1 we have 0 ≤
xTLEx ≤ ‖LE‖ by the definition of matrix norm. By the definition of v′, we
have FS′(v′) ≤ FS′(v) = vTLEv ≤ ‖LE‖, while FS′(b) = FS(b)+ bTLEb ≥
Θ(ds). Therefore, assuming ‖LE‖ = o(ds), no bad vector can be a Fiedler
vector of S′.

This lemma concerns only matrices with two blocks. With a larger
number of blocks, the setting becomes more complicated, since the
Fiedler vectors form a subspace of dimension higher than one. A practical
way to handle this problem is to apply spectral clustering recursively: use
the Fiedler vector to separate the rows into two clusters only, and then
subcluster the two clusters separately. The details of the recursion are
explained in the description of Algorithm 5.6. We conjecture that this
method can be used to generalize the lemma to an arbitrary number of
blocks.

97

5. Tile models

Proof of Theorem 5.11. We write the row-row similarity matrix S as S =
E[S]+ E, i.e., as the sum of its expectation and an error term. For each
pair of rows i and j the expected similarity E[sij] depends only on the
blocks that i and j belong to, so the matrix E[S] has block structure.
From the assumptions of the model it follows that blocks have size Θ(m)
and that the similarities between rows in the same block are Θ(n) larger
than similarities between rows in different blocks. Thus, the quantity
d(s2 − s1) of Lemma 5.16 is Θ(mn).

To complete the proof, we next show that ‖LE‖ = o(mn). Recall that
each entry of the similarity matrix is the sum of n independent Bernoulli
trials. By a standard application of the Chernoff bound we obtain that
with high probability the deviation from the expected similarity E[sij]
is O(

√
n), that is, the entries of E are bounded by O(

√
n). Consider

now the Laplacian LE , whose diagonal entries are clearly bounded by
O(m

√
n). The eigenvalues of E are at most O(m), by a standard result of

Boppana [Bop87] on the eigenvalues of random matrices. The eigenvalues
of LE can in turn be bounded by the eigenvalues of E plus the magnitude
of the diagonal entries of LE . Thus, |LE| = O(m

√
n +m) = o(mn).

Lemma 5.16 now implies that the Fiedler vector respects the structure
of S, and therefore the spectral algorithm discovers the correct order of
rows. The case of columns is identical.

Algorithm 5.6 implements a practical version of the spectral sort.
As mentioned after the proof of Lemma 5.15, the simplest possible
spectral sorting method has problems when the Fiedler subspace is of
high dimension. In particular, in many practical cases the vector has
two clear components such that the rows belonging to each component
are grouped together, but the values within the components are almost
equal, and the within-component ordering is highly affected by numerical
artefacts. Therefore Algorithm 5.6 checks whether the Fiedler eigenvector
can be split into two parts whose variances are much smaller than that
of the whole vector. If so, it splits the data according to the best such
cutoff fc , and calls itself recursively to sort the two pieces. In the base
case where no such split exists it uses the vector to sort the matrix.

5.3 Empirical results

The algorithms presented this far only find single tiles, not complete
hierarchical models. On top of these algorithms, one can use greedy
searching to find several tiles. The algorithms need to be modified to
disallow partially overlapping tiles, and to take into account not only

98

Empirical results

Spectral-Sort(D, S)
Input: Data matrix Dn×m,

symmetric row-similarity matrix Sn×n.
Output: Reordered data matrix D′n×m.

LS ← diag(
∑

rows S)− S
~f ← second smallest eigenvector of LS
c← arg minc

(
Var(

∑
i[fi ≤ fc] fi)+ Var(

∑
i[fi > fc] fi)

)
if Var(

∑
i[fi ≤ fc] fi)+ Var(

∑
i[fi > fc] fi) >

1
2Var(~f):

D′ ← D with rows sorted using ~f
else:
D1 ← rows i of D with fi ≤ fc
D2 ← rows i of D with fi > fc
S1, S2 ← corresponding submatrices of S
D′1 ← Spectral-Sort(D1, S1)
D′2 ← Spectral-Sort(D2, S2)
D′ ← concatenation of D′1 and D′2

return D′

Algorithm 5.6. Rearrange the rows of a matrix. The similarity matrix S may be
obtained using e.g. dot-product or Hamming measures.

the log-likelihood due to one tile but the change in log-likelihood of the
surrounding tile. Since these modifications merely add bookkeeping but
do not change anything fundamental in the algorithms, the details are
not presented here.

In addition to rejecting partial overlaps between tiles, it may be useful
to direct the greedy search by rejecting tiles that are inside previously
found tiles1 (bottom-up strategy), or rejecting tiles that contain previously
found tiles (top-down strategy), or rejecting both (single-level strategy). If
neither kind of tiles are rejected, we call the search strategy “mixed”.

The spectral sorting (Algorithm 5.6) could only be completed for the
two smallest data matrices, Course and Chess. The similarity measures
used were dot product (i.e., shared number of ones) and Hamming (i.e.,
number of positions where the values are equal). For these four reordered
matrices, local search for geometric tiles (Algorithm 5.3) was run with the
four search strategies outlined previously. At each stage of the greedy
search, the algorithm was run 100 times with random restarts, and the
best tile was used. This was repeated until 50 tiles were found. Results

1Excluding, of course, the tile that covers the complete data matrix.

99

5. Tile models

Course, dot-product Course, Hamming

Chess, dot-product Chess, Hamming

Figure 5.2. Tiles found using mixed strategy in the two data sets that could be
sorted. The grey level of a tile indicates the parameter p, i.e., darker tiles include

more ones.

for the mixed strategy for both orderings of both data sets are shown in
Figure 5.2. Figure 5.3 shows the results of all four strategies in Course
reordered using dot product similarity. The results for the top-down and
mixed strategies are similar, and likewise for bottom-up and single-level.
The results are similar for Chess and Hamming-ordered Course. It seems
that the bottom-up and single-level strategies are more likely to “paint
themselves into a corner” by selecting large tiles early and not being
able to find details within the tiles. The mixed strategy has the greatest
freedom to find more tiles.

5.4 Discussion

Tile models. The tile models of this chapter can depict features of the
data in a considerably versatile manner compared to the dense itemsets
of the previous chapter. There are important differences: tiles can also
reflect lack of co-occurrence, and they are not restricted in the number
of attributes they can include, like dense itemsets are because of the
levelwise mining algorithm. However, tiles come at the price of more
time-consuming algorithms. Especially the spectral sorting can take

100

Discussion

Top-down Bottom-up

Mixed Single-level

Figure 5.3. Tiles found using greedy search with all four strategies in Course
reordered using dot product similarity. The grey level of a tile indicates the

parameter p, i.e., darker tiles include more ones.

much time, and needs to be improved for the models to be practically
discoverable. One possibility is to perform the sorting on only a sample
of the data and then extend the order, as in [BPM01].

A generalization. Consider a supermarket scenario where almost every
customer buys milk but very few buy mineral water, but some customers
are different in that they buy less milk and more mineral water. Such
customers do not form ordinary tiles, but they can be characterized by
a slightly modified tile model that takes into account the background
probabilities of each attribute (i.e., column). Each tile simply needs a
vector of numbers (pj)j∈Y instead of a single number p. We can use the
same likelihood function as before. The maximum-likelihood value for ~p
is obtained by averaging in each column. This formulation is close to
modeling by mixtures of multivariate Bernoulli distributions. There are
two crucial differences: first, each tile determines a multivariate Bernoulli
distribution on a different set of dimensions; second, the data points
(matrix rows) can be explained by any number of tiles, and in the case of
overlapping tiles, the smaller tile (which is necessarily contained by the
other) takes precedence. We also assume that there is top-level tile that
explains all data not explained by smaller tiles.

101

5. Tile models

In this chapter, we have concentrated on finding maximum-likelihood
tiles, and have not tried to guard against overfitting. With column-specific
parameters, overfitting is a much larger problem. For almost any data
matrix and any set of rows, we can maximize the likelihood by including
almost every column in the tile: the fraction of 1s within the rows is
unlikely to be exactly the same as the overall fraction, and the likelihood
is improved by any small difference. Thus some kind of a penalization
scheme must be used.

For any penalization term that can be written in the form

p(τ) = f(X)+
∑
j∈Y
g(X, j)+ h(|Y |),

where f(X) is constant with respect to Y , g(X, j) depends only on the
column j and not the other columns, and h(|Y |) depends only on the
number of columns, we can for any row-set X find the optimal column-
set Y easily: compute g(X, j) for every j = 1, . . . ,m, sort the columns in
order of increasing g, and consider each of the sets

Yδ = { j | g(X, j) ≤ δ }.

The number of these sets is Θ(m), so a linear search is feasible. If h(|Y |)
is increasing, it suffices to examine Θ(logm) sets in a binary search,
but this is not a large improvement, since the sorting already takes
Θ(m logm) time.

This observation suggests an iterative algorithm for finding column-
parameterized tiles: starting from a random set X0 of rows, find the
optimal column set Y0, then somehow find a good row set X1, and iterate
until convergence. As we have seen, finding the columns given the rows
is easy; the opposite direction is not so simple. One possibility is to use
an EM-like algorithm: given the set Y of columns (dimensions), consider
only these dimensions and find the best division of all rows (data points)
into two clusters, then let X be one of the row sets thus defined.

Related work. There are of course numerous different approaches
for modeling and clustering discrete data, such as topic models [CC99,
BMS02, SBM03] and latent-variable models [Gir01]. Closer to our method
is that of [CPMF04], where the data is also rearranged and divided into
clusters. However, in this approach the clusters are formed by dividing
both rows and columns into k clusters, and the final clusters are restricted
to consist of the k2 intersections of the row- and column-wise clusters.
The tiles of [GGM04] and the holes and empty spaces of [LKH97, EGLM03]
differ from ours by being full of ones or zeros, like frequent itemsets.

102

Discussion

An interesting new approach is that of α/β concepts, which allow a fixed
number of exceptions on each row and column [BRB04]. They are thus
quite close to fault-tolerant itemsets [PTH01].

Some inspiration for the hierarchical models came from the work
on learning decision lists [Riv87] and ripple-down rules [GC95]. A PAC-
learning algorithm for finding hierarchical concepts was given in [KMU92].
Spectral algorithms are widely used for problems such as linear sys-
tems [PSW92], ordering [ABH99, KH02], and data clustering [NJW01,
ZHD+01, Dhi01].

103

Chapter 6

Conclusion

We have explored two data mining questions: how to approximate Boolean
queries using frequent itemsets, and how to extend the frequent itemset
concept to allow for patterns that do not fit the mould of perfect co-
occurrence. To answer the first question, we have concentrated on the
truncated inclusion-exclusion algorithm, for which we proved a large
but tight upper bound in terms of the negative border, and which we
generalized to arbitrary Boolean formulas from disjunctions. Experiments
show that the large upper bound is pessimistic, although with some dense
data sets the algorithm does not give useful results. The probabilistic
approach of maximum entropy and its special case the independence
assumption are usually more accurate, but cannot be applied in all the
cases where the truncated inclusion-exclusion algorithm can.

For the second question we have two answers: dense itemsets, which
are a true generalization of frequent itemsets, and tile models, which
are a different approach. Dense itemsets can be found using the same
algorithm as frequent itemsets, but they also share the limitations of the
algorithm; namely, to discover a set of k items, all its 2k − 1 subsets must
be discovered first. Our algorithm for finding combinatorial tile models
is not thus limited, but it is usable in its current form for fairly small
data sets only. Experiments on both concepts show that within their
limitations, the algorithms are usable and can find interesting patterns in
the data.

Much remains to be done. Some detailed ideas for further work are
given in the preceding chapters, but one general theme that has not been
touched on by this work is that of predictive modeling. A descriptive
model may allow for exploration of the data and may reveal interesting
things, but in many applications the interest is in predicting future data.
The question of overfitting arises immediately: a descriptive model that

105

6. Conclusion

is too closely tied to the data it describes will not generalize well to
other data. The usual solutions of cross-validation and penalization of
complexity can be applied to combat overfitting.

An underlying theme connecting the topics discussed in this disser-
tation is the interplay of two data mining objectives, local patterns and
descriptive models. A pattern is something like a frequent itemset: an
interesting phenomenon occurring in some part of the data. In contrast,
a descriptive model tells us something interesting about the whole data.
The query approximation problem of Chapter 3 is motivated by a desire
to convert a frequent itemset collection into a model that can be used
to answer queries about the data. The dense itemsets of Chapter 4 were
used to create a description of the data using a greedy algorithm inspired
by the set cover problem. While frequent itemsets could be used similarly,
the requirement of complete co-occurrence hinders the effort, and the re-
laxed requirement of dense itemsets admits interesting sets that frequent
itemset mining would not have found, as was shown by the experiments
on the advanced course data. The tile models of Chapter 5 are, of course,
descriptive models built from local patterns. The greedy algorithm adds
detail to the model by always seeking out the most interesting pattern
yet unexplained by the model.

106

Bibliography

[ABH99] Jonathan Atkins, Erik Boman, and Bruce Hendrickson. A spec-
tral algorithm for seriation and the consecutive ones problem.
SIAM Journal on Computing, 28(1), 1999.

[AGM04] Foto Afrati, Aristides Gionis, and Heikki Mannila. Approximat-
ing a collection of frequent sets. In Ronny Kohavi, Johannes
Gehrke, William DuMouchel, and Joydeep Ghosh, editors, Pro-
ceedings of the Tenth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD-2004), pages
12–19. ACM Press, 2004.

[AIS93] Rakesh Agrawal, Tomasz Imielinski, and Arun N. Swami. Min-
ing association rules between sets of items in large databases.
In Peter Buneman and Sushil Jajodia, editors, SIGMOD Confer-
ence, pages 207–216. ACM Press, 1993.

[AMS+96] Rakesh Agrawal, Heikki Mannila, Ramakrishnan Srikant, Hannu
Toivonen, and A. Inkeri Verkamo. Fast discovery of associa-
tion rules. In Usama M. Fayyad, Gregory Piatetsky-Shapiro,
Padhraic Smyth, and Ramasamy Uthurusamy, editors, Ad-
vances in Knowledge Discovery and Data Mining, chapter 12,
pages 307–328. AAAI Press, 1996.

[BBR00] Jean-François Boulicaut, Artur Bykowski, and Christophe Rig-
otti. Approximation of frequency queris by means of free-sets.
In Djamel A. Zighed, Henryk Jan Komorowski, and Jan M.
Zytkow, editors, PKDD, volume 1910 of Lecture Notes in Com-
puter Science, pages 75–85. Springer, 2000.

[BGKM02] Endre Boros, Vladimir Gurvich, Leonid Khachiyan, and
Kazuhisa Makino. On the complexity of generating maximal
frequent and minimal infrequent sets. In Helmut Alt and
Afonso Ferreira, editors, STACS 2002, 19th Annual Symposium
on Theoretical Aspects of Computer Science, volume 2285 of

107

Bibliography

Lecture Notes in Computer Science, pages 133–141. Springer,
2002.

[BGZ04] Roberto Bayardo, Bart Goethals, and Mohammed J. Zaki, edi-
tors. Proceedings of the IEEE ICDM Workshop on Frequent Item-
set Mining Implementations (FIMI–04), volume 126 of CEUR-
WS, Brighton, UK, November 2004. http://CEUR-WS.org/
Vol-126/.

[BMS02] Ella Bingham, Heikki Mannila, and Jouni K. Seppänen. Topics
in 0–1 data. In Proceedings of the Eighth ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining,
July 23-26, 2002, Edmonton, Alberta, Canada, pages 450–455.
ACM, 2002.

[Bol88] Béla Bollobás. Combinatorics: set systems, hypergraphs, fami-
lies of vectors and combinatorial probability. Cambridge Uni-
versity Press, 1988.

[Bop87] Ravi B. Boppana. Eigenvalues and graph bisection: An average-
case analysis. In 28th Annual Symposium on Foundations
of Computer Science (FOCS), pages 280–285. IEEE Computer
Society, October 1987.

[Bou04] Jean-François Boulicaut. Inductive databases and multiple
uses of frequent itemsets: the cInQ approach. In Rosa Meo,
Pier Luca Lanzi, and Mika Klemettinen, editors, Database Sup-
port for Data Mining Applications: Discovering Knowledge with
Inductive Queries, volume 2682 of Lecture Notes in Artificial
Intelligence, pages 1–23. Springer-Verlag, 2004.

[BPM01] Alina Beygelzimer, Chang-Shing Perng, and Sheng Ma. Fast
ordering of large categorical datasets for better visualization.
In Foster Provost, Ramakrishnan Srikant, Mario Schkolnick,
and Doheon Lee, editors, Proceedings of the Seventh ACM
SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD-2001), pages 239–244, New York, NY, USA,
2001. ACM Press.

[BRB04] Jérémy Besson, Céline Robardet, and Jean-François Boulicaut.
Mining formal concepts with a bounded number of exceptions
from transactional data. In Bart Goethals and Arno Siebes,
editors, Knowledge Discovery in Inductive Databases, Third
International Workshop (KDID 2004), volume 3377 of Lecture
Notes in Computer Science, pages 33–45. Springer-Verlag, 2004.

[BSH02] Artur Bykowski, Jouni K. Seppänen, and Jaakko Hollmén.
Model-independent bounding of Boolean formulae in binary

108

data. In Mika Klemettinen, Rosa Meo, Fosca Giannotti, and
Luc De Raedt, editors, Knowledge Discovery in Inductive
Databases, First International Workshop (KDID 2002), pages
20–31, Helsinki, Finland, August 2002. University of Helsinki
Department of Computer Science Report B–2002–7.

[BSH04] Artur Bykowski, Jouni K. Seppänen, and Jaakko Hollmén.
Model-independent bounding of the supports of Boolean for-
mulae in binary data. In Rosa Meo, Pier Luca Lanzi, and Mika
Klemettinen, editors, Database Support for Data Mining Appli-
cations: Discovering Knowledge with Inductive Queries, volume
2682 of Lecture Notes in Artificial Intelligence, pages 234–249.
Springer-Verlag, 2004.

[Cal04] Toon Calders. Deducing bounds on the support of frequent
itemsets. In Database Support for Data Mining Applications:
Discovering Knowledge with Inductive Queries, pages 214–233.
Springer-Verlag, 2004.

[CC99] Chris Clifton and Robert Cooley. TopCat: Data mining for
topic identification in a text corpus. In Jan M. Zytkow and
Jan Rauch, editors, Principles of Data Mining and Knowledge
Discovery, Third European Conference (PKDD 1999), volume
1704 of Lecture Notes in Computer Science, pages 174–183.
Springer, 1999.

[CG02] Toon Calders and Bart Goethals. Mining all non-derivable
frequent itemsets. In Tapio Elomaa, Heikki Mannila, and Hannu
Toivonen, editors, Principles of Data Mining and Knowledge
Discovery, 6th European Conference (PKDD 2002), volume 2431
of Lecture Notes in Computer Science, pages 74–85. Springer,
2002.

[CG03] Toon Calders and Bart Goethals. Minimal k-free representa-
tions of frequent sets. In Nada Lavrač, Dragan Gamberger,
Ljupčo Todorovski, and Hendrik Blockeel, editors, Knowledge
Discovery in Databases: PKDD 2003: 7th European Conference
on Principles and Practice of Knowledge Discovery in Databases,
volume 2838 of Lecture Notes in Artificial Intelligence, pages
71–82, Cavtat–Dubrovnik, Croatia, September 2003. Springer-
Verlag.

[CPMF04] Deepayan Chakrabarti, Spiros Papadimitriou, Dharmendra S.
Modha, and Christos Faloutsos. Fully automatic cross-
associations. In Ronny Kohavi, Johannes Gehrke, William
DuMouchel, and Joydeep Ghosh, editors, Proceedings of the

109

Bibliography

Tenth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD-2004), pages 79–88. ACM
Press, 2004.

[DH73] R.O. Duda and P.E. Hart. Pattern Classification and Scene Anal-
ysis. Wiley, New York, 1973.

[Dhi01] Inderjit S. Dhillon. Co-clustering documents and words using
bipartite spectral graph partitioning. In Knowledge Discovery
and Data Mining, pages 269–274, 2001.

[DS40] W. Edwards Deming and Frederick F. Stephan. On a least
squares adjustment of a sampled frequency table when the ex-
pected marginal totals are known. The Annals of Mathematical
Statistics, 11(4):427–444, December 1940.

[EGLM03] Jeff Edmonds, Jarek Gryz, Dongming Liang, and Renée J. Miller.
Mining for empty spaces in large data sets. Theor. Comput.
Sci., 3(296):435–452, 2003.

[Fie73] Miroslav Fiedler. Algebraic connectivity of graphs. Czechoslo-
vak Mathematical Journal, 23(98):298–305, 1973.

[GC95] Brian R. Gaines and Paul Compton. Induction of ripple-down
rules applied to modeling large databases. Journal of Intelligent
Information Systems, 5(3):211–228, 1995.

[GGM04] Floris Geerts, Bart Goethals, and Taneli Mielikäinen. Tiling
databases. In Einoshin Suzuki and Setsuo Arikawa, editors,
Discovery Science, volume 3245 of Lecture Notes in Computer
Science, pages 278–289. Springer, 2004.

[Gir01] Mark Girolami. The topographic organization and visualization
of binary data using multivariate-Bernoulli latent variable mod-
els. IEEE Transactions on Neural Networks, 12(6):1367–1374,
2001.

[GKM+03] Dimitrios Gunopulos, Roni Khardon, Heikki Mannila, Sanjeev
Saluja, Hannu Toivonen, and Ram Sewak Sharma. Discover-
ing all most specific sentences. ACM Trans. Database Syst.,
28(2):140–174, 2003.

[GMS04] Aristides Gionis, Heikki Mannila, and Jouni K. Seppänen. Ge-
ometric and combinatorial tiles in 0-1 data. In Jean-François
Boulicaut, Floriana Esposito, Fosca Giannotti, and Dino Pe-
dreschi, editors, Knowledge Discovery in Databases: PKDD
2004: 8th European Conference on Principles and Practice of
Knowledge Discovery in Databases, volume 3202 of Lecture

110

Notes in Artificial Intelligence, pages 173–184. Springer-Verlag,
2004.

[GP02] Linchun Gao and András Prékopa. Lower and upper bounds
for the probability that at least r and exactly r out of n events
occur. Mathematical Inequalities & Applications, 5(2):315–333,
2002.

[GS96] Janos Galambos and Italo Simonelli. Bonferroni-type In-
equalities with Applications. Probability and its Applications.
Springer-Verlag, 1996.

[GZ03] Bart Goethals and Mohammed J. Zaki, editors. Proceedings
of the Workshop on Frequent Itemset Mining Implementations
(FIMI–03), volume 90 of CEUR-WS, Melbourne, Florida, 2003.
http://CEUR-WS.org/Vol-90/.

[Hai65] Theodore Hailperin. Best possible inequalities for the probabil-
ity of a logical function of events. The American Mathematical
Monthly, 72(4):343–359, April 1965.

[HBM98] S. Hettich, C.L. Blake, and C.J. Merz. UCI repository of ma-
chine learning databases, 1998. http://www.ics.uci.edu/
~mlearn/MLRepository.html.

[HMS01] David Hand, Heikki Mannila, and Padhraic Smyth. Principles
of Data Mining. Adaptive Computation and Machine Learning.
MIT Press, Cambridge, Massachusetts, 2001.

[HSM03] Jaakko Hollmén, Jouni K. Seppänen, and Heikki Mannila. Mix-
ture models and frequent sets: Combining global and local
methods for 0–1 data. In Daniel Barbará and Chandrika Ka-
math, editors, Proceedings of the Third SIAM International
Conference on Data Mining, San Francisco, CA, USA, May 1-3,
2003. SIAM, 2003.

[HWLT02] Jiawei Han, Jianyong Wang, Ying Lu, and Petre Tzvetkov. Min-
ing top-K frequent closed patterns without minimum support.
In Proceedings of the 2002 IEEE International Conference on
Data Mining (ICDM 2002), pages 211–218. IEEE Computer Soci-
ety, 2002.

[IK68] C. T. Ireland and S. Kullback. Contingency tables with given
marginals. Biometrika, 55(1):179–188, March 1968.

[IM96] Tomasz Imielinski and Heikki Mannila. A database perspec-
tive on knowledge discovery. Communications of the ACM,
39(11):58–64, November 1996.

111

Bibliography

[JSR04] Szymon Jaroszewicz, Dan A. Simovici, and Ivo Rosenberg. Mea-
sures on Boolean polynomials and their applications in data
mining. Discrete Applied Mathematics, 144(1-2):123–139, 2004.

[KH02] Y. Koren and D. Harel. Multi-scale algorithm for the linear
arrangement problem. Technical Report MCS02-04, The Weiz-
mann Institute of Science, 2002.

[KK01] Michihiro Kuramochi and George Karypis. Frequent subgraph
discovery. In Nick Cercone, Tsau Young Lin, and Xindong Wu,
editors, Proceedings of the 2001 IEEE International Conference
on Data Mining, pages 313–320. IEEE Computer Society, 2001.

[KM76] Stratis Kounias and Jacqueline Marin. Best linear Bonferroni
bounds. SIAM Journal on Applied Mathematics, 30(2):307–323,
1976.

[KMN99] Samir Khuller, Anna Moss, and Joseph Naor. The budgeted
maximum coverage problem. Information Processing Letters,
70(1):39–45, April 1999.

[KMU92] Jyrki Kivinen, Heikki Mannila, and Esko Ukkonen. Learning hi-
erarchical rule sets. In Computational Learning Theory, pages
37–44, 1992.

[Knu92] Donald E. Knuth. Two notes on notation. The American Math-
ematical Monthly, 99(5):403–422, May 1992.

[KPR04] Jon Kleinberg, Christos Papadimitriou, and Prabhakar Ragha-
van. Segmentation problems. J. ACM, 51(2):263–280, 2004.

[KS02] David Kessler and Jeremy Schiff. Inclusion-exclusion redux.
Electronic Communications in Probability, 7:85–96, 2002.

[Kwe75] Seymour M. Kwerel. Most stringent bounds on aggregated prob-
abilities of partially specified dependent probability systems.
Journal of the American Statistical Association, 70(350):472–
479, 1975.

[LKH97] Bing Liu, Liang-Ping Ku, and Wynne Hsu. Discovering interest-
ing holes in data. In Proceedings of Fifteenth International Joint
Conference on Artificial Intelligence (IJCAI-97), pages 930–935,
1997.

[LN90] Nathan Linial and Noam Nisan. Approximate inclusion-
exclusion. Combinatorica, 10(4):349–365, 1990.

[LS00] Daniel D. Lee and H. Sebastian Seung. Algorithms for non-
negative matrix factorization. In Todd K. Leen, Thomas G.

112

Dietterich, and Volker Tresp, editors, Advances in Neural In-
formation Processing Systems 13, pages 556–562. MIT Press,
2000.

[Man02] Heikki Mannila. Local and global methods in data mining: Ba-
sic techniques and open problems. In P. Widmayer, F. Triguero,
R. Morales, M. Hennessy, S. Eidenbenz, and R. Conejo, edi-
tors, Automata, Languages and Programming, volume 2380
of LNCS, pages 57–68. Springer-Verlag, 2002.

[MM03] Taneli Mielikäinen and Heikki Mannila. The pattern ordering
problem. In Nada Lavrač, Dragan Gamberger, Ljupčo Todor-
ovski, and Hendrik Blockeel, editors, Knowledge Discovery in
Databases: PKDD 2003: 7th European Conference on Principles
and Practice of Knowledge Discovery in Databases, volume
2838 of Lecture Notes in Artificial Intelligence, pages 327–338,
Cavtat–Dubrovnik, Croatia, September 2003. Springer-Verlag.

[MT96] Heikki Mannila and Hannu Toivonen. Multiple uses of frequent
sets and condensed representations (extended abstract). In
2nd International Conference on Knowledge Discovery and
Data Mining (KDD–1996), pages 189–194, Portland, Oregon,
August 1996. AAAI Press.

[MTV97] Heikki Mannila, Hannu Toivonen, and A. Inkeri Verkamo. Dis-
covery of frequent episodes in event sequences. Data Mining
and Knowledge Discovery, 1(3):259–289, November 1997.

[NJW01] Andrew Y. Ng, Michael I. Jordan, and Yair Weiss. On spectral
clustering: Analysis and an algorithm. In Thomas G. Dietterich,
Suzanna Becker, and Zoubin Ghahramani, editors, Advances
in Neural Information Processing Systems 14, pages 849–856.
MIT Press, 2001.

[PBTL99] Nicolas Pasquier, Yves Bastide, Rafik Taouil, and Lotfi Lakhal.
Discovering frequent closed itemsets for association rules. In
Catriel Beeri and Peter Buneman, editors, Database Theory -
ICDT ’99, 7th International Conference, volume 1540 of Lecture
Notes in Computer Science, pages 398–416. Springer, 1999.

[PG05] András Prékopa and Linchun Gao. Bounding the probability
of the union of events by aggregation and disaggregation in
linear programs. Discrete Applied Mathematics, 145:444–454,
2005.

[PMS00] Dmitry Pavlov, Heikki Mannila, and Padhraic Smyth. Probabilis-
tic models for query approximation with large sparse binary

113

Bibliography

data sets. In Craig Boutilier and Moisés Goldszmidt, editors,
UAI ’00: Proceedings of the 16th Conference in Uncertainty in
Artificial Intelligence, pages 465–472. Morgan Kaufmann, 2000.

[Pré88] András Prékopa. Boole-Bonferroni inequalities and linear pro-
gramming. Operations Research, 36(1):145–162, 1988.

[Pré90] András Prékopa. Sharp bounds on probabilities using linear
programming. Operations Research, 38(2):227–239, 1990.

[PS01] Dmitry Pavlov and Padhraic Smyth. Probabilistic query models
for transaction data. In Foster Provost, Ramakrishnan Srikant,
Mario Schkolnick, and Doheon Lee, editors, Proceedings of the
Seventh ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD-2001), New York, NY, USA,
2001. ACM Press.

[PSW92] A. Pothen, H. Simon, and L. Wang. Spectral nested dissec-
tion. Technical Report CS-92-01, Pennsylvania State University,
Department of Computer Science, 1992.

[PTH01] Jian Pei, Anthony K.H. Tung, and Jiawei Han. Fault-tolerant fre-
quent pattern mining: Problems and challenges. In Workshop
on Research Issues in Data Mining and Knowledge Discovery,
2001.

[Riv87] Ronald L. Rivest. Learning decision lists. Machine Learning,
2(3):229–246, 1987.

[SBM03] Jouni K. Seppänen, Ella Bingham, and Heikki Mannila. A simple
algorithm for topic identification in 0–1 data. In Nada Lavrač,
Dragan Gamberger, Ljupčo Todorovski, and Hendrik Blockeel,
editors, Knowledge Discovery in Databases: PKDD 2003: 7th
European Conference on Principles and Practice of Knowledge
Discovery in Databases, volume 2838 of Lecture Notes in Arti-
ficial Intelligence, pages 423–434, Cavtat–Dubrovnik, Croatia,
September 2003. Springer-Verlag.

[SM04] Jouni K. Seppänen and Heikki Mannila. Dense itemsets. In
Ronny Kohavi, Johannes Gehrke, William DuMouchel, and Joy-
deep Ghosh, editors, Proceedings of the Tenth ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining (KDD-2004), pages 683–688. ACM Press, 2004.

[SM05] Jouni K. Seppänen and Heikki Mannila. Boolean formulas and
frequent sets. In Jean-François Boulicaut, Luc de Raedt, and
Heikki Mannila, editors, Constraint-based mining and inductive

114

databases, Lecture Notes in Computer Science, pages 348–361.
Springer-Verlag, 2005.

[Swe88] J. A. Swets. Measuring the accuracy of diagnostic systems.
Science, 240(4857):1285–93, June 1988.

[Tat06] Nikolaj Tatti. Safe projections of binary data sets. Acta Infor-
matica, 42(8-9):617–638, 2006.

[TM80] John Tydeman and Robert Mitchell. A note on the Kounias and
Marin method of best linear Bonferroni bounds. SIAM Journal
on Applied Mathematics, 39(1):173–177, 1980.

[TYH03] Petre Tzvetkov, Xifeng Yan, and Jiawei Han. TSP: Mining top-
K closed sequential patterns. In Proceedings of the 3rd IEEE
International Conference on Data Mining (ICDM 2003), pages
347–354. IEEE Computer Society, 2003.

[YFB01] Cheng Yang, Usama Fayyad, and Paul S. Bradley. Efficient dis-
covery of error-tolerant frequent itemsets in high dimensions.
In Foster Provost, Ramakrishnan Srikant, Mario Schkolnick,
and Doheon Lee, editors, Proceedings of the Seventh ACM
SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD-2001), New York, NY, USA, 2001. ACM Press.

[ZHD+01] Hongyuan Zha, Xiaofeng He, Chris H. Q. Ding, Ming Gu, and
Horst D. Simon. Bipartite graph partitioning and data clus-
tering. In Proceedings of the 2001 ACM CIKM International
Conference on Information and Knowledge Management, pages
25–32. ACM, 2001.

[ZKM01] Zijian Zheng, Ron Kohavi, and Llew Mason. Real world per-
formance of association rule algorithms. In Foster Provost,
Ramakrishnan Srikant, Mario Schkolnick, and Doheon Lee, ed-
itors, Proceedings of the Seventh ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD-
2001), pages 401–406, New York, NY, USA, 2001. ACM Press.

115

HELSINKI UNIVERSITY OF TECHNOLOGY
DISSERTATIONS IN COMPUTER AND INFORMATION SCIENCE

Report D1 Koskela, M., Interactive Image Retrieval Using
Self-Organizing Maps, 2003.

Report D2 Sinkkonen, J., Learning Metrics and Discriminative
Clustering, 2003.

Report D3 Hurri, J., Computational Models Relating Properties of
Visual Neurons to Natural Stimulus Statistics, 2003.

Report D4 Bingham, E., Advances in Independent Component Analysis
with Applications to Data Mining, 2003.

Report D5 Himberg, J., From Insights to Innovations: Data Mining,
Visualization and User Interfaces, 2004.

Report D6 Särelä, J., Exploratory Source Separation in Biomedical
Systems, 2004.

Report D7 Peltonen, J., Data Exploration with Learning Metrics,
2004.

Report D8 Könönen, V., Multiagent Reinforcement Learning in
Markov Games: Asymmetric and Symmetric Approaches, 2004.

Report D9 Inki, M., Extensions of Independent Component Analysis
for Natural Image Data, 2004.

Report D10 Honkela, A., Advances in Variational Bayesian
Nonlinear Blind Source Separation, 2005.

Report D11 Nikkilä, J., Exploratory Cluster Analysis of Genomic
High-Throughput Data Sets and Their Dependencies, 2005.

ISBN 951-22-7908-8

Helsinki University of Technology
Dissertations in Computer and Information Science

Espoo 2006 Report D12

USING AND EXTENDING ITEMSETS IN DATA MINING:
QUERY APPROXIMATION, DENSE ITEMSETS, AND TILES

Jouni K. Seppänen

ISBN 951-22-8201-1

ISSN 1459-7020

R
eport D

12 Jouni K
. S

eppänen: U
S

IN
G

 A
N

D
 E

X
T

E
N

D
IN

G
 IT

E
M

S
E

T
S

 IN
 D

A
T

A
 M

IN
IN

G
: �Q

 U
E

R
Y

 A
P

P
R

O
X

IM
A

T
IO

N
, D

E
N

S
E

 IT
E

M
S

E
T

S
, A

N
D

 T
IL

E
S

	Cover
	Title
	Publication info
	Abstract
	Tiivistelmä
	Contents
	Preface
	Introduction
	Preliminaries
	Approximating Boolean queries
	The support estimation problem
	Inner product representation
	Truncated inclusion-exclusion
	Disjunctions of attributes
	Experimental evaluation
	Arbitrary queries
	Experimental evaluation with arbitrary queries
	Correcting the truncation
	Other approaches to Approximate Query

	Dense itemsets
	Intersection counts
	Intersection statistics
	Algorithms
	Empirical results
	Discussion

	Tile models
	Geometric tiles
	Combinatorial tiles
	Empirical results
	Discussion

	Conclusion
	Bibliography

