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ABSTRACT
Sensor data can be used for monitoring, modeling, and recog-
nition of human activities during daily life or in special situ-
ations. In assistive environments, modeling of characteristic
walking styles have been studied as well as preventing the
falls of the elderly. In this paper, we pre-process and analyze
a time series collection of sensor recordings which is publicly
available. More specifically, we transform the raw pressure
sensor data in the insoles of the shoes to yield binary pres-
sure patterns to indicate contact between the shoe and the
ground. We model the marginal probability distributions of
the resulting 0-1 data with mixture models of multivariate
Bernoulli distributions. We interpret the identified mixture
model in terms of gait phases.

Categories and Subject Descriptors
H.2.8. [Database applications]: Data mining; I.5.1 [Pattern
recognition]: Models - Statistical

Keywords
Probabilistic models, finite mixture models, activity moni-
toring, gait analysis, sensor data

1. INTRODUCTION
Sensor data can be used for monitoring, modeling, and

recognition of human activities during daily life or in spe-
cial situations. Solutions have been presented, for instance,
for detecting fall events of the elderly before the actual im-
pact [23], modeling and comparing gait patterns of healthy
persons and persons with Parkinson’s disease [1] in a clinical
setting. The work presented in [5, 6] concentrates on detect-
ing abnormalities in the gait patterns. Our general motiva-
tion to use sensor data in the activity monitoring context is
to understand the normal gait patterns of individuals, based
on recorded sensor data.

In this paper, we will make use of a publicly available time
series collection containing sensor recordings in a controlled
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walking experiment [15]. More specifically, we will analyze
the gait patterns from the raw sensor data that records the
pressure between the bottom of the shoe and the ground.
We propose a pre-processing that depends on the data dis-
tributions of each shoe sensor, and threshold the raw sensor
data values with the threshold values based on percentiles
of the data distributions. Data value 0 indicates no contact
with the floor, and 1 indicates firm contact, which will result
in multi-dimensional 0-1 time-series. There are four sensors
in our shoe, and therefore our pressure patterns will be rep-
resented as four-dimensional, binary data vectors. The mod-
eling is performed in the probabilistic modeling domain with
finite mixture models of multivariate Bernoulli distributions
[22]. The estimation is done in the framework of maximum
likelihood estimation using the EM algorithm [7, 3].

The rest of the paper is organized as follows. In Section 2,
we review previous related work with relevance to the cur-
rent contribution. In Section 3, we introduce the publicly
available measurement data set, which can be used to ex-
periment with sensor recordings in a controlled experiment
setting. In Section 4, we describe the pre-processing of the
sensor data and the methodology of analyzing the derived bi-
nary time series from the shoe sensors. In Section 5, the ex-
perimental results with the proposed methods are presented
and in Section 6, we conclude the paper with a summary.

2. RELATED WORK
Early work on using acceleration sensors in activity recog-

nition [16] proposes normalization and analysis strategies
for human activity recognition based on a wearable device.
In similar spirit, [2] presents activity recognition based on
many three-axis acceleration sensors with similar accuracies.
In [14], wearable sensors are presented as a general approach
to gather data inexpensively. This data can be used to de-
termine the user’s location, detect transitions between pre-
selected locations, and recognize the current activity, such as
sitting, standing, and walking behavior. In contrast to the
general work on activity recognition, our work is concen-
trated on the analysis of gait patterns. The authors in [18]
present a versatile human-computer interface for the foot.
The shoe includes various sensors to measure the person
walking and running. Their shoe include pressure sensors in
the insoles of the shoe, as does the present work.

Automatic segmentation method for body sensor data is
presented in [8] that distinguishes between periods of ac-
tivity and rest. In [13], the authors estimate dynamic pa-
rameters within the gait cycle. The authors in [12] present
smart shoes that measure the ground contact forces and



aim to detect abnormalities in the pressure patterns. They
also present normal gait data patterns with sensor place-
ment very similar to the current investigation. Gait-phase
detection with sensor embedded in a shoe insole has been
presented in [17]. They use four abstracted states in walk-
ing: Heel Strike, Swing, Heel Off, and Stance and present
different transitory possibilities between the states. In [5],
the authors present a six state left-to-right Hidden Markov
Model to model gait patterns. The authors in [19] present
different configurations of active pressure sensors in the shoe,
and select the best configuration among the set of configu-
ration patterns with the same number of active sensors.

Early review on human balance and posture control [21]
identifies an inverted pendulum model of a human being as
the common denominator in the assessment of human bal-
ance and posture. In contrast to such physics-based models,
we model the distribution of sensor data in order to yield
compact and understandable patterns [11].

3. BODY SENSOR RECORDINGS
We use body sensor recordings in a controlled walking ex-

periment, which has been documented in our previous pub-
lication [15]. The time series collection has been made pub-
licly available. In the experiment, the study subjects are
asked to walk forward and backwards on a line on a track in
a controlled fashion. The study subjects wear acceleration
sensors attached to their body. There are three-axis acceler-
ation sensors in the upper back, lower back, both knees and
ankles, as well as pressure sensors in the shoes. In the cur-
rent contribution, we will solely concentrate on the pressure
sensor measurements, measuring the impact of the bottom
of shoe hitting the ground when walking.

The pressure sensor measurements in the insoles of the
shoes are now described in more technical detail. There are
four sensors measuring pressure on a quantitative scale. The
sensors are located in the heel, two in the metatarsal head
region (inner and outer side), and toe region. The sensor
measurements have been recorded with 8-bit accuracy and
represented as integers ranging from 0 to 255. For the pur-
poses of deriving binary patterns, which we will subsequently
analyze, we threshold the data to yield 0-1 data. The choice
of the threshold may vary, for instance, we may opt to use
the median of the data distribution to yield dense represen-
tation of patterns. We expect that using a low threshold
will result in dense and somewhat noisy patterns, whereas
a higher threshold will result in sparse, but maybe not so
rich patterns in the data. There is a trade-off to be made
in selecting the representation of data. In the experimen-
tal part, we have used the 60th percentile of each pressure
sensor data distribution to threshold the raw sensor values.
Any value exceeding this value will yield a binary measure-
ment 1 and consequently, any value less or equal will result
in a 0 value. The threshold values are estimated for each
sensor separately to accommodate for possible differences in
the sensors themselves. The trade-off of selecting a thresh-
old value is illustrated in Figure 1, where we illustrate the
nature of the binary time series data. The percentiles are
calculated from the sensor-specific distributions. The figure
illustrates the varying degree of sparsity when different per-
centile thresholds are used. This presents a challenge for
identifying patterns from data: in modeling, we must select
the representation is the most suitable for descriptive pat-
terns of data. Rather that concentrating on the selection

of the thresholding values, we work with the data set that
is rich enough to have the dependencies present in the data
and model the data with a probabilistic model.
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Figure 1: Example of walking patterns expressed
with binary data as a result of thresholding the orig-
inal sensor data represented as 8-bit integers. The
time is represented on the x-axis, the readings of
four sensors in the insoles of the shoes are depicted
as four separate columns on the y-axis. The differ-
ence between the panels is that we have used differ-
ent values of thresholding to yield the binary pat-
terns. From top panel to bottom panel, 30th, 50th,
70th, and 90th percentiles are used for thresholding.

4. ANALYSIS OF GAIT PATTERNS
We approach the problem of gait analysis in the frame-

work of data mining [9] since the data are represented in
the form of 0-1 data vectors. Arguably, there are tem-
poral dependencies in the data, but we essentially ignore
the temporal dependencies and concentrate on modeling the
marginal distributions of the four-dimensional binary data.
Furthermore, we assume independence of the sensor record-
ings within one data vector. We approach the modelling
with finite mixture models of multivariate Bernoulli distri-
butions [22] and use the BernoulliMix program package [10]
in the experiments. The mixture models assume a genera-
tive model, in which the observations are conditionally inde-
pendent given its parent variable, which is latent [3]. This
is a similar assumption as in Naive Bayes models, the only
difference being that Naive Bayes models usually assume
that the of the parent, or class variable is observed. We
denote the data vector at time t containing the four sensor
measurements by xt = [xt1, xt2, xt3, xt4]. In this work, we
consider the realizations of the random variables observed
in time to be independent. Although somewhat contrary
to intuition, this is still a viable assumption and simplifies
the model considerably. The joint probability distribution
of the finite mixture model is factorized as presented in the
following equation



P (S1, . . . , ST ,x1, . . . ,xT ) =
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t=1
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P (xti | St = j).

The model parameters can be estimated with the Expec-
tation Maximization (EM) algorithm [22, 7]. The EM algo-
rithm estimates the maximum likelihood parameters from
the incomplete data. The parameters are the mixing coeffi-
cients πj = P (St = j) and the parameters of the component
distributions θji = P (xi | St = j). Before training can
take place, the number of mixture components J must be
decided. The issue of model selection — selecting an appro-
priate number of mixture components — has been dealt with
in our previous publications [20]. In this paper, we set the
number of mixture components to be J = 4, according to the
knowledge in the gait analysis domain. Other researchers
have presented their choices in selecting the complexity of
the model. Gait-phase detection with sensor embedded in
a shoe insole has been presented in [17]. They use four ab-
stracted states in walking: Heel Strike, Swing, Heel Off, and
Stance and present different transitory possibilities between
the states. In [5], the authors present a six state left-to-right
Hidden Markov Model to model gait patterns. The authors
in [19] present different configurations of active pressure sen-
sors in the shoe, and select the best configuration among the
set of configuration patterns with the same number of active
sensors. For us, it is interesting to see the interpretability
of our findings in light of the already suggested gait models,
which leads us to prefer a smaller number of component dis-
tributions to explain the data. In our previous research, we
have described mixture models in compact and understand-
able form by deriving cluster-specific patterns [11].

5. EXPERIMENTS
We extract pressure data indicating the contact with the

bottom of the shoe with the ground from the left shoe in the
experiment, where study subjects walk forward in a con-
trolled experiment. We use the 60th percentile of sensor-
specific readings in each walking experiment as a threshold
to get binary walking patterns. The matter of thresholding
was illustrated with different threshold values in the Fig-
ure 1. Consequently, we train initially five mixture models
from the training data, and calculate the likelihood values
from training data and validation data sets. We select as
our final model the one that has the best fit according to
the validation likelihood. The mixing coefficient of the iden-
tified mixture model are in Table 1 and the parameters of
the component distributions are in Table 2.

Out of the four mixture components, the second is the
most dominating pattern in the data, followed by the fourth
and the third. The first component distribution models only
about 10 percent of the data distribution. We can give an
interpretation to the patterns generated by the model by
observing the corresponding probability parameters. The
most dominating component, the second component distri-
bution (J = 2), models the heel pressing down onto the floor

Table 1: The mixing proportions in the mixture
model. Mixture coefficients correspond to the prior
probabilities of the component distributions.

π1 = 0.101 π2 = 0.517 π3 = 0.164 π4 = 0.218

Table 2: The parameters of the component distri-
butions in our mixture model with four component
distributions. The first row has the generative prob-
abilities of the four sensor readings (0/1). The di-
mensions are heel, two sensors in the middle part
(metatarsalis head area), and the fourth in located
in the toe area.

θ11 = 0.163 θ12 = 0.387 θ13 = 0.067 θ14 = 0.114
θ21 = 0.315 θ22 = 0.123 θ23 = 0.000 θ24 = 0.001
θ31 = 0.222 θ32 = 0.495 θ33 = 0.997 θ34 = 0.983
θ41 = 0.816 θ42 = 0.966 θ43 = 0.999 θ44 = 0.988

(probability of the first dimension is high), and partially the
inner metatarsalis being pressed (also, the probability of the
second dimension is relatively high). The component distri-
bution (J = 4) models all four sensors being in firm contact
with the floor. The third component distribution (J = 3)
models firm contact with the floor in the toe part and the
outer side of the metatarsalis area and moderately firm pres-
sure in the inner metatarsalis sensor, which can be identified
as a gait phase of its own. It is more difficult to give a clear
interpretation to the component distribution J = 1, which
in effect may model the rest of the probability mass in the
data.

6. SUMMARY AND CONCLUSIONS
Sensory information can be used for activity recognition

and remote monitoring of the elderly. Analysis of gait, or
person’s manner of walking, has been subject to active re-
search, using various modes of gathering data from the study
subjects. In this paper, we focus on the walking patterns
measured with four pressure sensors in the bottom of the
shoes to measure contact between the shoe and the ground.
This data is a part of publicly available time series collection
of body sensor recordings. We transform the original, raw
data by thresholding it with a data-derived threshold and
output binary 0-1 data indicating contact between the shoe
and the ground with binary truth values. We model the
data with a mixture model of Bernoulli distributions with
four component distributions, where the complexity of the
model is set according to the domain expertise of the gait
cycle. The model has a simple interpretation in terms of
the sensor contacts with the floor, and correspond to the
gait cycles of the foot hitting the floor, with the pressure
gradually moving towards the toes while the step proceeds.

We have modeled the marginal distributions of the gait
patterns with finite mixture models of multivariate Bernoulli
distributions. For simplicity, we have not made explicit use
the sequential dependency between the time steps. It would
be interesting to model the sequencing of the probabilis-
tic step patterns in the data, with modeling the temporal
dependencies with Markovian models [4] such as Hidden



Markov Models (HMM). To relate model selection proce-
dures to setting the model parameters with domain knowl-
edge also is an interesting and important issue.
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