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Abstract To successfully prepare and model data, the data miner needs to be
aware of the properties of the data manifold. In this chapter, the outline of a tool
for automatically generating data survey reports for this purpose is described. Such
a report is used as a starting point for data understanding, acts as documentation of
the data, and can easily be redone if necessary. The main focus is on describing the
cluster structure and the contents of the clusters. The described system combines
linguistic descriptions (rules) and statistical measures with visualizations. Whereas
rules and mathematical measures give quantitative information, the visualizations
give qualitative information on the data sets, and help the user to form a mental
model of the data based on the suggested rules and other characterizations.

1 Introduction

The purpose of data mining is to find knowledge from databases where the
dimensionality, complexity, or amount of data is prohibitively large for man-
ual analysis. This is an interactive process which requires that the intuition
and background knowledge of application experts are coupled with the com-
putational efficiency of modern computer technology.

The CRoss-Industry Standard Process for Data Mining (CRISP-DM) [4]
divides the data mining process to several phases. One of the first phases is
data understanding, which is concerned with understanding the origin, nature
and reliability of the data, as well as becoming familiar with the contents of
the data through data exploration. Understanding the data is essential in
the whole knowledge discovery process. Proper data preparation, selection of
modeling tools and evaluation processes is only possible if the miner has a
good overall idea, or a mental model, of the data.

The data exploration is usually done by interactively applying a set of
data exploration tools and algorithms to get an overview of the properties
of the data manifold. However, understanding a single data set is often not
enough. Because of the iterative nature of the knowledge discovery process,
several different data sets and preprocessing strategies need to be considered
and explored. The task of data understanding is engaged again and again.
Therefore, the tools used for data understanding should be as automated as
possible.
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Figure1. Creating understanding of the data in a survey cycle. The data is prepared
and fed into the analysis system which generates the data survey report. Based
on the findings in the report and possibly further insights based on interactive
investigation, the data miner may either proceed with the next data mining phase,
or prepare the data set in a better, alternative fashion and, with a push of a button,
make a new report. The area within the dashed box corresponds to the implemented
report generation system.

1.1 Automated analysis of table-format data

This chapter presents a selection of techniques and associated presentation
templates to automate part of the data understanding process. The driving
goal of the work has been to construct a framework where an overview and
initial analysis of the data can be executed automatically, without user in-
tervention. The motivation for the work has come from a number of data
mining projects, in process industry for example [1], where we have repeat-
edly encountered the data understanding task when new data sets and/or
preprocessing strategies have been considered.

While statistical and numerical program packages provide a multitude
of techniques that are similar to those presented here, the novelty of our
approach is to combine the techniques and associated visualizations into a
coherent whole. In addition, using such program packages requires consider-
able time and expertise. An automated approach used in this chapter has a
number of desirable properties:

• the analysis is easy to execute again (and again and ...),
• the required level of technical know-how of the data miner is reduced

when compared to fully interactive data exploration, and
• the resulting report acts as documentation that can be referred to later.

Of course, an automatically performed analysis can never replace the flexibil-
ity and power inherent in an interactive approach. Instead, we consider the
report generation system described here to provide an advantageous starting
point for such interactive analysis (see Figure 1).

The nature of the report generation system imposes some requirements
for the applied methods. The algorithms should be computationally light,
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Figure2. Table-format data can be investigated both in terms of samples and in
terms of variables. Samples are analyzed to find groups of similar items. Variables
are analyzed to find groups of related items. Sample analysis is covered in Section
2 and variable analysis in Section 3.

robust, and require no user-defined parameters. They should also be generic
enough so that their results are of interest in most cases. Naturally, what is
interesting depends on the problem and the data domain. In the implemented
system, the domain has been restricted to unsupervised analysis of unordered,
numerical vector (table-format) data, see Figure 2. In contrast, supervised
estimation of one or more output variables, analysis of purely categorical
variables, and analysis of data sequences or time-series are not considered.
In a more complete system also these, especially the issues in supervised
estimation, should be addressed.

However, simply applying the analysis algorithms to the data is not
enough: the knowledge must be transferred to the data miner. This is accom-
plished through a data survey report. The report consists of visualizations
and numerical or linguistic descriptions organized according to a predefined
template into summary tables and lists. Visualizations are a very important
part of the report since they allow the display of large amounts of detailed in-
formation in a coherent manner, and give the data miner a chance to validate
the quantitative descriptions with respect to the actual data.

1.2 Related work

In [15], Pyle introduces the concept of data survey as a tool for getting a
feel of the data manifold. The emphasis is on variable dependency analysis
using entropy and related measures, and on identifying problems in the data.



Unfortunately, only rather general guidelines are given, and cluster analysis
is handled very briefly.

Cluster analysis, and especially characterization of the contents of the
clusters is one of the key issues in this chapter. The clusters can be character-
ized by listing the variable values typical for each cluster using, for example,
characterizing rules [18]. Another approach is to rank the variables in the
order of significance [12,16,17]. In this chapter, both approaches are used.

In [14], a report generation system KEFIR is described. It automatically
analyzes data in large relational databases, and produces a report on the key
findings. The difference to our work is that KEFIR compares a data set and a
priori given normative values, and tries to find and explain deviations between
them, and thus requires considerable setting up. The system described in this
chapter, on the contrary, is applied when the data miner starts with a single
unfamiliar data set.

In this sense, the recent work by Bay and Pazzani [2] is much closer to
certain parts of this work. They examine the problem of mining contrast sets,
where the fundamental problem is to find out how two groups differ from each
other, and propose an efficient search algorithm to find conjunctive sets of
variables and values which are meaningfully different in the two groups. The
difference to our work is that they are concerned with categorical variables,
and want to find all relevant differences between two arbitrary groups. In this
work, the data is numerical, and the two groups are always two clusters, or
a cluster and the rest of the data.

In the implemented system, metric clustering techniques are used, so
the input data needs to be numerical vector-data (which may have miss-
ing values). Another possibility would be to use conceptual clustering tech-
niques [13], which inherently focus on descriptions of the clusters. However,
conceptual clustering techniques are rather slow, while recent advances have
made metric clustering techniques applicable to very large data sets [27,7].

1.3 Contents

The chapter is organized as follows. In this Section, the methodology and
basic motivation for the implemented system has been described. In Sec-
tions 2 and 3, the analysis methods for samples and variables, respectively,
are described. In Section 4, the overall structure of the data survey report
is explained. The system data set collected by the authors is used through-
out the chapter to illustrate the different aspects of the report and is more
closely described in Appendix A. In Section 5, a publicly available insurance
company data set [21] is analyzed in order to describe the use of the data
survey report. The work is summarized in Section 6.



2 Sample analysis

The relevant questions in terms of samples are: Are there natural groups, i.e.
clusters, in the data? What kind of segments can be formed, and what are
their properties?

2.1 Projection

A qualitative idea of the cluster structure in the data is acquired by visual-
izing the data using vector projection methods. Projection algorithms try to
preserve distances or neighborhoods of the samples, and thus encode similar-
ity information in the projection coordinates. There are many different kinds
of projection algorithms, see for example [11], but in the proposed system,
a classical linear projection based on principal component analysis (PCA) is
used. In PCA, the directions are found which account for most of the vari-
ance in the data. This is done by calculating the eigenvectors e1, ..., ed and
corresponding eigenvalues λ1, ..., λd of the covariance matrix of the data, and
ordering them by decreasing eigenvalues λ1 > λ2 > ... > λd. The first di-
rection e1 accounts for most — specifically λ1∑

i λi
100% — of the variance in

the data, the second for the second largest amount, and so on. By project-
ing data to the space spanned by the first few eigenvectors as much of the
variance is preserved as possible. The sum of the corresponding eigenvalues
gives the amount of variance preserved in the projection, and thus indicates
the error made in the low-dimensional projection. For example, a projection
to a 2-dimensional plane is defined as:

y =
[
eT
1

eT
2

]
x. (1)

The advantages of PCA projection include computational efficiency, and the
ability to project new data points (e.g. cluster centers) easily. It also allows
the use of a scree plot for easily understandable validation of the projection,
see Figure 3a.

Like spatial coordinates, colors can also be used to encode similarity in-
formation [26,23,9]. In the implemented system, the colors are assigned from
the hues on a color circle by a simple projection of cluster centroids onto the
circle. A color coding can be constructed by defining a smooth coloring in
a low-dimensional manifold, and projecting the data onto this manifold, for
example as follows:

1. A 1-dimensional SOM (see Section 2.2 below) is trained using the data.
The trained SOM forms a principal curve going through the data mani-
fold.

2. A color from the color hue circle (from the HSV color model, see for ex-
ample [26], with hue = φ, saturation = 1 and value = 1) is assigned to
each map unit i of the 1-dimensional SOM. The colors can be assigned



equidistant from each other φi = 2πi/M or the distances between neigh-
boring prototypes can be taken into account: φi = 2π

∑i
j=1 ‖mi+1 −

mi‖/
∑M−1

j=1 ‖mi+1 − mi‖.
3. Each data sample picks the same color as its BMU.

These colors are used consistently in various visualizations throughout the
report.

2.2 Clustering

Clustering algorithms, see for example [6], provide a more quantitative analy-
sis of the natural groups that exist in the data. In real data, however, clusters
are rarely compact, well-separated groups of objects — the conceptual idea
that is often used to motivate clustering algorithms. Apart from noise and
outliers, clustering may depend on the level of detail being observed. There-
fore, instead of providing a single partitioning of the data, the implemented
system constructs a cluster hierarchy, see Figure 3b. This may represent the
inherent structure of the data set better than a direct partitioning. Equally
important from data understanding point of view is that it also allows the
data to be investigated at several levels of granularity.

Base clusters In the implemented system, the Self-Organizing Map (SOM)
is used for clustering [10]. The SOM is a collection of prototype vectors m,
between which a neighborhood relation h is defined. The neighborhood re-
lation defines a structured lattice, usually a two-dimensional, rectangular or
hexagonal lattice of map units. After initializing the prototype vectors with,
for example, random values, training takes place. Training a Self-Organizing
Map from data is divided to two steps, which are applied alternately. First,
a best-matching unit (BMU) or a winner unit bi is searched, which mini-
mizes the Euclidean distance between a data sample xi and the map unit
prototypes mj

bi = arg min
j

‖xi − mj‖. (2)

Then, new prototypes are calculated as:

mj =
∑n

i=1 hbijxi∑n
i=1 hbij

, (3)

where hbij is the neighborhood strength between map units bi and j, and n
is the number of data samples. This is the batch training algorithm for the
SOM.

After quantizing the data using a SOM with a few hundred map units,
the map units are clustered. Thus, in the second phase only a few hundred
objects need to be clustered instead of all the original data samples. This



2-phase strategy reduces the computational complexity of the clustering con-
siderably [24]. In addition, the SOM is useful as a convenient projection of
the data cloud, see Section 3.

To cluster the units of the SOM, a widely used technique is the U-
matrix [20]. It is, in effect, a measure of the local probability density of
the data in each map unit. Thus, the local minima of the U-matrix — map
units for which the distance matrix value is lower than that of any of their
neighbors — can be used to identify cluster centers. In [22], the rest of the
map units were assigned to the cluster whose center was closest. This proce-
dure is simple and fast, but it also makes the implicit assumption that the
border between two clusters lies on the middle point between their cluster
centers. We use an enhanced version based on region-growing. This procedure
provides a partitioning of the map into a set of base clusters, the number of
which is equal to the number of local minima on the distance matrix [25].

Cluster hierarchy Starting from the base clusters, some agglomerative
clustering algorithm is used to construct the initial cluster hierarchy. Ag-
glomerative clustering algorithms start from some initial set of c clusters and
successively join the two clusters closest to each other (in terms of some dis-
tance measure), until there is only one cluster left. This produces a binary
tree with 2c − 1 clusters.

Since the binary structure does not necessarily reflect the properties of the
data set, a number of the clusters in the initial hierarchy will be superfluous
and need to be pruned out. This can be done by hand using some kind of
interactive tool [3], or in an automated fashion using some cluster validity
index to prune out the improper clusters. In the implemented system, the
following procedure is applied:

1. Start from root (top level) cluster.
2. For the cluster c under investigation, generate different sub-cluster sets. A

sub-cluster set may contain either sub-clusters of cluster c or sub-clusters
of c’s sub-clusters (sub-sub-clusters).

3. Each sub-cluster set defines a partitioning of the data in the investigated
cluster. Investigate each partitioning using some clustering validity mea-
sure, for example Davies-Bouldin index [5] or other similar index [25].

4. Select the best sub-cluster set (for example the one with minimum Igap),
and prune the corresponding intermediate clusters.

5. Select an uninvestigated cluster (if any), and continue from step 2.

In Figure 3b, the clusters and cluster hierarchy are presented in three
visualizations linked with each other and with the projection results.

2.3 Cluster characterization

Descriptive statistics — for example means, standard deviations and his-
tograms of individual variables — can be used to list the typical values for
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Figure3. Projection visualization (on left) and cluster hierarchy (on the right). The
projection gives an idea of the shape of the data manifold. The figure is accompanied
by the scree plot of eigenvalues, and a plot of projection residuals. These give an
idea of the inherent dimensionality of the data set, and the reliability of the 2-
dimensional projection. In this case, the projection covers 83% of the total variance.
The 95% coverage limit would be reached in 4-dimensional projection (of the total
of 9 dimensions). The cluster hierarchy is visualized using a dendrogram with colors
and names of the clusters also indicated. The two smaller figures in the right panel
(b) link the dendrogram to the projection visualization by showing the dendrogram
starting from the 2-dimensional projection coordinates. Each point is colored with
the color of the (base) cluster it belongs to.

each cluster. Not all variables are equally interesting or important, though.
Interestingness can be defined as deviation from the expected [14,8]. It can
be measured for each cluster as the difference between variable distributions
in the cluster versus the whole data either using probability densities or some
more robust measures, for example standard deviation [17]. Each cluster can
then be characterized by using a list of the most important variables and
their descriptive statistics.

Another frequently employed method is to form characterizing rules [19,18]
to describe the values in each cluster:

Ri : x ∈ Ci ⇔ xk ∈ [αk, βk] (4)

where xk is the value of variable k in sample vector x, Ci is the investigated
cluster, and [αk, βk] is the range of values allowed for the variable according
to the rule. These rules may be expressed in terms of single variables like Ri

above, or be conjunctions of several variable-wise rules in which case the rule
forms a hypercube in the input space.

The main advantage of such rules is that they are compact, simple and
therefore easy to understand. The problem is of course that clusters often



do not coincide well with the rules since the edges between clusters are not
necessarily in parallel with the edges of the hypercube. In addition, the clus-
ter may include some uncharacteristic points or outliers. Therefore the rules
should be accompanied by validity information. The rules Ri can be divided
to two different cases, characterizing rules (Rc

i ) and differentiating rules (Rd
i ):

Rc
i : x ∈ Ci ⇒ xk ∈ [αk, βk]

Rd
i : xk ∈ [αk, βk] ⇒ x ∈ Ci.

The validity with respect to each case can be measured using confidence:
P c

i = P (xk ∈ [αk, βk] |Ci) and P d
i = P (Ci |xk ∈ [αk, βk]), respectively.

To form the characterizing rules — in effect to select the low and high
limits of the range — one can use statistics of the values in the clusters [19].
Another approach is to optimize the rules with respect to their significance.
The optimization can be interpreted as a two-class classification problem
between the cluster and the rest of the data. The boundaries in the charac-
terizing rule can be set by maximizing a function which gets its highest value
when there are no misclassification’s, for example:

s1 =
a + d

a + b + c + d
, (5)

s2 =
a

a + b

a

a + c
, (6)

s3 =
a

a + b + c
, (7)

where a, b, c and d are from the truth table in Figure 4.
The first function s1 is simply the classification accuracy. It has the dis-

advantage that if the number of samples in the cluster is much lower than in
the whole data set (which is very often the case), s1 is dominated by the need
to classify most of the samples as false. Thus, the allowed range of values in
the rule may vanish entirely. However, when characterizing the (positive) re-
lationship between rule R and cluster C, the samples belonging to d are not
really interesting. As pointed out in [2], traditional rule-based classification
techniques are not well suited for the characterization task.

The two latter measures consider only cases a, b and c. The second mea-
sure s2 is the product of the confidences s2 = P c

i P d
i . The third measure is its

approximation s3 ≈ s2 when a � b+c. Compared to s2, s3 has the advantage
of a clearer interpretation. It is the ratio of correctly classified samples when
the case d is ignored, whereas s2 is the product of two such ratios.

Apart from characterizing the internal properties of the clusters, it is im-
portant to understand how they differ from the other, especially neighboring
clusters. For the neighboring clusters, the constructed rules may be quite
similar, but it is still important to know what makes them different. To do
this, rules can be generated using the same procedure as above, but taking
only the two clusters into account. In this case, however, both clusters are
interesting, and therefore s1 should be used.
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Figure4. The four-way truth table of cluster C and rule R. The cluster is the
horizontally shaded area, and the rule (or classification model) is the vertically
shaded area. On the right is the corresponding confusion matrix: a is the number
of samples which are in the cluster, and for which the rule is true. In contrast, d
is number of samples which are out of the cluster, and for which the rule is false.
Ideally, the off-diagonal elements in the matrix should be zero.

The report elements to describe the clusters are shown in Figure 5 and
Table 1. The former shows the most significant rule visualized with projec-
tion and histograms, and the latter a summary table of variable values and
associated descriptive rules of each variable, ordered by the significance s2 of
the variable.

Table1. Rule summary for the cluster in Figure 5 in the system data. Variables
are listed in order of decreasing significance as measured by s2. The columns in the
middle indicate the properties for the variable-wise rules, and the columns on the
right for a conjunctive rule formed of the indicated variables starting from the top.
The “diff” columns are confidences in the differentiating property of the rule P d

and “char” column in the characterizing property P c.

Variable Rule diff char s2 diff char s2

single cumulative

intr [0.78,3.1] 75% 99% 0.745 75% 99% 0.745
idle [3.3,4.3] 65% 98% 0.639 87% 98% 0.856
usr [1.2,2.3] 61% 98% 0.605 90% 98% 0.885
sys [0.71,1.4] 69% 62% 0.425

blks/s < 0.82 22% 98% 0.217 100% 96% 0.96
wio < 1.1 21% 100% 0.214
ipkts < 0.97 20% 100% 0.201
opkts < 0.97 20% 100% 0.2
wblks/s < 1.4 20% 100% 0.198
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Figure5. A cluster of the system data set. In (a) the PCA projection of the data is
shown, with the cluster indicated by the gray markers and the rest of the data with
black markers. In (b), the histogram corresponding to the most significant variable
is shown (see Table 1). The gray vertical bars are the histogram for the cluster, and
the black the histogram for the rest of the data. The horizontal bar indicates the
range allowed by the rule (thick part) and the real range of values in the cluster
(thin part).

3 Variable analysis

The relevant questions with respect to variables are: What are the distribu-
tion characteristics of the variables? Are there pairs or groups of dependent
variables? If so, how do they depend on each other?

The distributions of individual variables can be characterized by simple
descriptive statistics, for example histograms. The histogram bins are formed
either based on the unique values of the variable, if there are at most 10 unique
values, or by dividing the range between minimum and maximum values of
the variable to 10 equally sized bins.

Dependencies between variables are best detected from ordinary scatter
plots, for example from a scatterplot matrix which consists of several sub-
graphs where each variable is plotted against each other variable. Of course,
such visualization technique has the deficiency that the number of pairwise
scatter plots increases quadratically with the number of variables. A more
efficient, if less accurate, technique is to use component planes. A component
plane is a colored scatter plot of the data, where the positions of the markers
are defined using a projection such that similar data samples are close to
each other. The color of the markers are defined by the values of a variable
in the data samples. By using one component plane for each variable, the
whole data set can be visualized, see Figure 6a. Relationships between vari-
ables can be seen as similar patterns in identical places in the component
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Figure6. (a) Component planes. Relationships between variables can be seen as
similar patterns on the component planes. (b) Correlation coefficient matrix, and
the dendrogram resulting from clustering of the variables using an agglomerative
clustering algorithm. (c) Association graph. On the association graph, high positive
(negative) correlations are shown with red (blue) lines.

planes. The projection made by SOM works very well with this technique,
since the projection focuses locally such that the behavior of the data can be
seen irrespective of the local scale.

A more quantitative measure of the dependency between pairs of variables
{i, j} is the correlations coefficient cij :

cij =
1

σiσj

n∑
k=1

(xki − µi)(xkj − µj) (8)

where µi and σi are the mean and standard deviations of variable i. It is
robust, computationally light and can be efficiently visualized as a matrix, see
Figure 6b. Selected correlations are also visualized on an association graph,
see Figure 6c. In the implemented system, the correlation coefficients are
also used as feature vectors for each variable: vi = [ |ci1|, |ci2|, ..., |cid| ]. Using
them and some clustering or projection method (see Section 2), the variables
can be clustered (or ordered) to indicate groups of dependent variables [23].
In all three visualizations in Figure 6, the variables have been ordered such
that related variables are near each other.

4 Data survey report

The system was implemented as a Matlab script. It was installed on a web
server as a cgi-bin script, and thus it could be run remotely through any web
browser. The user provided the data and optionally a few other parameters.



The resulting report was provided both as a hypertext document in HTML
and in printable form in PostScript/PDF.

The report starts with an overview part, where the top-level results of
both variable and cluster analysis are given. The overview provides a quick
look at the data. It is short, only 2-4 pages in length, and consists mainly of
visualizations so that it can be understood at a glance.

Most of the elements of the overview have already been shown earlier in
the chapter (Figures 3a and b, 6a and c). From Figure 3a, one can see that
a two-dimensional projection preserves the structure of the system data set
very well. Most of the data is tightly packed in a single region, and there
is a fan of dispersed data. From Figure 3b, one can see that there are three
main operational states in the system, one of which divides further to several
sub-states. From Figure 6 one can see that there are two main groups of
variables, those involved with disk operations, and the rest.

In addition, the overview part has a table of descriptive statistics for each
variable, and a list of most significant rules for each cluster (not shown).
From the latter one could see that the main operational states correspond to
a normal operation state and two different high load states where either the
amount of disk operations is high (wio > 2.1) or there is a lot of network
traffic (ipkts > 1.9). Further investigation reveals that the normal operation
state divides to several different types, for example totally idle state, state
for mainly system operations, and state for mainly user operations.

The overview is followed by more detailed information of all variables, and
clusters (individual cluster characterizations). These allow the reader to get
immediately some further information on interesting details. For example, the
cluster depicted in Table 1 and Figure 5 is mainly characterized by relatively
high level of interruptions, and a moderate level of idle time.

The computational complexity of quantization using SOM is O(nmd),
where n is the number of data points, m is the number of map units, and d is
the vector dimension. The complexity of clustering the SOM is O((m−c)(c+
1)d), where c is the number of base clusters. The computational complexity
of the hierarchical clustering phase is O(c2d). The search for the best rule
is an optimization problem which can be solved, for example, using (fast)
exhaustive search techniques like the ones introduced in [2]. In the imple-
mented system, though, a much less complex greedy search is used which is
linear in computational complexity with respect to the number of variables.
Thus, its computational complexity is O(cd). The computational complexity
of variable analysis is O(d3) because of clustering the variables. Thus, the
overall complexity is of the order of O((nm + c2 + d2)d).

The system runs in main memory, which of course limits the possible size
of the data set. For a data set of size 4000 samples and 40 variables, the
report generation takes 15 minutes on a Linux workstation with Pentium
II 350 MHz processor and 256 MB of memory. The majority of the time is
spent to writing the images to files, which is unfortunately slow in Matlab.



The actual analysis only takes about 2 minutes. The heaviest part of the
analysis is clustering, which scales linearly with the number of data samples.
Thus, the system scales well to larger data sets, too.

5 Case study: caravan insurance policy data set

The second data set used in this chapter is a publicly available insurance
company data set used in a recent CoIL challenge [21]. In this data mining
competition, two separate tasks were given: predicting and explaining car-
avan insurance policy ownership. The samples represent customers and the
variables different aspects of the customers or their behavior. We do not at-
tempt to give an answer to either of the questions posed in the competition
directly, but rather to demonstrate how our data survey report can be used in
the initial phases of the data analysis project. In the following, we describe
the generation of the report and give a rough idea how to make valuable
observations about the data set with the help of the data survey report.

Creating a data survey report begins by inputting the data set to the data
survey generator. As indicated in Section 4, the system has been implemented
using a interface on a Web server, so the table-format data can be uploaded
to the generator using a Web based interface. The data survey report itself
is a hypertext document, which allows for navigating between overviews and
detailed descriptions as well as between clusters and their sub-clusters with
minimal effort. The report starts with an index document that lists all the
names of the variables along with their summary statistics. Summary statis-
tics used are the minimum, maximum, mean, standard deviation, and entropy
of the recorded variables. In addition, number of missing values, number of
unique values and whether all values have integer values are shown. This
helps finding out possibly categorical data or discretized variables. This is
the case in the insurance data set, which is easily seen from the report. The
data set size of 9822 samples and 86 variables is visible on the report header.

The main document is followed by an overview. The overview contains a
hierarchical table resembling a dendrogram, where clusters and the cluster
hierarchy are represented. The entries in the table indicate how many samples
are contained in each level of the cluster hierarchy. Also, the most descriptive
rules are listed. For instance, two clusters near the top of the hierarchy are
described by the descriptive rules. The descriptive rules for the cluster A are

Number of third party insurance (agriculture) >= 0.5
Contribution family accidents insurance policies < 2.5



and for the cluster B, the descriptive rules are

Contribution third party insurance (agriculture) < 1.5
Contribution tractor policies < 1.5
Contribution trailer policies < 1.5

Majority of the customers (97 %) belong to the cluster B, also indicated in
the tables. Focusing on the B clusters in the hierarchy, it is valuable to know
how each cluster differs from its peer clusters (in effect, the clusters which
have the same parent in the cluster hierarchy). The report indicates a single
most discriminative rule according to which each peer cluster differs from the
present cluster. In the case of sub-clusters of cluster B called B1 and B2, the
discriminative rule dictates the B1 to have a significant rule

Contribution family accidents insurance policies >= 1

in contrast to the present cluster B2. Projection of the cluster-specific data
complements this view. Navigating back to the top level, projection visual-
ization as in the Figure 3 is presented.

As the description above demonstrates, working with the data survey
report is highly interactive, and the implementation as a hypertext document
greatly facilitates working with the report. The user navigates through the
document searching for suggestive information to be used in the later stages of
the data analysis process. It is important to realize that the data survey report
serves as a initial tool to gain understanding through suggestive information
on the structure of the data manifold. The results should be used as an initial
step, and care should be taken in inferring knowledge from the report.

6 Conclusion

In the initial phases of a data analysis project, the data miner should have
some perception of the data, or a mental model of it, to be able to formulate
models in the latter phases of the project successfully. Helping to reach this
goal, an implemented system for automatically creating data survey reports
on numerical table-format data sets has been described. The system applies
a set of generic data analysis algorithms — variable and variable relation
analysis, projection, clustering, and cluster description algorithms — to the
data and writes a report which can be used as the starting point for data
understanding and as a reference later on. The system integrates linguistic de-
scriptions (rules) and statistical measures with visualizations. Visualizations
provide qualitative information of the data sets, and give an overview of the
data. The visualizations also help in assessing the validity of the proposed
measures, clusters and descriptive rules. The report provides a coherent, or-
ganized document about the properties of the data, making it preferable to



applying the same algorithms to the original data sets in an unorganized
manner and in different formats.

In our experience, the implemented system succeeds in automating a lot
of the initial effort done in the beginning of a typical data analysis project. In
fact, the system has been built on top of our experience in many collaborative
data analysis projects with industrial partners involving real-world data. In
all, we feel that the current version should have general appeal to a wide
variety of projects and should help in gaining an initial understanding for
successful modeling in many domains.

A System data

The first data set used throughout this chapter to illustrate the resulting data
survey report is a simple 9-dimensional real-world data set. The system data
set describes the operation of a single computer workstation in a networking
environment. The workstation was used for daily activities of a research sci-
entist ranging from computationally intensive (data analysis) tasks to editing
of programs and publications. The data set has been collected by the authors
at their research institution.

The number of variables recorded was 9. Four of the variables reflect
the volumes of network traffic and five of them the CPU usage in relative
measures. The variables for measuring the network traffic were blks/s (read
blocks per second), wblks/s (written blocks per second), ipkts (the number
of input packets) and opkts (the number of output packets). Correspondingly,
the central processing unit activities were measured with variables usr (time
spent in user processes), sys (time spent in system processes), intr (time
spent handling interrupts), wio (CPU was idle while waiting for I/O), idle
(CPU was idle and not waiting for anything). Whereas the network traffic
is unconstrained (within reasonable bounds), the full capacity of the CPU
is always divided between activities. Therefore, the five last measurements
add up to the full, unit capacity of the CPU. In all, 1908 data vectors were
collected.
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