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Abstract The Self-Organizing Map (SOM) is a powerful neural network for analysis
and visualization of high-dimensional data. It maps nonlinear statistical relationships be-
tween high-dimensional input data into simple geometric relationships on a usually two-
dimensional grid. The mapping roughly preserves the most important topological and
metric relationships of the original data elements and, thus, inherently clusters the data.
The need for efficient data visualization and clustering is often faced in various engineering
problems. In this chapter, SOM based methods are applied in analysis, monitoring and
modeling of complex systems.

1. Introduction

In modeling and control of complex systems, it is usually assumed that a global,
analytical system model can be defined. However, many industrial processes are so
complicated that a global model cannot be built. In such cases, Artificial Neural
Networks (ANNs) can successfully be used. ANNs build models directly based on
process measurements, and thus provide a means to analyze processes without ex-
plicit physical process model. ANNs can also be used as “soft sensors” to estimate
signal values or process variables that can only be measured indirectly or off-line.
The use of the ANNs, however, requires that a large amount of good quality, stable,
numerical data describing the process are available.

The Self-Organizing Map (SOM) [12] is a neural network algorithm which is
based on unsupervised learning. Unlike supervised learning methods, the SOM can
be used for clustering data without knowing the class memberships of the input data.
It can, thus, be used to detect features inherent to the problem. The SOM has been
successfully applied in various engineering applications [14] covering, for instance,
areas like pattern recognition, image analysis, process monitoring and control, and
fault diagnosis [28, 29, 34]. The SOM has also proven to be a valuable tool in data
mining and knowledge discovery with applications in full-text and financial data
analysis [8].

In this chapter, SOM based methods in the analysis of complex systems are
discussed. Special emphasis is on industrial applications in which a lot of measured
information is available from automation systems.

2. The Self-Organizing Map

2.1 Network Structure and Algorithm

The SOM consists of a regular, usually two-dimensional, grid of neurons. Each
neuron i of is represented by a weight, or model vector, m; = [m;,... ,mm]T
where n is equal to the dimension of the input vectors. The set of weight vectors is
called a codebook.

The neurons of the map are connected to adjacent neurons by a neighborhood
relation, which dictates the topology of the map. Usually rectangular or hexagonal
topology is used. Immediate neighbors belong to the neighborhood V; of the neuron
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1. In the basic SOM algorithm, the topological relations and the number of neurons
are fixed from the beginning. The number of neurons may vary from a few dozens
up to several thousands. It determines the granularity of the mapping, which affects
the accuracy and generalization capability of the SOM.

During iterative training, the SOM forms an elastic net that folds onto the
“cloud” formed by input data. The net tends to approximate the probability density
of the data: the codebook vectors tend to drift there where the data are dense, while
there are only a few codebook vectors where the data are sparse [12].

At each training step, one sample vector x is randomly chosen from the input
data set. Distances (i.e., similarities) between the & and all the codebook vectors
are computed. The best-matching unit (BMU), denoted here by ¢, is the map unit
whose weight vector is closest to the x:

|z = mc|| = min{[|z —m;l[}. (2.1)

After finding the BMU, the weight vectors are updated. The BMU and its topo-
logical neighbors are moved closer to the input vector in the input space. The update
rule for the weight vector of unit ¢ is:
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where ¢ denotes time. N,(t) is a non-increasing neighborhood function around the

winner unit ¢ and 0 < «a(t) < 1 is a learning coefficient, which is a decreasing
function of time.

The SOM algorithm performs a topology preserving mapping from the high-
dimensional input space onto map units so that relative distances between data
points are preserved. Data points lying near each other in the input space will
be mapped onto nearby map units. The SOM can thus serve as a clustering tool
of high-dimensional data. It also has capability to generalize, i.e. the network can
interpolate between previously encountered inputs.

A schematic illustration of applying the SOM in industrial process analysis is
shown in Fig. 2.1. The different stages in the figure are: (1) data processing (ac-
quisition, preprocessing, feature extraction, normalization), (2) map training, (3)
validation and interpretation and (4) visualization.
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Figure 2.1. Stages of the application of the SOM in industrial process analysis.

2.2 Validation and Interpretation

The quality of the mapping is usually determined based on (1) precision and (2)
topology preservation. The former can be measured using average quantization er-
ror, which is the average distance between the input vectors of the testing set and
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the corresponding BMUs. Different topology measures have been studied e.g. by
Kiviluoto [11] and Kaski and Lagus [9]. The latter proposed a goodness meter mea-
suring both precision and topology at the same time.

The SOM can be interpreted by naming the units according to input vectors,
whose type (e.g., class) is known. This labeling gives physical interpretation of
the network. If labeled vectors are not available, the map can be interpreted by
direct inspection of the weight vectors and clusters on the map. This is easiest to
accomplish using different visualization techniques discussed in detail in the next
section. Also automatic interpretation of the map is possible using fuzzy rules as
done by Pedrycz and Card [22].

2.3 Visualization

The SOM can be efficiently used in data visualization due to its ability to approxi-
mate the probability density of input data and to represent it in two dimensions. In
the following, several ways to visualize the network are introduced using a simple
application example, where a computer system in a network environment was mea-
sured in terms of utilization rates of the central processing unit and traffic volumes
in the network. The SOM was used to form a representation of the characteristic
states of the system.

The unified distance matriz (u-matriz) method by Ultsch [36] visualizes the
structure of the SOM. Firstly, a matrix of distances (u-matrix) between the weight
vectors of adjacent units of a two-dimensional map is formed. Secondly, some repre-
sentation for the matrix is selected, for example, a grey-level image [7]. The u-matrix
of the example system is shown in Fig. 2.2a. The lighter the color between two map
units is, the smaller is the relative distance between them. On the left side, there is
a large uniform area, which corresponds to idle state of the computer system. Top
right corner forms a clearly separated area, which corresponds to high CPU load in
the system.

Component plane representation visualizes relative component values of the
weight vectors. The illustration can be considered as a “sliced” version of the map,
where each plane shows the distribution of one weight vector component. Using the
distributions, dependencies between different process parameters can be roughly
studied. For example, Tryba et al. [35] have used this kind of visualization to inves-
tigate parameter variations in VLSI circuit design.

The component planes of the example system are presented in Fig. 2.2c. The
colors of map units have been selected so that the lighter the color is, the smaller
is the relative component value of the corresponding weight vector. It can be seen,
for instance, that the components #1, #2 and #6 (read blocks per second, written
blocks per second and write I/O percentage) are highly correlated.

Sammon’s mapping is an iterative algorithm to project high-dimensional vectors
in two dimensions [20]. The nonlinear mapping tries to preserve the relative dis-
tances between input vectors. The algorithm can be used to visualize the SOM by
mapping the values of the weight vectors onto a plane. To enhance the net-like look,
the neighboring map units may be connected to each other with lines to show the
topological relations. Since the SOM tends to approximate the probability density
of the input data, the Sammon’s mapping of the SOM can be used as a very rough
approximation of the form of the input data. The Sammon’s mapping of the exam-
ple system is illustrated in Fig. 2.2d. According to the mapping, the SOM seems to
be well-ordered in the input space.

Naturally Sammon’s mapping can be applied directly to data sets, but it is
computationally very intensive making the algorithm too slow for large data sets.
However, the SOM quantizes the input data to a small number of weight vectors,
which lightens the burden of computation to an acceptable level.
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Data histogram shows how input data are clustered by the SOM. In other words,
it shows how many input vectors belong to clusters defined by each map unit. The
histogram is formed using a trained SOM and a data set: for each data set vector,
the BMU is determined, and the “hit counter” of that unit is increased by one. The
histograms may be visualized in many ways. In our example, we have used squares
of different sizes: the larger the counter value is, the larger is the square. The data
histogram of the example application is shown in Fig. 2.2e.

Operating point and trajectory can be used to study the behavior of a process in
time. The operating point of the process is the BMU of the current measurement
vector. The location of the point on the topologically ordered map can be easily
visualized and used to determine the current process state. If also the history of the
process is of interest, a sequence of operating points in time forming a trajectory
can be studied. The trajectory shows the movement of the operating point, which in
some cases may be a very useful piece of information. A trajectory of the example
system is illustrated in Fig. 2.2b. The trajectory starts from the normal operation
area and moves through disk intensive phase to high load area.

2.4 Software Tools

SOM_PAK. The SOM algorithm has been implemented in a software package SOM_PAK
[13] written in ANSI C. The package includes tools for SOM training, validation
and visualization. The software uses simple ASCII files and can use data with miss-
ing vector components [27]. Graphical output of the program is in encapsulated
postscript (eps) format. An exhaustive description of the package can be found in
[13].

SOM Toolbox. Since the flexibility of the SOM can only be fully exploited in a
versatile computing environment, a software package SOM Toolbox [2] has been
developed for Matlab 5 environment [19]. The package includes basic initialization,
training and validation algorithms of the SOM. Special attention has been given
to easy and effective SOM visualization. The Figs. 2.2a — 2.2e in the Sect. 2.3
were mostly produced using the SOM Toolbox. Since all the algorithms have been
implemented using simple and well documented Matlab scripts, the functions are
easy to use and modify in the diverse needs that unavoidably arise. The package is
also compatible with the SOM_PAK.

3. Applying the SOM to Industrial Systems

In this section, possibilities to use the SOM in process analysis, monitoring and
modeling are discussed. Representative application examples and many references
can be found in articles by Kohonen et al. [14] and Simula and Kangas [29].

3.1 Process Analysis and State Monitoring

In chemical process industry, for instance, the SOM can be applied to on-line obser-
vation of processes as well as off-line analysis of process data. Because clear faults
seldom occur in such processes and are typically quite uninteresting, faulty situa-
tions should be filtered out from the training data set to be able to analyze normal
operation more accurately.

The SOM can be used to form a display of the operational states of the process.
The current process state and its history in time can be visualized as a trajectory on
the map. This allows efficient tracking of the process dynamics. The SOM facilitates
understanding of processes so that several variables and their interactions may be
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Figure 2.2. Different visualizations of the SOM. U-matrix presentation (a), trajec-
tory on top of labeled u-matrix (b), planes representation (c), Sammon’s mapping
(d) and data histogram on top of a component plane (e). In figures (a) and (b) the
black spots denote map units.

inspected simultaneously. Kasslin et al. [10] used the SOM to monitor the state of
a power transformer and to indicate when the process was entering a non-desired
state represented by a “forbidden” area on the map. Tryba and Goser [34] applied
the SOM in monitoring of a distillation process and discussed its use in chemical
process control in general.

In fault detection, the SOM should be trained using measurement vectors de-
scribing normal operation only. Thus, a mapping of the “normal operation” input
space is formed. A faulty situation can be detected by monitoring the quantization
error (distance between the input vector and the BMU). Large error indicates that
the process is out of the normal operation space. For example, Alander et al. [1]
and Harris [5] have used the SOM for this purpose.



6 Olli Simula, Juha Vesanto, Esa Alhoniemi, and Jaakko Hollmén

The problem of fault detection and identification is more difficult. The SOM
should be trained using all possible data describing both normal and abnormal
situations of the process. If faulty situations are rare, measurements describing
simulated faults may be added. Map units representing faulty states of the process
may be labeled according to known samples. The monitoring is based on tracking
of the operation point: location of the point on the map indicates the process state
and the possible fault type. Vapola et al. [37] constructed a two-level SOM model,
which was used first to detect and then to identify fault conditions in an anesthesia
system.

3.2 Process Modeling

3.2.1 Regression via Local Models. General regression of y on x is usually
defined by § = E(y|z). That is, the expectation of the output y given the input
vector x. To motivate the use of the SOM for regression, it is worth noting that the
codebook vectors represent local averages of the training data.

The SOM can be used for predicting, for example, the output quality of a pro-
cess given the measurements of incoming raw material characteristics and process
parameter settings [6]. Regression is accomplished by searching for the BMU using
the known vector components of . As an output, an approximation of the unknown
components of the codebook vector are given (see Fig. 3.1).

known
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Figure 3.1. Prediction of missing components of the input vector.

The accuracy of the model can be increased by building local models for the
data in the Voronoi sets of the SOM. The Voronoi set V; of map unit ¢ is a set of
vectors {@1, ..., Ty}, for which the codebook vector m; is closest.

The Voronoi sets provide a partitioning of the input data into disjoint sets.
Each set contains points that are near each other in the data space. Subsets are
modeled by independent local models, which together are considered a solution to
the modeling problem. Each model is based on the local data set V; only. This
kind of approach could be called divide-and-conquer modeling. The models are
not constrained to be of any specific form, or not even of similar form. In our
experiments, only simple local linear models have been considered.

Total least squares type of linear regression can be performed using Principal
Component Analysis (PCA) in model fitting. This approach allows measurement
errors also in inputs while the usual least squares approach assumes that the input
variables are accurate and there is error in the output variables only [25]. Combi-
nation of these two modeling methods takes advantage of the nonlinear elasticity of
the SOM as well as the local efficiency of the PCA. Also, the topology preservation
property of the SOM projection can be incorporated by allowing neighboring data
sets and models to interact in some way. Ritter et al. [26] used this approach in
local modeling of three-dimensional working space of a robot arm.
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3.2.2 Sensitivity Analysis. It is often desirable to know the behavior of a system
under small changes made in the system parameters. This is especially the case
in industrial environments, where noise is present both in measurements and in
operating conditions. In process control, the state of the process is desired to be
moved to such a direction that better quality is achieved. The operation point needs
to be stable: small random fluctuations in input parameters must not cause large
changes in output parameters.

The model described above can be used to investigate leverage effects of small
changes made in one of the process parameters. This is possible because the system
cannot reach all the possible values in the space defined by the measurements, but
may be limited to a low-dimensional manifold. The state space, or the space of
possible values, is constrained by the characteristic behavior of the system. This is
illustrated in Fig. 3.2, which depicts a two-dimensional SOM trained with data orig-
inating from a three-dimensional measurement space. As a small change in one of
the measurements is imposed, the BMU changes to another map unit. By tracking
the change of the BMU caused by the change of the parameters, the mutual nonlin-
ear dependence of the parameters is revealed; one is “surfing” on a low-dimensional
manifold defined by the SOM projection [6].

SOM
Leverage
effect
caused by \L R
small
change
—
© 7 Small .
change Figure 3.2. A small
change along one mea-
surement, axis causes a
Measurement change in other process
space parameters.

4. Some Case Studies

4.1 Analysis of a Continuous Pulp Digester

In a case study, a continuous pulp digester of a pulp mill was studied. Input vectors
of the SOM consisted of 11 temperature sensor readings from digester sides and
one output quality measurement, the kappa number. The aim of the test was to
study correlation between the kappa number and the temperatures. The process
temperature was beforehand known to be one of the most important factors in
successful digester operation.

Input data consisted of material collected during a half year period at the mill
(about 20000 measurements per channel). Erroneous measurements were filtered out
from the input data using a priori knowledge of the process and only data depicting
steady operation of the process were selected for use. The input vector components
were delayed with respect to each other in time so that each vector consisted of
the temperature profile of “a piece” of pulp and corresponding kappa number. After
input data processing, there were 9975 12-dimensional input data vectors. A SOM
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of 40 by 25 units was trained using the vectors so that the BMU was searched
using the 11 temperatures, and the adaptation was made using the temperatures
and the kappa number. This way it was possible to study the correlation between
temperatures and end product quality.

The component planes of the SOM are presented in Fig. 4.1. Black color in-
dicates high temperature and white correspondingly low. For example, high tem-
peratures in eight first measurements #1 — #8 (black spot in the middle of plane)
are reflected in last plane, the kappa number, by small values (white spot in the
middle). The kappa number roughly correlates (inversely) with the eight first tem-
perature measurements. The phenomenon has clear explanation: when the cooking
temperature is high, the delignification reactions are fast and the kappa number be-
comes low. Because the kappa number also depends on factors not included in the
analysis (like concentration of cooking chemicals participating in the delignification
reaction), kappa number variations that cannot be explained by temperatures are
observed.

Temperature #1 Temperature #2 Temperature #3
Temperature #4 Temperature #5 Temperature #6
=
¢
Temperature #7 Temperature #8 Temperature #9
Temperature #10 Temperature #11 Kappa number

oo WEFN W

Figure 4.1. Component planes of the continuous pulp digester process.

4.2 Monitoring and Resource Allocation in Telecommunication Systems

Recently, the adaptive resource management of telecommunication networks have
become more and more important with the advent of Intelligent Networks (IN),
ATM, mobile communication networks etc. It is evident that the Quality of Service
(QoS) requirements of these networks cannot be met by only increasing the pro-
cessing capacity. Adaptive methods are needed for efficient utilization of resources.
Neural networks based methods, capable for on-line monitoring of the network load,
can significantly increase the efficiency of the system. Novel methods based on, e.g.,
the SOM algorithm have been investigated with promising results [31, 32, 33].
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A Service Control Point (SCP) with the Service Data Function (SDF) in the IN
is a computer system offering several kinds of services simultaenously. It is often
regarded as a serious performance bottleneck of the IN. Flow control and resource
management of the incoming calls are the main issues related to the performance
problem. Traditionally, the IN has a distributed load control mechanism which
uses an automatic call-gapping (ACG) method to limit the flow of messages in
order to prevent the system from congestion. As a call rate method, ACG supports
selective flow control and makes the SCP overload avoidance possible. However, it
also has some disadvantages, e.g., the calculation of control parameters is sensitive
to the incoming traffic due to its non-stationarity. It is difficult to find a suitable
gap criteria leading to optimal SCP utilization and to determine when to activate
and deactivate ACG. Therefore, the suitable gap criteria should be determined
dynamically during the operation.

To find the suitable gap criteria dynamically, a good traffic prediction method
for the incoming traffic should be found. Due to the non-stationarity of traffic distri-
butions, adaptive methods may result in better throughput of the SCP and highly
improved performance. The SOM is a suitable tool for monitoring the incoming call
distributions, provided that the distributions are relatively slowly varying, corre-
sponding to Poisson Calls. However, the SOM is not able to follow the fast changes
which result from the so called Mass Calls, e.g., in tele-voting applications. For this
purpose, a different approach must be taken.

For monitoring and adaptive decoding of the gaps, a SOM based decoding al-
gorithm, SOM-D, has been developed [31]. The prediction of the incoming calls for
different services is based on monitoring the traffic with a time interval of some
minutes, e.g. 10-15 minutes. This is satisfactory for Poisson Call distributions. The
resources are then assigned to different services for the next time interval according
to this monitoring. The experimental tests with SOM-D using both simulated and
true traffic data have shown improvements from 20 % up to 70 % when compared
to the ACG with the fixed gap criteria.

The incoming calls in Mass Call arrival process are rapidly changing and they
usually have a burst-like distribution. Therefore, the time interval of 10-15 minutes
in SOM-D adaptation is far too long. A good prediction method and a suitable ACG
management system with time interval of only a few seconds is required. Therefore,
a feed-forward neural network (FFN) is used in parallel with the SOM-D algorithm
to adapt to Mass Calls. So, this adaptation mechanism, called FFNSOM-D, is an
extended version of the SOM-D algorithm. It is capable of controlling both Poisson
Call and Mass Call distributions. The network predicts the Mass Call distribution
in a short time interval, e.g. between 5 to 10 seconds. The prediction is based on
modeling the Mass Call process using a Markov Modulated Poisson Process. The
one-step-ahead traffic prediction for Mass Calls, is completed with a simple feed-
forward neural network which is trained beforehand. The FENSOM-D algorithm is
described in detail in [33].

The model of a multi-service SCP with the distributed call gapping mechanism
utilizing FFNSOM-D is depicted in Fig. 4.2. The gaps are adaptively determined
for the calls corresponding to the different services. SOM-D receives the cumulative
traffic and adapts in the long time interval (10-15 minutes), while FFN and the
boundary function adapt in the short time interval (5-10 seconds) based on traffic
modeling. Extensive simulations have shown that the FEFNSOM-D method is supe-
rior when compared with the plain ACG method. The throughput increases linearly
with the incoming calls and reaches the upper limit of the system throughput.
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Figure 4.2. FFNSOM-D call gapping mechanism.

4.3 Modeling of a Steel Process

The methods described in Sect. 3.2 were used in modeling of a steel production
process. The part of the process studied consists of a cold rolling and batch annealing
process.

Prior to cold rolling, steel coils are opened and pickled in an acid bath to remove
corrosion and excess dirt from the surface of the coil. In cold rolling, the coils are
rolled using a tandem mill, where a few consecutive rolls reduce the thickness of the
coil. In addition to thinning effects, this improves the strength of the steel. Then, a
batch annealing follows the rolling operation. The coils are heated to high tempera-
ture, after which they are cooled off slowly. This improves the microstructure of the
steel which affects such qualities as strength and elasticity. As the last processing
step, the coils go through a temper mill, where a slight reduction in the thickness
is made. This improves the microstructure of the steel as well as the strength.

The analysis was based on the measurements made in the production environ-
ment. The inputted steel coils are characterized by their element concentrations (C
Si Mn P S Al Nb V Ti Cu Cr Ni Mo B N), the production environment by the
pre-set reductions of the steel rolls and the end quality, which is measured by three
quality parameters that reflect the mechanical properties of steel (such as tensile
strength). The goal was to predict the end product quality with the knowledge of
inputted steel element concentrations as well as production parameters. In this way,
costly off-line measurements could be replaced by on-line prediction of the output
quality.

The measurements were collected from the factory automation system and di-
vided to two different sets: the training set (2306 coils) and the testing set (906
coils). The models were trained with the training set and their performance tested
with the testing set not used in training. When testing the model, the measured end
product quality was compared with model output to produce an error estimate of
the models (see Table 4.1). The first row of the Table demonstrates the inferiority
of linear models in this application. The next three rows show the performance of
the SOM models at three different resolutions. It can be clearly seen that increasing
the number of codebook vectors improves the accuracy. By the introduction of local
linear models, we can further improve the accuracy of these models.

Table 4.1. Prediction errors for an independent testing set.

Method MSE

Global PCA 1.8858
SOM (8 x 6 units) 0.8098
SOM (14 x 10 units) 0.6059
SOM (20 x 14 units) 0.5668
SOM (8 x 6 units) and local PCA  0.6785
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4.4 Time-Series Prediction

In the last decade, local models have been a source of much interest in modeling
because in many cases they give better results than global models [30]. Local models
are usually based on nearest-neighbour methods. A good set of prototype vectors
for this purpose can be acquired by quantizing the feature space. The local models
themselves can be constructed in various ways. Usually, they are simple such as
weighted averages of the prototype vectors, or linear regression models.

The SOM is an efficient method for vector quantization. Previously, it has been
used in chaotic time-series prediction e.g. by Walter et al. [40], Der and Herrman
[4], Principe [24] and Vesanto [38]. Typically, the local models are constructed si-
multaneously with the SOM using some updating procedure. The local models can
also be estimated after the SOM has been trained. A generalized scheme for con-
structing local models in this way is depicted in Fig. 4.3. The data are embedded
and divided into training and testing sets. Based on the training set, the embedded
data space is quantized. Then, local data sets are constructed for each prototype
vector. The local data set of a prototype vector consists of data vectors for which
it is closest (i.e. of data vectors belonging to the prototype vector’s Voronoi plate).
If a local data set of a prototype vector is too small, it can be augmented using the
data sets of similar prototype vectors lying close to each other. At the last step,
local models are constructed based on the local data sets.

v
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and data set division
¥
Teaching data Testing data
Vector izati Time-series model Select correct prototype
‘ ! Prototype vectors 1

Build local datasets | -~ ---------------- !

oo N Figure 4.3. A general-
: ized scheme for construct-
Predict next value using lng and teStlng the 1003,1
corresponding local model models.

Local predictors

Calculate local models
based on local data sets

The time-series z(n) used in testing the method was the Mackey-Glass system
[17] (with time delay parameter equal to 17), which is a widely used benchmark
data set.

Separate and independent training and testing sets were generated. The embed-
ded data vectors consisted of four values of the time-series: (n) = [z(n),z(n —
6),z(n — 12),z(n — 18)]T. This feature vector was used to predict x(n + 6). The
predicted value was inserted into the feature vector and this process was iterated
14 times so that the final value corresponded to z(n + 84).

The performance of the proposed method was first tested on various sized SOMs
and data sets of different size. Also other quantization methods were tested: the k-
means and the neural-gas [18] algorithms.

In Table 4.2, the results are compared with those of other methods. It should
be noted that the training set size affected the results considerably. Therefore, only
results with equal training sets should be compared. Deco and Obradovic used
decorrelated Hebbian learning algorithm to predict the time-series at z(n + 85) [3].
Platt used a resource allocating network [23] and Littman and Ritter a direct cascade
architecture with local linear map subnetworks in the same task [16]. Lapedes and
Farber used standard backpropagation network with 500 training samples [15].
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Table 4.2. Normalized RMS errors produced by various methods in predicting the
values either xz(n + 84) or xz(n + 85) of the Mackey-Glass time-series.

Method Units Training NRMS at
set size  x(n + 84/85)

Backpropagation [15] n/a 500 0.06
Direct Cascade Architecture [16] n/a 500 0.043
Decorrelated Hebbian Learning [3] n/a 1000 0.056
SOM (35 x 35) 1225 1000 0.035
Neural gas (500 units) 500 3000 0.065
Neural gas (1000 units) 1000 3000 0.062
SOM (10 x 10) 100 3000 0.060
Resource Allocating Network [23]  n/a 3000 0.054
k-means (500 means) 500 3000 0.029
k-means (1000 means) 1000 3000 0.024
SOM (35 x 35) 1225 3000 0.022

The proposed method compares well with these results. With training set of
1000 samples and 35 x 35 = 1225 prototype vectors the proposed method produced
normalized RMS (NRMS) errors of 0.035 for z(n + 84). With only 100 prototype
vectors, but with a larger data set (3000 points) a slightly weaker result, 0.060, was
achieved. Error of 0.022 was achieved with 3000 training samples and a map of 35
by 35 units.

4.5 Data Mining of the World’s Pulp and Paper Mills Data

In this study, the SOM was used for data mining to analyze the technology data
of the world’s pulp and paper industry. There were three data sets containing in-
formation of (1) production capacities of different product types in pulp and paper
mills, (2) technology of paper machines and (3) technology of pulp lines. Since each
mill could contain several paper machines and pulp lines, a hierarchical structure
of maps was used, illustrated in Fig. 4.4. The two low-level maps extracted relevant
information regarding the paper machines and pulp lines data of a mill and the
high-level map combined this with production capacity data.

Mill data

QR Figure 4.4. The hierarchical map

Paper machine 00
data + 000 | y 5 structure. Data histograms from indi-

Pulp line - / vidual low level maps were utilized in
data r OO0 | training the combined high level map.

The low level maps (size 20 by 1 units) were constructed using paper machine
and pulp line data sets. The seven component planes of the paper machine map are
shown in Fig. 4.5. Based on the map, three main types of paper machines could be
determined: (1) new paper machines with very big capacity, (2) paper machines with
big paper weight and (3) paper machines whose size and capacity decrease steadily
with increasing age. A similar study of the pulp line map produced three main pulp
line types: (1) those using waste paper for pulp, (2) those making unbleached pulp
and (3) those making chemical pulp mainly from wood fiber.
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Figure 4.5. The compo-
nent planes of the paper
machine map: the compo-
nent names on the left
and the corresponding val-
ues in the map units in
the middle. The three first
ENEEEEEEEEEEE components have a strong

[ | correlation, as do the next
two components.

The high level map (size 40 by 25 units) was trained using mill-specific produc-
tion capacity information of the first data set and histograms from the low level
maps. For each mill, the histograms were computed using data of the paper ma-
chines and pulp lines of the mill. Figs. 4.6a and 4.6b show the u-matrix of the high
level map, and the distribution of Scandinavian and Chinese pulp and paper mills
on the map, respectively. The two sets are easily separable although there was no
geographic information present in the data.

Scandinavia represents a technologically advanced region. The mills are new,
they have high-capacity paper machines and the majority produces printing/writing
paper or pulp. Chinese mills, on the other hand, have many machines and they
produce both industrial and printing/writing paper. It can also be seen that in the
area where the majority of the Chinese mills are the values of the u-matrix are
very low. That is, the variation between weight vectors in that area is small, which
means that these mills resemble each other.

(a) Scandinavian pulp and paper (b) Chinese pulp and paper mills
mills

Figure 4.6. The data set histograms of two different geographical regions on the
u-matrix of the high level map. The bigger the square, the more mills were projected
to that unit on the map.

5. Conclusions

The use of the SOM in analysis, monitoring and modeling of various systems has
been discussed. The SOM is especially suitable in tasks which require processing
of large amounts of numerical data. The method is readily explainable, simple and
highly visual.
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The SOM provides data-driven approach to process monitoring. When using
the SOM, it is not necessary to define the process model analytically. The SOM has
the desirable feature of describing nonlinear relationships between a large number
of parameters and variables of complex systems phenomenologically. By using a
history of measurements, dynamical behavior of the process can be introduced into
the map, or a set of maps. This approach has been used to model the sequence of
states and based on that to predict the future state in the system operation [24, 28].

The SOM facilitates visual understanding of processes. For instance, process
operation personnel may learn to adjust the control variables in such a way that
the operation point, or trajectory, stays in the desired region on the map. In this
way, correct control action may be easily learned based on the visual output [21].

The construction of feature vectors allows fusion of different data and measure-
ment sources. Information from various databases can be integrated, e.g., using
SOMs in a hierarchical way. For instance, in the analysis of complex industrial pro-
cesses, technical, economical, and environmental data can be combined [39]. This
allows the analysis and simulation of various effects in the entire field of industry.
For instance, the influence of various technical investments can be analyzed in the
factory level.
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