On-line Multi-label Classification

A Problem Transformation Approach

Jesse Read

Supervisors: Bernhard Pfahringer, Geoff Holmes

Hamilton, New Zealand

Outline

- Multi-label Classification
- Problem Transformation
 - Binary Method
 - Combination Method
- Pruned Sets Method (PS)
- Results
- On-line Applications
- Summary

Multi-label Classification

- Single-label Classification
 - Set of instances, set of labels
 - Assign one label to each instance
 - e.g. "Shares plunge on financial fears", Economy

Multi-label Classification

- Single-label Classification
 - Set of instances, set of labels
 - Assign one label to each instance
 - e.g. "Shares plunge on financial fears", Economy
- Multi-label Classification
 - Set of instances, set of labels
 - Assign a subset of labels to each instance
 - e.g. "Germany agrees bank rescue", {Economy, Germany}

Applications

- Text Classification:
 - News articles; Encyclopedia articles; Academic papers; Web directories; E-mail; Newsgroups
- Images, Video, Music:
 - Scene classification; Genre classification
- Other:
 - Medical classification; Bioinformatics
- N.B. Not the same as *tagging / keywords*.

Multi-label Issues

- Relationships between labels
 - e.g. consider: {US, Iraq} VS {Iraq, Antarctica}
- Extra dimension
 - Imbalances exaggerated
 - Extra complexity
- Evaluation methods
 - Evaluate by label? by example?
- How to do Multi-label Classification?

Problem Transformation

- 1. Transform multi-label data into single-label data
- 2. Use one or more single-label classifiers
- Transform classifications back into multi-label representation
- Can employ any single-label classifier
 - Naive Bayes, SVMs, Decision Trees, etc, ...
- e.g. Binary Method, Combination Method, ... (overview by (Tsoumakas & Katakis, 2005))

Algorithm Transformation

- Adapts a single-label algorithm to make multilabel classifications
- 2. Runs directly on multi-label data
- Specific to a particular type of classifier
- Does some form of Problem Transformation internally
- e.g. To AdaBoost (Schapire & Singer, 2000), Decision Trees (Blockheel et al. 2008), KNN (Zhang & Zhou. 2005), NB (McCallum. 1999), ...

Outline

- Multi-label Classification
- Problem Transformation
 - Binary Method
 - Combination Method
- Pruned Sets Method (PS)
- Results
- On-line Applications
- Summary

- One binary classifier for each label
- A label is either relevant or !relevant

- One binary classifier for each label
- A label is either relevant or !relevant

```
Multi-label Train
L = \{A,B,C,D\}
d0,\{A,D\}
d1,\{C,D\}
d2,\{A\}
d3,\{B,C\}
```

- One binary classifier for each label
- A label is either relevant or !relevant

- One binary classifier for each label
- A label is either relevant or !relevant

Single-label Test:

dx,?

dx,?

dx,?

dx,?

- One binary classifier for each label
- A label is either relevant or !relevant

Single-label Test:

dx,!A

dx,!B

dx,C

dx,D

- One binary classifier for each label
- A label is either relevant or !relevant

Single-label Test:

dx,!A

dx,!B

dx,C

dx,D

Multi-label Test $L = \{A,B,C,D\}$ dx,???

- One binary classifier for each label
- A label is either relevant or !relevant

- One binary classifier for each label
- A label is either relevant or !relevant

Often unbalanced by many negative examples

- One decision involves multiple labels
- Each subset becomes a single label

- One decision involves multiple labels
- Each subset becomes a single label

```
Multi-label Train
L = \{A,B,C,D\}
d0,\{A,D\}
d1,\{C,D\}
d2,\{A\}
d3,\{B,C\}
```

- One decision involves multiple labels
- Each subset becomes a single label

- One decision involves multiple labels
- Each subset becomes a single label

Single-label Test L' = {A,AD,BC,CD} dx,???

- One decision involves multiple labels
- Each subset becomes a single label

Single-label Test L' = {A,AD,BC,CD} dx,CD

- One decision involves multiple labels
- Each subset becomes a single label

Single-label Test
L' = {A,AD,BC,CD}
dx,CD

Multi-label Test $L = \{A,B,C,D\}$ $dx,\{C,D\}$

- One decision involves multiple labels
- Each subset becomes a single label


```
Single-label Test
L' = {A,AD,BC,CD}
dx,CD

▼

Multi-label Test
L = {A,B,C,D}
dx,{C,D}
```

- May generate too many single labels
- Can only predict combinations seen in the training set

- Binary Method
 - Assumes label independence
- Combination Method
 - Takes into account combinations
 - Can't adapt to new combinations
 - High complexity (~ distinct label sets)
- Pruned Sets Method
 - Use pruning to focus on core combinations

Concept:

- Prune away and break apart infrequent label sets
- •Form new examples with more frequent label sets

```
d01,{Animation,Family}
d02,{Musical}
d03,{Animation,Comedy }
d04,{Animation,Comedy}
d05,{Musical}
d06,{Animation,Comedy,Family,Musical}
d07,{Adult}
d08,{Adult}
d09,{Animation,Comedy}
d10,{Animation,Family}
d11,{Adult}
d12,{Adult,Animation}
```

1.Count label sets

```
{Animation,Comedy} 3
{Animation,Family} 2
{Adult} 3
{Animation,Comedy,Family,Musical} 1
{Musical} 2
{Adult,Animation} 1
```

```
d01,{Animation,Family}
d02,{Musical}
d03,{Animation,Comedy }
d04,{Animation,Comedy}
d05,{Musical}
d06,{Animation,Comedy,Family,Musical}
d07,{Adult}
d08,{Adult}
d09,{Animation,Comedy}
d10,{Animation,Family}
d11,{Adult}
d12,{Adult,Animation}
```

1.Count label sets

2.Prune infrequent sets (e.g. count < 2)

{Animation,Comedy} 3 {Animation,Family} 2 {Adult} 3 {Animation,Comedy,Family,Musical} 1 {Musical} 2 {Adult,Animation} 1

E.g. 12 examples, 6 combinations

```
d01,{Animation,Family}
d02,{Musical}
d03,{Animation,Comedy}
d04,{Animation,Comedy}
d05,{Musical}
d07,{Adult}
d08,{Adult}
d09,{Animation,Comedy}
d10,{Animation,Family}
d11,{Adult}
```

```
d12,{Adult,Animation}
d06,{Animation,Comedy,Family,Musical}
```

Information loss!

- 1.Count label sets
- 2. Prune infrequent sets (e.g. count < 2)
- 3.Break up infrequent sets into frequent sets (e.g. count >= 2)

```
{Animation,Comedy} 3
{Animation,Family} 2
{Adult} 3
{Animation,Comedy,Family,Musical} 1
{Musical} 2
{Adult,Animation} 1
```

```
d01,{Animation,Family}
d02,{Musical}
d03,{Animation,Comedy}
d04,{Animation,Comedy}
d05,{Musical}
d07,{Adult}
d08,{Adult}
d09,{Animation,Comedy}
d10,{Animation,Family}
d11,{Adult}
```

```
d12,{Adult,Animation}
d12,{Adult}
d12,{Adult}
d06,{Animation,Comedy,Family,Musical}
d06,{Animation,Comedy}
d06,{Animation,Family}
d06,{Musical}
```

- 1.Count label sets
- 2. Prune infrequent sets (e.g. count < 2)
- 3.Break up infrequent sets into frequent sets (e.g. count >= 2)
- 4. Decide which subsets to reintroduce
- (!) Too many (esp. small) sets will:
 - 'dillute' the dataset with single-labels
 - vastly increase the training set size
- i.e. frequent item sets not desireable

```
{Animation,Comedy} 3
{Animation,Family} 2
{Adult} 3
{Animation,Comedy,Family,Musical} 1
{Musical} 2
{Adult,Animation} 1
```

```
d01,{Animation,Family}
d02,{Musical}
d03,{Animation,Comedy }
d04,{Animation,Comedy}
d05,{Musical}
d07,{Adult}
d08,{Adult}
d09,{Animation,Comedy}
d10,{Animation,Family}
d11,{Adult}
```

```
d12,{Adult,Animation}
d12,{Adult}
d12,{Adult}
d06,{Animation,Comedy,Family,Musical}
d06,{Animation,Comedy}
d06,{Animation,Family}
d06,{Musical}
```

- 1.Count label sets
- 2. Prune infrequent sets (e.g. count < 2)
- 3.Break up infrequent sets into frequent sets (e.g. count >= 2)

4.Decide which subsets to reintroduce **Strategies:**

- A. Keep the top *n* subsets (ranked by *number of labels* and *count*) -or-
- B. Keep all subsets of size greater than *n*

```
{Animation,Comedy} 3
{Animation,Family} 2
{Adult} 3
{Animation,Comedy,Family,Musical} 1
{Musical} 2
{Adult,Animation} 1
```

```
d01,{Animation,Family}
d02,{Musical}
d03,{Animation,Comedy}
d04,{Animation,Comedy}
d05,{Musical}
d07,{Adult}
d08,{Adult}
d09,{Animation,Comedy}
d10,{Animation,Family}
d11,{Adult}
```

```
d12,{Adult,Animation}
d12,{Adult}
d12,{Adult}
d06,{Animation,Comedy,Family,Musical}
d06,{Animation,Comedy}
d06,{Animation,Family}
d06,{Musical}
```

- 1.Count label sets
- 2. Prune infrequent sets (e.g. count < 2)
- 3.Break up infrequent sets into frequent sets (e.g. count >= 2)
- 4. Decide which subsets to reintroduce

5.Add new instances

```
{Animation,Comedy} 3
{Animation,Family} 2
{Adult} 3
{Animation,Comedy,Family,Musical} 1
{Musical} 2
{Adult,Animation} 1
```

```
d01,{Animation,Family}
d02,{Musical}
d03,{Animation,Comedy}
d04,{Animation,Comedy}
d05,{Musical}
d07,{Adult}
d08,{Adult}
d09,{Animation,Comedy}
d10,{Animation,Family}
d11,{Adult}
```

```
d12,{Adult,Animation}
d12,{Adult}
d12,{Adult}
d06,{Animation,Comedy,Family,Musical}
d06,{Animation,Comedy}
d06,{Animation,Family}
d06,{Musical}
```

- 1.Count label sets
- 2.Prune infrequent sets (e.g. count < 2)
- 3.Break up infrequent sets into frequent sets (e.g. count >= 2)
- 4. Decide which subsets to reintroduce
- 5.Add new instances
- 6.Use Combination Method transformation

```
E.g. 15 examples, 4 combinations
```

```
d01,{Animation,Family}
d02,{Musical}
d03,{Animation,Comedy}
d04,{Animation,Comedy}
d05,{Musical}
d07,{Adult}
d08,{Adult}
d09,{Animation,Comedy}
d10,{Animation,Family}
d11,{Adult}
d06,{Animation,Comedy}
d06,{Animation,Family}
d12,{Adult}
```

```
{Animation,Comedy} 4
{Animation,Family} 3
{Adult} 4
{Musical}
```

- 1.Count label sets
- 2.Prune infrequent sets (e.g. count < 2)
- 3.Break up infrequent sets into frequent sets (e.g. count >= 2)
- 4. Decide which subsets to reintroduce
- 5.Add new instances
- 6.Use Combination Method transformation
- Accounts for label relationships
- Reduced complexity
- Cannot form new combinations (e.g. {Animation, Family, Musical})

```
{Animation,Comedy} 4
{Animation,Family} 3
{Adult} 4
{Musical}
```

```
d01,{Animation,Family}
d02,{Musical}
d03,{Animation,Comedy}
d04,{Animation,Comedy}
d05,{Musical}
d07,{Adult}
d08,{Adult}
d09,{Animation,Comedy}
d10,{Animation,Family}
d11,{Adult}
d06,{Animation,Comedy}
d06,{Animation,Family}
d12,{Adult}
```

Ensembles of Pruned Sets (E.PS)

Creating new label set classifications

1. Train an Ensemble of PS e.g. Bagging (introduces variation!)

PS

PS

PS

PS

PS

PS

Creating new label set classifications

- 1. Train an Ensemble of PS e.g. Bagging (introduces variation!)
- 2. Get preditions

{Musical} PS PS {Animation,Family} PS {Animation, Comedy} PS {Animation, Family} PS {Musical} PS {Musical}

Creating new label set classifications

Musical:

Animation: 3 (0.33)

Family: 2 (0.22)

Comedy: 1 (0.11)

1. Train an Ensemble of PS e.g. Bagging (introduces variation!)

3 (0.33)

- 2. Get preditions
- 3. Calculate a score

PS {Musical}

PS {Animation, Family}

PS {Animation, Comedy}

PS {Animation, Family}

PS {Musical}

{Musical}

PS

Creating new label set classifications

- 1. Train an Ensemble of PS e.g. Bagging (introduces variation!)
- 2. Get preditions
- 3. Calculate a score
- 4. Form a classification set

dx,{Animation, Family, Musical}

Musical: 3 (0.33)

Animation: 3 (0.33)

Family: 2 (0.22)

Comedy: 1 (0.11)

Threshold = 0.15

PS {Musical}

PS {Animation,Family}

PS {Animation, Comedy}

PS {Animation, Family}

PS {Musical}

PS {Musical}

Creating new label set classifications

- 1. Train an Ensemble of PS e.g. Bagging (introduces variation!)
- 2. Get preditions
- 3. Calculate a score
- 4. Form a classification set

dx,{Animation, Family, Musical}

Can form new combinations

Musical: 3 (0.33)

Animation: 3 (0.33)

Family: 2 (0.22)

Comedy: 1 (0.11)

Threshold = 0.15

PS {Musical}

PS {Animation, Family}

PS {Animation, Comedy}

PS {Animation, Family}

PS {Musical}

PS {Musical}

Results – F1 Measure

D.SET	size /	#lbls / a	avg.lbls	BM	[CM]	PS	E.PS	RAK.
Scene	2407	6	1.1	0.671	0.729	0.730	0.752	0.735
Medical	978	45	1.3	0.791	0.767	0.766	0.764	0.784
Yeast	2417	14	4.2	0.630	0.633	0.643	0.665	0.664
Enron	1702	53	3.4	0.504	0.502	0.520	0.543	0.543
Reuters	6000	103	1.5	0.421	0.482	0.496	0.499	0.418

- Combination Method (CM) improves Binary Method (BM)
- Puned Sets method (PS) improves Combination Method (CM)
 - Except Medical: maybe label relationships not as important
- E.PS is best overall.
- RAKEL ~ EPS similar
- What about complexity?
 - J. Read, B. Pfahringer, G. Homes. To Appear ICDM 08.

Complexity – Build Time

- RAKEL may not be able to find ideal parameter value
- 'Worst case' scenarios are similar, but different in practice
 - J. Read, B. Pfahringer, G. Homes. To Appear ICDM 08.

Complexity – Memory Use

Reuters Dataset

•PS transformation: ~2,500 instances

•**EPS** transformation: ~25,000 instances (for 10 iterations)

•RAKEL transformation: 3,090,000 instances (for 10 iterations)

Number of instances generated during the *Problem Transformation* procedure for *most complex* parameter setting

Outline

- Multi-label Classification
- Problem Transformation
 - Binary Method
 - Combination Method
- Pruned Sets Method (PS)
- Results
- On-line Applications
- Summary

On-line Multi-label Classification

Many multi-label data sources are *on-line*:

- New instances incoming
- Data can be time ordered
- Possibly large collections
- Concept drift

An on-line multi-label algorithm should be:

- Adaptive
- Efficient

On-line Multi-label Classification

News Articles: Label Activity Over Time

Time (in blocks of 100)

Multi-label Concept Drift

Measuring concept drift

- Observing indiv. labels? -
 - Complicated (may be 1000's of labels)
 - May need domain knowledge

- Counting distinct label sets?
 - Doesn't tell us much
- PS Transformation?
 - Focus on core combinations

Multi-label Concept Drift

20NG; News; Enron –(*On-line data*)– Slow; medium; rapid **concept drift**

YEAST – **Randomised**

SCENE - *Ordered* Train/Test Split

MEDICAL - ???

- 1. PS transformation on first 50 instances
- 2.Measure the % coverage
- 3. Measure on the next 50, and etc ...

Preliminary Results

- 'On-line' Binary Method vs E.PS
 - Model(s) built on
 100 instances
 - Thresholds updated every instance
 - Model(s) rebuilt every 25 instances

Summary

- Multi-label Classification
- Problem Transformation
 - Binary Method (BM), Combination Method (CM)
- Pruned Sets (PS) and Ensembles of PS (E.PS)
 - Focus on core label relationships via pruning
 - Outperforms standard and state-of-the-art methods
- Multi-label Classification in an On-line Context
 - Naive methods (eg. BM) can perform better than EPS in an on-line context (future work!)

Questions

