Methods for On-line Multi-label Classification Six Months Progress

Jesse Read (Supervisors: Bernhard Pfahringer, Geoff Holmes)

Start date: March 2007

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Outline

Introduction

- Multi-label Classification
- The Pruned Sets Method (PS)

2 Ensembles of Pruned Sets (EPS)

- Classification of On-line Multi-label Data
- 4 A New Method for Multi-label Ranking

5 Future Direction

Introduction

- Multi-label Classification
 - Assigning multiple labels (classes) to instances
 - labels are selected from a *predefined* set
 - instances can represent text, media, biological data, etc ...
- Example Applications
 - a news article can be about Science and Technology
 - a film can be labeled Romance and Comedy
 - an image can contain Beach, Sunset and Mountains
 - a patient's symptoms may correspond to various ailments
 - a collection of genes can have multiple functions
- Some Multi-label-centric issues
 - label correlations
 - consider {Science,Environment} vs {Sport,Environment}
 - computational complexity

Multi-label Classification

• A set of predefined labels: $L = \{l_0, l_1, \dots, l_n\}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• A set of instances: $D = \{x_0, x_1, \cdots, x_m\}$

Multi-label Classification

- A set of predefined labels: $L = \{l_0, l_1, \dots, l_n\}$
- A set of instances: $D = \{x_0, x_1, \cdots, x_m\}$
- Single-label Classification: Each instance x is classified with a label: $(x, l \in L)$

Multi-label Classification

- A set of predefined labels: $L = \{l_0, l_1, \dots, l_n\}$
- A set of instances: $D = \{x_0, x_1, \cdots, x_m\}$
- Single-label Classification: Each instance x is classified with a label: $(x, l \in L)$
- Multi-label Classification: Each instance x is classified with a subset of labels: (x, S ⊆ L)

Multi-label Classification

- A set of predefined labels: $L = \{l_0, l_1, \dots, l_n\}$
- A set of instances: $D = \{x_0, x_1, \cdots, x_m\}$
- Single-label Classification: Each instance x is classified with a label: $(x, l \in L)$
- Multi-label Classification: Each instance x is classified with a subset of labels: (x, S ⊆ L)

Problem Transformation

Any multi-label problem can be transformed into one or several single-label problems. Any single-label classifier can be used.

Multi-label Classification

- A set of predefined labels: $L = \{l_0, l_1, \dots, l_n\}$
- A set of instances: $D = \{x_0, x_1, \cdots, x_m\}$
- Single-label Classification: Each instance x is classified with a label: $(x, l \in L)$
- Multi-label Classification: Each instance x is classified with a subset of labels: (x, S ⊆ L)

Problem Transformation

Any multi-label problem can be transformed into one or several single-label problems. Any single-label classifier can be used.

Combination Method (CM)

Each label subset $S \subseteq L$ can be treated as single label, thus forming a single-label problem.

Example (CM Method)

$I = {$	Anim, Family, Comedy, Mu	sical
D	$S \subseteq L$ (Multi-label)	
	$Anim, Family\}$	
<i>x</i> ₀		
x_1	{Anim, Comedy}	
<i>x</i> ₂	{Anim, Comedy}	
<i>x</i> 3	{Anim, Comedy, Family}	
<i>X</i> 4	{ <i>Musical</i> }	
X_5	{ <i>Musical</i> }	
<i>x</i> 6	{Anim, Comedy}	
<i>X</i> 7	{Anim, Family}	
<i>x</i> 8	{ <i>Musical</i> }	
Xo	{Musical. Anim}	

Background: The Combination Method (CM)

Example (CM Method)

 $L' = \{ \{Anim, Comedy\}, \{Anim, Family\}, \{Musical\}, \\ \{Anim, Comedy, Family\}, \{Musical, Anim\} \}$

 $\begin{array}{ll}
D & I \subseteq L' \text{ (Single-label)} \\
x_0 & \{Anim, Family\}
\end{array}$

 x_1 {*Anim*, *Comedy*}

 x_2 {*Anim*, *Comedy*}

 x_3 {*Anim*, *Comedy*, *Family*}

 x_4 {*Musical*}

 x_5 {*Musical*}

- x_6 {*Anim*, *Comedy*}
- x_7 {*Anim*, *Family*}

 x_8 {*Musical*}

 x_9 {*Musical*, *Anim*}

• Each set is a label

Background: The Combination Method (CM)

Example (CM Method)

 $L' = \{ \{Anim, Comedy\}, \{Anim, Family\}, \{Musical\}, \\ \{Anim, Comedy, Family\}, \{Musical, Anim\} \}$

- $D \quad I \subseteq L'$ (Single-label)
- x_0 {*Anim*, *Family*}
- x_1 {*Anim*, *Comedy*}
- x_2 {*Anim*, *Comedy*}
- x_3 {*Anim*, *Comedy*, *Family*}
- x_4 {*Musical*}
- x_5 {*Musical*}
- x_6 {*Anim*, *Comedy*}
- x_7 {*Anim*, *Family*}
- x_8 {*Musical*}
- x_9 {*Musical*, *Anim*}

- Each set is a label
 - creates many possible labels
 - cannot predict new combinations

Pruned Sets Method (PS)

Infrequently occurring label sets are pruned and decomposed into label subsets which *are* frequent.

¹Read. A Pruned Problem Transformation Method. In Proc. of NZCSRSC'08

D	$I \subseteq L'$
<i>x</i> ₀	{Anim, Family}
<i>x</i> ₁	{Anim, Comedy}
<i>x</i> ₂	{Anim, Comedy}
<i>x</i> 3	{Anim, Comedy, Family}
<i>x</i> ₄	{ <i>Musical</i> }
<i>x</i> 5	{ <i>Musical</i> }
<i>x</i> ₆	{Anim, Comedy}
X7	{Anim, Family}
<i>x</i> 8	{ <i>Musical</i> }
<i>X</i> 9	{ <i>Musical</i> , <i>Anim</i> }

10 examples 5 combinations

In Prune examples (e.g. where occurrences ≤ 1))

²Read. A Pruned Problem Transformation Method. In Proc. of NZCSRSC'08 <□> <♂<</p>

D	$I \subseteq L'$
<i>x</i> ₀	{Anim, Family}
x_1	{Anim, Comedy}
<i>x</i> ₂	{Anim, Comedy}
<i>x</i> 4	{ <i>Musical</i> }
<i>x</i> 5	{ <i>Musical</i> }
<i>x</i> 6	{Anim, Comedy}
<i>X</i> 7	{Anim, Family}
<i>x</i> 8	{ <i>Musical</i> }
<i>x</i> 3	{Anim, Comedy, Family}
<i>X</i> 9	{ <i>Musical</i> , <i>Anim</i> }

10 examples 5 combinations

- Prune examples (e.g. where occurrences ≤ 1))
- Decompose infrequent label sets into *frequent* sets

²Read. A Pruned Problem Transformation Method. In Proc. of NZCSRSC'08 <□> <♂<</p>

D	$I \subseteq L'$	
<i>x</i> ₀	{Anim, Family}	
x_1	{Anim, Comedy}	
<i>x</i> ₂	{Anim, Comedy}	
<i>x</i> 4	{Musical}	
X_5	{Musical}	
<i>x</i> ₆	{Anim, Comedy}	
X7	{Anim, Family}	
<i>x</i> 8	{Musical}	
<i>X</i> 3	{Anim, Comedy}	
<i>x</i> ₃	{Anim, Family}	
<i>X</i> 9	{Musical}	
10 e×	amples 5 combinati	ons

- Prune examples (e.g. where occurrences ≤ 1)
- Decompose infrequent label sets into *frequent* sets
- Reintroduce instances with new label sets

²Read. A Pruned Problem Transformation Method. In Proc. of NZCSRSC'08

D	$I \subseteq L'$	
<i>x</i> ₀	{Anim, Family}	
x_1	{Anim, Comedy}	
<i>x</i> ₂	{Anim, Comedy}	
<i>x</i> ₄	{Musical}	
X_5	{Musical}	
<i>x</i> 6	{Anim, Comedy}	
<i>X</i> 7	{Anim, Family}	
<i>x</i> 8	{Musical}	
<i>x</i> ₃	{Anim, Comedy}	
<i>x</i> ₃	{Anim, Family}	
<i>X</i> 9	{Musical}	
11 e×	amples <mark>3</mark> combinati	ons

- Prune examples (e.g. where occurrences ≤ 1)
- Decompose infrequent label sets into *frequent* sets
- Reintroduce instances with new label sets
 - More examples, fewer labels

²Read. A Pruned Problem Transformation Method. In Proc. of NZCSRSC'08

D	$I \subseteq L'$	
<i>x</i> ₀	{Anim, Family}	
x_1	{Anim, Comedy}	
<i>x</i> ₂	{Anim, Comedy}	
<i>x</i> 4	{ <i>Musical</i> }	
X_5	{Musical}	
<i>x</i> 6	{Anim, Comedy}	
<i>X</i> 7	{Anim, Family}	
<i>x</i> 8	{Musical}	
<i>x</i> 3	{Anim, Comedy}	
X_3	{Anim, Family}	
<i>X</i> 9	{Musical}	
11 e	xamples 3 combination	ons

- Prune examples (e.g. where occurrences ≤ 1))
- Decompose infrequent label sets into *frequent* sets
- Reintroduce instances with new label sets
 - More examples, fewer labels
 - Cannot form new combinations

²Read. A Pruned Problem Transformation Method. In Proc. of NZCSRSC'08

Outline

Introduction

 Multi-label Classification
 The Pruned Sets Method (PS)

2 Ensembles of Pruned Sets (EPS)

- 3 Classification of On-line Multi-label Data
 - 4 A New Method for Multi-label Ranking

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

5 Future Direction

Ensembles of Pruned Sets (EPS)³

Ensembles of Pruned Sets (EPS):

- Several PS classifiers trained on *subsets* of the training data
 - introduces variation; reduces over-fitting; more robust
- The predictions are combined to form new combinations

³Read, Pfahringer, Holmes. *Multi-label Classification with Ensembles of Pruned Sets*. To appear in Proc. of ICDM 2008

Ensembles of Pruned Sets (EPS)³

Ensembles of Pruned Sets (EPS):

- Several PS classifiers trained on *subsets* of the training data
 - introduces variation; reduces over-fitting; more robust
- The predictions are combined to form new combinations

Example (predictions for a test instance)

Ensemble:	PS_0	PS_1	PS_2	PS_3	PS_4	PS_5
Predictions:	{ <i>M</i> }	$\{A, F\}$	{ <i>A</i> , <i>C</i> }	$\{A, F\}$	{ <i>M</i> }	{ <i>M</i> }
All Pred.:			$\{A_3, M_3, M_3, M_3, M_3, M_3, M_3, M_3, M$	F_2, C_1		
Final Pred.:			$\{A, M, F\}$	(>1)		

³Read, Pfahringer, Holmes. *Multi-label Classification with Ensembles of Pruned Sets*. To appear in Proc. of ICDM 2008

Ensembles of Pruned Sets $(EPS)^3$

Ensembles of Pruned Sets (EPS):

- Several PS classifiers trained on *subsets* of the training data
 - introduces variation; reduces over-fitting; more robust
- The predictions are combined to form new combinations

Example (predictions for a test instance)

Ensemble:	PS_0	PS_1	PS_2	PS_3	PS_4	PS_5
Predictions:	{ <i>M</i> }	$\{A, F\}$	{ <i>A</i> , <i>C</i> }	$\{A, F\}$	{ <i>M</i> }	{ <i>M</i> }
All Pred.:			$\{A_3, M_3, M_3, M_3, M_3, M_3, M_3, M_3, M$	F_2, C_1		
Final Pred.:			$\{A, M, F\}$	(>1)		

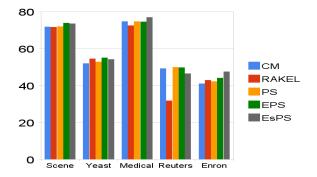
Variations of EPS

- A traditional Bagging scheme
- EsPS: Each PS model trains using a *label* subset

³Read, Pfahringer, Holmes. *Multi-label Classification with Ensembles of Pruned Sets*. To appear in Proc. of ICDM 2008

Ensembles of Pruned Sets (EPS)⁴

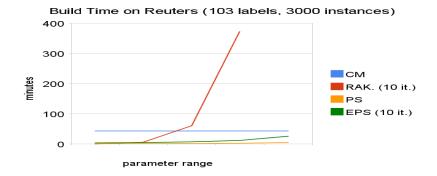
Accuracy on a collection of multi-label datasets



- EPS always statistically similar or better than CM and RAKEL
- Is PS/EPS worth the effort over other methods?

⁴Read, Pfahringer, Holmes. *Multi-label Classification with Ensembles of Pruned Sets*. To appear in Proc. of ICDM 2008

Ensembles of Pruned Sets (EPS)⁵



• More efficient than CM/RAKEL

⁵Read, Pfahringer, Holmes. *Multi-label Classification with Ensembles of Pruned Sets*. To appear in Proc. of ICDM 2008

Outline

Introduction

 Multi-label Classification
 The Pruned Sets Method

• The Pruned Sets Method (PS)

Ensembles of Pruned Sets (EPS)

Olassification of On-line Multi-label Data

4 A New Method for Multi-label Ranking

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

5 Future Direction

On-line data:

- New instances constantly incoming
- Limited processing for each instance
- Concept drift

Goals of on-line algorithms:

Efficiency Learn from new examples quickly and efficiently

Adaptivity Gracefully handle concept drift

Accuracy Strive to maintain a low error rate

• In the multi-label case, it is important to take into account label relationships

• This is relevant to both *Efficiency* and *Adaptivity*

Incremental learning using update-able classifiers

- *Problem Transformation* approaches (e.g. PS) can use any single-label classifier
- There already exist update-able single-label classifiers (e.g. Naive Bayes)
- But when treating label combinations as single labels (e.g. CM, PS):
 - incoming instances bring new combinations
 - the label set L' changes over time
 - *PS* must be either rebuilt or reset (e.g. every *n* instances)

Incremental learning using update-able classifiers

- *Problem Transformation* approaches (e.g. PS) can use any single-label classifier
- There already exist update-able single-label classifiers (e.g. Naive Bayes)
- But when treating label combinations as single labels (e.g. CM, PS):
 - incoming instances bring new combinations
 - the label set L' changes over time
 - *PS* must be either rebuilt or reset (e.g. every *n* instances)
 - rebuilt: non-incremental (slow)
 - reset: data loss
 - for which *n*?
 - An ensemble (i.e. EPS) can mitigate these issues but limitations remain

o-EPS: On-line multi-label classification

Initialise each PS using a random selection of single-labels including an Ø label as initial "combinations"

o-EPS: On-line multi-label classification

Initialise each PS using a random selection of single-labels including an Ø label as initial "combinations"

Ens.:	PS_0	PS_1	PS_2	PS_3	• • •
init.:	$\{A, C, \emptyset\}$	$\{M, F, \emptyset\}$	$\{X, M, \emptyset\}$	$\{A, X, \emptyset\}$	

o-EPS: On-line multi-label classification

- Initialise each PS using a random selection of single-labels including an Ø label as initial "combinations"
- Oecompose the label set of every incoming instance PS-style and add copies to *relevant* PS models

• e.g.
$$(x_0, \{A, X\}) \to (x_0, A), (x_0, X), (x_0, \emptyset)$$

Example (o-EPS Initialisation (where $L = \{A, C, F, M, X\}$)

Ens.:	PS_0	PS_1	PS_2	PS_3	• • •
init.:	$\{A, C, \emptyset\}$	$\{M, F, \emptyset\}$	$\{X, M, \emptyset\}$	$\{A, X, \emptyset\}$	

o-EPS: On-line multi-label classification

- Initialise each PS using a random selection of single-labels including an Ø label as initial "combinations"
- Oecompose the label set of every incoming instance PS-style and add copies to *relevant* PS models

• e.g. $(x_0, \{A, X\}) \to (x_0, A), (x_0, X), (x_0, \emptyset)$

Whenever significant change in the data is detected, reset one PS model with freq. combinations as labels, and continue...

Example (o-EPS Initialisation (where $L = \{A, C, F, M, X\}$))

Ens.:	PS_0	PS_1	PS_2	PS_3	
init.:	$\{\{A,X\},F,M,\emptyset\}$	$\{M, F, \emptyset\}$	$\{X, M, \emptyset\}$	$\{A, X, \emptyset\}$	

o-EPS: On-line multi-label classification

- Initialise each PS using a random selection of single-labels including an Ø label as initial "combinations"
- Oecompose the label set of every incoming instance PS-style and add copies to *relevant* PS models

• e.g. $(x_0, \{A, X\}) \to (x_0, A), (x_0, X), (x_0, \emptyset)$

- Whenever significant change in the data is detected, reset one PS model with freq. combinations as labels, and continue...
 - ADWIN (A. Bifet, R. Gavald. 2007): detects change in a sequence of numbers

Example (o-EPS Initialisation (where $L = \{A, C, F, M, X\}$)

Ens.:	PS_0	PS_1	PS_2	PS_3	•••
init.:	$\{\{A,X\},F,M,\emptyset\}$	$\{M, F, \emptyset\}$	$\{X, M, \emptyset\}$	$\{A, X, \emptyset\}$	

o-EPS: On-line multi-label classification

- Initialise each PS using a random selection of single-labels including an Ø label as initial "combinations"
- Oecompose the label set of every incoming instance PS-style and add copies to *relevant* PS models

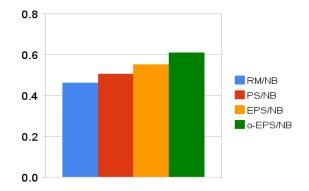
• e.g. $(x_0, \{A, X\}) \to (x_0, A), (x_0, X), (x_0, \emptyset)$

- Whenever significant change in the data is detected, reset one PS model with freq. combinations as labels, and continue...
 - ADWIN (A. Bifet, R. Gavald. 2007): detects change in a sequence of numbers
 - can use the no. of freq. combinations or closed freq. itemsets

Example (o-EPS Initialisation (where $L = \{A, C, F, M, X\}$)

Ens.:	PS_0	PS_1	PS_2	PS_3	
init.:	$\{\{A,X\},F,M,\emptyset\}$	$\{M, F, \emptyset\}$	$\{X, M, \emptyset\}$	$\{A, X, \emptyset\}$	

AU(PRC) for News dataset



- o-EPS takes into account label combinations; is incremental
- (RM is a method which considers each label independently)

• A work in progress

Outline

Introduction
 Multi-label Classification

• The Pruned Sets Method (PS)

2 Ensembles of Pruned Sets (EPS)

3 Classification of On-line Multi-label Data

4 New Method for Multi-label Ranking

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

5 Future Direction

A New Algorithm for Multi-label Ranking

```
class Label {
```

```
// index in L
 int index
 Instance instance // a test instance
 int compareTo(other) {
   // get or build binary classifier
   c = classifiers[this.index][other.index]
   if(c == null)
     c.buildBinaryClassifier(this.index,other.index);
   if(c.classifiy(instance) == 0.0)
     return -1
   else if(c.classifiy(instance) == 1.0)
     return 1
 }
```

A New Algorithm for Multi-label Ranking

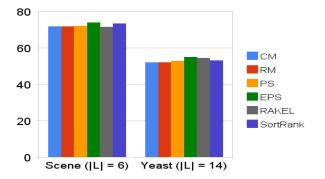
Ranking the label relevance for an instance 'instance'

```
Label labels[] = new Label[n] // n = |L|
for (i = 0; i < n; i++)
    labels[i] = new Label(i,instance)</pre>
```

Utils.sort(labels)

- The sorted array represents the label ranking
- Requires $\frac{|L|(|L|-1)}{2}$ classifiers
- "zero" build time
 - Initially classification is slow
 - Very rapid once all classifiers are build
- Guaranteed complexity (same as the sorting algorithm used)
- Can't threshold (yet) for multi-label classification

A New Algorithm for Multi-label Ranking



• let a = average label set size in the training set

• Scene = 1.07, Yeast = 4.24

classifications using the top math.round(a) labels

• doesn't work well for large of |L|

Outline

Introduction
 Multi-label Classification

• The Pruned Sets Method (PS)

2 Ensembles of Pruned Sets (EPS)

- 3 Classification of On-line Multi-label Data
 - 4 A New Method for Multi-label Ranking

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

5 Future Direction

The main focus of future work is on the on-line context

- Methods for large and complex multi-label datasets (large *D* and large *L* with complex label relationships)
- Reducing the computational complexity of label-combination approaches by using hierarchies, etc ...

- Develop classification methods for SortRank
- Further development of o-EPS
- Developing multi-label Hoeffding trees

Thanks.