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1 Course Contents and Resources

Timetable

• Lecture: Wednesday 11:00 to 13:00, room 7.1.J06

• Seminar: Friday 11:00 to 13:00 , room 7.1.J06

– except labs: 18 October, 15 November, 29 November, room INF
4.S.D.01

– and except Thursday 10 October 15:00–17:00 – (replaces Thursday
11 lecture), room 7.1.J02

• Lab Exam: Friday 13 December 13:00 to 15:00 in INF 4.S.D.01

Assessment

• 60 % final exam (6 points)

• 40 % quizzes, lab exam session (4 points)

– 3 quizzes, 1 point each

– 1 lab exam, 1 point

Book

• (COURSE BOOK) Alan V. Oppenheim, Alan S. Willsky, S. Hamid Nawab.
Signals and Systems. 2nd Ed. 1997.

Other Resources

• My notes (I will put them on Aula Global after lectures, prior to home-
work exercises)

• MIT lecture videos and slides
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/

6-003-signals-and-systems-fall-2011/lecture-videos-and-slides/

• Instructional YouTube videos
https://sites.google.com/a/asu.edu/signals-and-systems/

• Another book:
Charles L. Phillips. John M. Parr. Signals, Systems, and Transforms.

Course Contents The detailed course plan is already / will shortly be up-
loaded to Aula Global. There is already information about course content
available in Aula Global.

1. Part 1: Jesse Read

• Contact hours flexible – but recommended to check by e-mail first )

• By email: jesse@tsc.uc3m.es

• Laboratorio 4.3.A.03

2. Part 2: Jose Miguel Leiva Murillo (Course Coordinator)

http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-003-signals-and-systems-fall-2011/lecture-videos-and-slides/
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-003-signals-and-systems-fall-2011/lecture-videos-and-slides/
https://sites.google.com/a/asu.edu/signals-and-systems/
jesse@tsc.uc3m.es


Contents

1 Course Contents and Resources

2 Signals 1
2.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Examples of signals . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.3 Properties of signals . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.3.1 Periodicity . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3.2 Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4 Signal Characterization, Power and Energy . . . . . . . . . . . . 7
2.4.1 Signal Power . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4.2 Signal Energy . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.5 Transformations of the independent variable . . . . . . . . . . . . 10
2.6 Operations on signals . . . . . . . . . . . . . . . . . . . . . . . . 12
2.7 Basic/Elementary Signals . . . . . . . . . . . . . . . . . . . . . . 14

2.7.1 Unit impulse and unit step . . . . . . . . . . . . . . . . . 14
2.7.2 Exponential and sinusoidal signals . . . . . . . . . . . . . 17

2.8 Signals as Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Systems 25
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 Interconnection of Systems . . . . . . . . . . . . . . . . . . . . . 29

3.2.1 Series (cascade) . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.2 Parallel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.3 Combination . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.4 Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3.1 Memory / Memoryless . . . . . . . . . . . . . . . . . . . . 37
3.3.2 Invertibility . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.3 Causality . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.4 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3.5 Time invariance . . . . . . . . . . . . . . . . . . . . . . . 40
3.3.6 Linearity . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4 Linear Time-Invariant Systems (LTIS) . . . . . . . . . . . . . . . 44
3.4.1 Linearity . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.4.2 Impulse response . . . . . . . . . . . . . . . . . . . . . . . 45

3.5 Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.6 Interconnection of LTI Systems . . . . . . . . . . . . . . . . . . . 57
3.7 (Unit) step response to an LTIS . . . . . . . . . . . . . . . . . . . 58

4 Fourier Series 60
4.1 Response of LTI Systems to Complex Exponentials . . . . . . . . 61
4.2 Introduction to Fourier Series and Frequency Analysis . . . . . . 63
4.3 Fourier Series Representation of CT Periodic Signals: Analysis

and Synthesis Equations . . . . . . . . . . . . . . . . . . . . . . . 64
4.4 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.5 Properties of the CT Fourier Series . . . . . . . . . . . . . . . . . 72
4.6 FS Representations of DT Periodic Signals . . . . . . . . . . . . . 73
4.7 Properties of DT FS and comparison with CT FS . . . . . . . . . 79



A Appendix: Math Review 81
A.1 Complex Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . 82
A.2 Euler’s formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
A.3 Geometric Series . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
A.4 Taylor Series Expansion . . . . . . . . . . . . . . . . . . . . . . . 87



2 Signals

1



2.1 Definition

A signal . . .

• . . . is a description of a physical phenomenon

• . . . is a time/space representation of information

• . . . describes the time/space variation of a magnitude

• (formal) is a function of one or more independent variables.

2.2 Examples of signals

• Voice v(t)

• Radio r(t)

• B&W Photographs i[x, y] (intensity of pixels)

• Electrocardiograms (ECG) e(t)

• Stock market s[n]

• Voltage, air pressure, . . .

We will generally be interested in functions of time t ∈ R (continuous time
– CT) or sequence n ∈ Z (discrete time – DT). The signals is ∈ R (real space),
or ∈ C (complex space).

Real:
x(t) : R→ R

x(t) = e−αt + βt

x[n] : Z→ R

x[n] = α|n|

or Complex:
x(t) : R→ C

x(t) = Aej(ω0t+φ)

x[n] : Z→ C

x[n] =
4n+ j8n

n2 + j4n3

Signals may be

• deterministic

• probabilistic
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2.3 Properties of signals

2.3.1 Periodicity

A continuous periodic signal:

x(t) = x(t+ T )

for all t.
The fundamental period T0 is the minimum T for which periodicity can

be shown. Other periods are T0k for any k = 1, 2, 3, . . ..
The radial frequency (in radians per second) is

ω0 =
2π

T0
(1)

and from this we obtain

T0 =
2π

ω0
(2)

For example, if we consider cos(t) (where implicitly ω0 = 1), we can see that
the fundamental period is

T0 =
2π

1
= 2π

Z Example:

x(t) = cos(
2

3
πt)

Is this periodic? What is the period?

x(t+ T ) = cos(
2

3
π(t+ T )) = x(t) ?

Yes, it’s periodic , for which period?
We identify ω0 = 2

3π (see Eq. 6 in Section 2.7.2) and from Eq. 2 we
get

T0 =
2π

ω0
= 2π

3

2π
= 3

(as we can also see in the plot).
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Z Example:

x(t) = cos(2πt) + sin(
π

3
t)

Is x(t) periodic?

T1 =
2π

ω1
= 2π

1

2π
= 1

T2 =
2π

ω2
= 2π

3

π
= 6

We need some k1 and k2 such that

k1T1 = k2T2

i.e., the least common multiple (LCM), which in this case = 6. Thus,
fundamental period is

T0 = 6

A discrete signal x[n] is periodic if there exists an integer number N such
that

x[n] = x[n+N ]

for any n, which requires that

ω0N = 2πk

for k an integer number.

Z Example: Is the following periodic?

x[n] = cos(
1

7
πn)

The fundamental period is

N0 =
2π

ω0
=

2π
1
7π

= 2π
7

π
= 14

which is as integer, so x[n] is periodic. The signal repeats every Nk =
14k times for k = 1, 2, 3, . . ..
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Z Example: Is the following periodic?

x[n] = cos(
1

7
n)

We look for

N =
2π

ω0
=

2π
1
7

= 2π7 = 14π

but we not that this is not an integer number. We can try to get an
integer with

Nk = 14πk

trying k = 1, 2, 3, 4, . . . but there is no k which gives us an integer N !
Thus, x[n] is not periodic (although it may look periodic if we plot it).

Z Example: Is the signal

x[n] = ej
3π
5 n+1

periodic? We look for

N =
2π

ω0
=

2π

3π/5
=

10

3

This is not an integer number, but can try to get an integer with

Nk =
10

3
k

for integers k = 1, 2, 3, 4, . . . and we find that with k = 3 we get an
integer

N3 = 10

Therefore, this signal is periodic (with fundamental period N0 = 10).

Z Example: What is the period of the discrete signal from Fig. 1?
To be periodic:

cos
( π

10
n2
)

= cos
( π

10
(n+N)2

)
= cos

( π
10
n2+

[ π
10
N2 +

π

10
· 2nN

]
︸ ︷︷ ︸

solve for N

)

π

10
N2 +

π

10
2nN = k2π

2π
(N2

20
+
nN

10

)
= k2π

N2

20
+

n

10
2nN = k

where k is an integer for (minimum) N0 = 20!

5



0 5 10 15 20 25
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 1: An example of why our intuition with CT signals sometimes does
not cross over to DT signals. The top graph shows x(t) = cos( π10 t

2) (clearly
non periodic), the bottom graph shows x[n] = cos( π10n

2) (periodic).

2.3.2 Symmetry

Is a signal even or odd symmetrical?

even signal x(−t) = x(t) (reflection around 0)
odd signal x(−t) = −x(t) (upside-down reflection)

Important fact
Any signal can be broken into a sum of two signals: even
and odd.

The signal x(t) is broken into even

xeven(t) =
1

2
[x(t) + x(−t)]

and odd parts

xodd(t) =
1

2
[x(t)− x(−t)]

6



Z Example:
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odd

So,

xeven(−3) =
1

2
[x(−3) + x(3)] =

1

2
[0 + 1] = 0.5

and so on, and

xodd(−3) =
1

2
[x(−3)− x(3)] =

1

2
[0− 1] = −0.5

and so on.

Useful fact: sine is an odd function, cosine is an even function:

even cos(−t) = cos(t) (can ‘fold’ along vertical axis)
odd sin(−t) = − sin(t) (can ‘spin’ around the origin)

2.4 Signal Characterization, Power and Energy

The average value of a signal, over period T is (for any t0):

〈x(t)〉 =
1

T

∫ t0+T/2

t0−T/2
x(t)dt

The total average value is:

〈x(t)〉 = lim
T→∞

1

T

∫ t0+T/2

t0−T/2
x(t)dt

Peak value
xp = max

t
|x(t)|

2.4.1 Signal Power

A signal could capture physical phenomena like power. The instantaneous
power at time t is

P (t) = |x(t)|2

(and P [n] = |x[n]|2 for DT signals) where |x(t)| is the magnitude of the [pos-
sibly complex] value at time t. Note that P (t) is a signal!

The average power of signal x(t) over a given interval of time T around
some point t0 is

P =
1

T

∫ t0+T
2

t0−T2
|x(t)|2dt

For periodical signals, it makes sense to work with the fundamental period T0.
The total average power (over an infinite interval of time) is :
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P∞ = lim
T→∞

{ 1

T

∫ t0+T
2

t0−T2
|x(t)|2dt

}

and

P∞ = lim
N→∞

{ 1

2N + 1

n0+N∑

n=n0−N
|x[n]|2

}

for CT and DT, respectively. . For periodical signals, this is equivalent to
T = T0 (the fundamental period).

2.4.2 Signal Energy

The energy of a signal in the interval between t0 to t1 is

E =

∫ t1

t0

|x(t)|2dt

=

∫ t1

t0

P (t)dt

The total energy of a signal x(t) is

E∞ =

∫ ∞

−∞
|x(t)|2dt

= lim
T→∞

{∫ t0+T
2

t0−T2
|x(t)|2dt

}

and, in the discrete domain:

E∞ =

∞∑

n=−∞
|x[n]|2

= lim
N→∞

{ 1

2N + 1

N∑

n=−N
|x[n]|2

}

i.e., the area under the instantaneous power curve over all time. .
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Infinite power/energy

• P∞ <∞ finite total average power

• E∞ <∞ finite total energy

So we can have signals with

• infinite total energy but finite total average power
(for example, x(t) = sin(t))

• infinite total energy and infinite power is (for ex-
ample, x(t) = t)

• finite total energy and finite power (for example,

x(t) =

{
1 0 ≤ t ≤ 3
0 otherwise

)

Z Example:

x(t) =





t 0 ≤ t ≤ 1
1 1 ≤ t ≤ 2
0 otherwise

−1 −0.5 0 0.5 1 1.5 2 2.5 3

−1

−0.5

0

0.5

1

1.5

2

t

x(t)

What is the total energy of this signal?

E∞ =

∫ 1

0

|x(t)|2dt+

∫ 2

1

|x(t)|2dt

=

∫ 1

0

t2dt+

∫ 2

1

12dt

=
1

3

[
t3
]1
0

+
[
1
]2
1
dt

=
[1
3

13 − 1

3
03
]

+ [2− 1]

=
1

3
1 + 1

= 1
1

3
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The root mean square value is the root square of the average power of a
signal over an interval:

xRMS =

√
1

|t2 − t1|

∫ t2

t1

|x(t)|2dt

and, of course, there is a discrete version:

xRMS =

√√√√ 1

|n2 − n1|

n2∑

n1

|x[n]|2

2.5 Transformations of the independent variable

• Time reversal
y(t) = x(−t)

• Time shifting
y(t) = x(t− td)

if td > 0 then delayed, if td < 0 then forwarded

• Time scaling
y(t) = x(λt)

where λ < 1 for expansion, λ > 1 for compression, λ = −1 for reversal

The same goes for discrete signals:

y[n] = x[−n]

and so on. In other contexts the independent variable could be other than time.
Operations can be combined. For example

y(t) = x(2t− 1)

involves a scale and a shift.

y(t) = x(−t− 1)

= x(1− t)

involves a time reversal and a shift.
However, in many cases it is safer to figure out the result graphically.
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Z Example: We have the signal

−6 −4 −2 0 2 4 6
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x[n]

upon which we wish to do the transformation:

y[n] = x[3n+ 1]

This means that the point at n = 3 in y[n] is located at n = 3·3+1 = 7
in x[n]. This can be difficult to visualise when it comes to graphing
y[n]. We can switch the equation nx = 3ny + 1, solving for ny; and
thus:

x[n] = y[
n− 1

3
]

meaning that the point n = 7 in x[n] is located at n = 7−1
3 = 3 in

y[n]. This means we can just plug in the interesting n-indices in x[n]
and get the result. In Matlab we could just do

n x = [-4:1:3]

and then
n y = (n-1)/3

Or, by hand, we start transferring points from the graph at n to n−1/3
until we see a pattern emerge, and thus until:

−6 −4 −2 0 2 4 6

−1

−0.5

0

0.5

1

 

 

y[n]

(Recall that only integer numbers n exist in a DT signal).
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Z Example: We have the signal
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x(t)

y(t) = x(4− t

2
)

This operation involves a time reversal, scale, and shift. As in the
previous example, we can reverse it:

x(t) = y(−2t+ 8)

We start transferring points from the graph at t to −2t + 8 until we
see a pattern emerge, and thus until:
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1

 

 

y(t)

A good set of animations is provided at http://www.ee.washington.edu/

class/235dl/EE235/Project/lesson2/lesson2.html

2.6 Operations on signals

• Amplitude scaling
y(t) = λx(t)

• Addition
y(t) = x2(t) + x2(t)

• Multiplication
y(t) = x2(t) · x2(t)

• Modulo
y(t) = |x(t)|

12
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• Derivative

y(t) =
d

dt
x(t)
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2.7 Basic/Elementary Signals

2.7.1 Unit impulse and unit step

The most simple signal is the unit impulse response / function, δ[n], i.e., the
“Kronecker delta”

δ[n] =

{
1 n = 0
0 n 6= 0
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1

 

 

unit impulse

which we can displace by n0,

δ[n− n0] =

{
1 n = n0

0 n 6= n0

We can multiply a signal by δ[n]

x[n] · δ[n]

or by a shifted δ[n− n0],

x[n] · δ[n− n0]

In fact, any sequence can be described by a combination of offset unit im-
pulses! Thus,

x[n] =

+∞∑

k=−∞
x[k]︸︷︷︸

constant

δ[n− k]︸ ︷︷ ︸
signal

(3)
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Z Example: The signal x[n] composed from scaled offset unit impulses
δ[n− n0] (for n0 = . . . ,−3,−2,−1, 0, 1, 2, 3, . . .):

−5 0 5
−4

−3

−2

−1

0

1

2

3

4

 

 

x[n]
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delta[n−n0]

x[n] = . . .+ 3δ[n+ 2] +−2δ[n+ 1] + 4δ[n] + 2δ[n− 1] + 4δ[n− 2] . . .

= . . .+ x[−2]δ[n+ 2] + x[−1]δ[n+ 1] + x[0]δ[n] + x[1]δ[n− 1] + x[2]δ[n− 2] . . .

The running sum of the delta over k is the unit step sequence / function,

u[n] = · · ·+ δ[−3] + δ[−2] + · · ·+ δ[n]

=

n∑

k=−∞
δ[k]

where u[n] = 1 for n =∞, and generally:

u[n] =

{
0 n < 0
1 n ≥ 0
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unit step

We could also express the unit sample δ[n] as the first backward difference
of the unit step u[n]:

δ[n] = u[n]− u[n− 1]

The continuous time unit step u(t), is similar to the discrete case:

u[n] =

{
1 t ≥ 0
0 t < 0

t0

u(t)

1
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But this function is discontinuous at 0! We instead approximate u∆(t), as

u[n] =





0 t < 0
t/∆ 0 < t < ∆

1 t ≥ ∆

for very small ∆. Therefore, we have

u(t) = lim
∆→0

u∆(t)

t0 ∆

u∆(t)

1

with derivative:

δ∆(t) =
d

dt
u∆(t) =

{
1
∆ 0 ≤ t ≤ ∆
0 otherwise

(4)

t0 ∆

δ∆(t)

1
∆

which, for very small ∆, is the continuous Kronecker delta δ(t) :

δ(t) =

{
∞ t = 0
0 t 6= 0

t0

δ(t)

1

where the 1 represents the area. As in the DT case, we can get back to the unit
step as follows (an integral instead of a sum) :

u(t) =

∫ t

−∞
δ(τ)dτ

where u(t) = 1 for t > 0 (i.e., also when t =∞).
The unit step is often used to switch functions, for example

cosωt · u(t) =

{
cosωt t ≥ 0

0 t < 0

16



eatu(t) =

{
eat t ≥ 0

0 t < 0

Note also, the rectangular pulse

π(t) =

{
1 |t| < 1

2
0 otherwise

or, generally,

π(
t

T
) =

{
1 |t| < T

2
0 otherwise

t0−T
2

T
2

π(t/T )

1

And the relation to δ(t) is via the derivative,

x(t) =
d

dt
π
( t
T

)

tδ(t+ T
2 )

−δ(t− T
2 )

d
dtπ(t/T )

and to get back again, take the integral

π(t) =

∫ t

−∞
x(τ)dτ

2.7.2 Exponential and sinusoidal signals

The continuous exponential signal is

Continuous exponential

x(t) = Ceat

with

• (real constant) C ∈ R, and

• a ∈ R

17



where a > 0 results in exponential growth , and a < 0 results in exponential
decay . This is aperiodic!

The discrete exponential signal is:

Discrete Exponential signal

x[n] = Cαn

Note here the cases where −1 < α < 0 (decreasing cone) and α < −1 (increasing
cone) behave differently :
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The complex exponential

Continuous Complex Exponential

x(t) = Ceat (5)

where C and a are complex numbers .

An important property is that this signal is periodic . This is easier to see if
we put it in form (where a = 0 + jω0):

x(t) = Aejω0t

with oscillation frequency ω0, and period

T =
2π

ω0

The discrete version

Discrete Complex Exponential

x[n] = CejΩn

(sometimes we use Ω instead of ω for discrete signals)

is only periodic if 2π
Ω is a rational number (see Section 2.3.1). Thus (recall that)

x[n] is periodic iff there exists N ∈ Z (an integer N) such that ΩN = 2π.
Therefore the periodicity condition is

N =
2π

Ω
=
a

b

where a, b ∈ Z.
See, for example, Fig. 2 .
The closely related sinusoidal signal:

Sinusoidal signal

x(t) = A cos(ω0t+ φ) (6)

where
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Figure 2: Top: plots with ω = π
4 and ω = 2π (real part); Middle: the same

under DT; Bottom: showing the complex coordinates for the DT waves, plotted
on a complex plane – careful with the axes on the bottom-right figure.

20



• A is amplitude

• t time (seconds)

• φ phase shift (radians)

• ω0 frequency (radians per second )

• T = 2π
ω0

is the fundamental period, between two peaks

and we often also see ω0 = 2πf0 where f0 is Hertz (cycles per second). Note
that the standard sine sin(t) and cosine cos(t) waves are really just special cases
of Eq. 6, where, e.g. ω0 = 1, φ = 0 in cos(t) and sin(t) = cos(t+ φ) for φ = −π2 .

Relation between complex exponential and
sinusoidal signals (Euler’s relation).

x(t) = Ceat

= |C|ejφeat

= |C|ejφejω0t

= |C|ej(ω0t+φ)

= |C|
[

cos(ω0t+ φ) + sin(ω0t+ φ)j
]

= A
[

cos(ω0t+ φ) + sin(ω0t+ φ)j
]

= A cos(ω0t+ φ) +A sin(ω0t+ φ)j

which is of course periodic! We know (from earlier) that

x(t) = ejω0(t+T )

for period T = 2π
ω0

.
If, however, a = r + jω is not purely imaginary, i.e.,
r 6= 0, we get:

x(t) = Ceat

= |C|ejφeat

= |C|ejφe(r+jω0)t

= |C|ejφertejω0t

= |C|ertej(ω0t+φ)

= Aert cos(ωt + φ) +Aert sin(ω0t+ φ)j

which is not periodic! In has exponential growth / de-
cay!

Thus, the complex exponential signal is composed of a real part and imaginary
part, which looks like:
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Note that the frequency is the same for all parts, real and imaginary. See also
Fig. 8. Now, if we assume then that a = r + jω0 is not purely imaginary (i.e.,
is a complex number with a real part r 6= 0), i.e.,

x(t) = ertejω0t

where r > 0 gives growth and r < 0 gives damping.
For example, for ω0 = 1, r = −0.1, we get:

which is clearly aperiodic, and achieves a dampening effect. See also Fig. 8.
These signals can be used to describe the characteristics of a wide variety

of physical processes, and they will become very important in Fourier analysis
and transforms, etc.

2.8 Signals as Vectors

Signals can easily be represented as vectors.
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Figure 3: Euler’s formula represented graphically. Source: Wikipedia.

Z Example: The signal x[n] for n = 0, . . . , N − 1 for N = 4

−1 0 1 2 3 4
−3

−2

−1

0

1

2

3

4

 

 

x[n]

can be represented as a vector

x =




1
4
−2
0




where x ∈ RN .

Even complex signals can be represented as vectors, as

x = xRe + jxIm

where x ∈ CN .
We can then carry out many linear algebra operations and transforms

• scaling y = αx

• addition y = x1 + x2

• transpose x>

• etc.

As other vectors, signal vectors are

• commutative x + y = y + x

• associative [x + z] + y = x + [z + y]
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Figure 4: A mix of signals added together. Top: x[t] = x1[n] + x2[n] . Bottom:
x(t) = e0.1t + sin(t)

• distributive α[x + y] = αx + αy

Note the hermitian transpose for complex vectors:

x =




1 + 2i
2 + 3i
3 + 4i


 ,xH = [1− 2i, 2− 3i, 3− 4i]

We can construct complicated signals by summing unit sample signals that
are appropriately scaled and shifted.

24



3 Systems
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3.1 Introduction

A system is

• Something that transforms signals (hardware or software)

• Representations of physical entities that react to input excitations

• A mathematical function: given x, calculate y

– independent variable = time

– dependent variable = voltage, flow rate, sound pressure, etc.

Systems can work in continuous time,

x(t) //T{·} //y(t)

or discrete time,
x[n] //T{·} //y[t]

T is the system. We can do, e.g.,

y(t) = T{x(t)}

Some examples of systems: :

• input → system → output

• sound in → mobile phone system → sound out

• water in → leaky tank system → water out

• steering wheel angle → car → position in lane

• position of hand → mass and spring system → position of mass

• spoken English → interpreting system → spoken Spanish

• etc.

Systems can be modular :

• sound in → mobile A → tower 1 → tower 2 → mobile B → sound
out

• spoken English→ transcription → translation → synthesizing → spo-

ken Spanish
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Z Example: Consider the second-order system

// ×2

��
x[n] ◦ + // square // y[n]

// square

OO

It can be represented by

y[n] = (2 · x[n] + x[n]2)2

So for x[n] = 1,
y[n] = (2 · 1 + 12)2 = 9

and for x[n] = 3,
y[n] = 225

and so on for any n ∈ Z.

Sampling and Reconstruction Sampling: converting CT signals to DT
signals, e.g.,

• audio → encode → mp3

• image → encode → jpg

and reconstruction is the opposite (converting DT to CT signals).

• zero-order hold method

• piecewise linear

Ways to represent systems

1. verbal description, e.g.,

“the output is the input plus the previous input”

2. difference equation (for DT systems)

y[n] = x[n] + x[n− 1]

or differential equation (for CT systems)

dy(t)

dt
= x(t) + αy(t)

either imperative, as above, telling what the system does, or declarative,

x[n] = y[n]− x[n− 1]

telling the rules of the system.
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3. block diagram:

x[n] ◦ delay + // y[n]OO

x(t) //+ //∫ t

−∞(·)dt //y(t)

α

OO

oo

• signals = primitives

• operators = means of combination
can build many systems from three basic operators:

– ⊕ adder; X1 +X2

– α scale/gain1; c ·X
– delay delay; RX

x[n] x[n− 1] x[n− 2]
X RX R2X
[0, 1, 0, 0, 0] [0, 0, 1, 0, 0] [0, 0, 0, 1, 0]

In CT systems, we use the integrator operator
∫ t
−∞(·)dt in-

stead of delay .

4. operator representation (systems as polynomials), e.g.,

Y = (1 +R)X

= X +RX

(with right shift / ‘delay’ operator R.) Note the equivalence to the
differential equation above.

5. tabular outputs:

n x[n] x[n− 1] y[n]
-1 0 0 0
0 1 0 1
1 1 1 2
2 0 1 1
3 0 0 0

1Normally drawn in a triangle, rather than in a square
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3.2 Interconnection of Systems

• Series (cascade)

• Parallel

• Feedback

Combinations of systems can be seen as a single system.

3.2.1 Series (cascade)

x(t) //System1

w(t) //System2
//y(t)

If System 1 multiplies by 3 and System 2 multiplies by 4 then

y(t) = 4w(t) = 4(3(x(t))) = 12x(t)

for example, with x[n] = 2,

w(t) = 3(x(t))

y(t) = 4(w(t))

= 12(x(t))

3.2.2 Parallel

// System1

v[n]

��
x[n] ◦ + // y[n]

// System2

w[n]

OO

If System 1 multiplies by 3 and System 2 multiplies by 4 then

y[n] = w[n] + v[n]

= 4x[n] + 3x[n]

= x[n][3 + 4] = 7x[n]

for example, with x[n] = 2,

w[n] = 3(x[n]) = 3 · 2 = 6

v[n] = 4(x[n]) = 4 · 2 = 8

y[n] = w[n] + v[n] = 6 + 8 = 14

= 3(x[n]) + 4(x[n]) = 6 + 8 = 14

= x[n](3 + 4)

= 7x[n] = 7 · 2 = 14

We could now make a new, single, system with just one operator: ×7.
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3.2.3 Combination

// System1

v[n]

��
x[n] ◦ +

z[n]// System3
// y[n]

// System2

w[n]

OO

We can represent block diagrams with algebraic expressions and vice versa.
Thus we can modify the algebra to create a new diagram representation, and
vice versa.
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Z Example: Consider the system:

x[n] //

��

+
y1[n] ////

��

+ //y2[n]

−1 //Delay

OO

−1 //Delay

OO

representable in operator notation as:

Y1 = (1−R)X

Y2 = (1−R)Y1

Note that we can substitute Y1 into Y2:

Y2 = (1−R)(1−R)X

= (1−R)2X

= (1− 2R+R2)X

We can do the same thing with difference equations

y1[n] = x[n]− x[n− 1]

y2[n] = y1[n]− y1[n− 1]

substituting the first into the second to get:

y2[n] = x[n]− x[n− 1]− (x[n− 1]− x[n− 2])

= x[n]− x[n− 1]− x[n− 1] + x[n− 2]

= x[n]− 2x[n− 1] + x[n− 2]

Now, we can rebuild the system under a new representation:

x[n] //

��

+ //y[n]

Delay

��

//−2

??

Delay

OO
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Z Example: Consider the system

x[n] //+ //

��

y[n]

5

``

Delayoo

��
−6

OO

Delayoo

Under operator notation, we can derive

Y = X + 5RY − 6R2Y

X = Y − 5RY + 6R2Y

= Y (1− 5R+ 6R2)

= Y (1− 2R)(1− 3R)

And, thus, we could draw this also as a cascade system:.

x[n] //+ //

��

y1[n] //+ //

��

y2[n]

−2

OO

Delay
y1[n−1]oo −3

OO

Delay
y2[n−1]oo

3.2.4 Feedback

We just saw an example of a feedback system. Another important example
(which should look familiar) is
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The accumulator

y[n] =

n∑

k=−∞
x[k] (7)

which will convert x[n] = δ[n] into y[n] = u[n].

x[n]→ ∑n
k=−∞ x[k] → y[n]

x[n] //+ //

��

y[n]OO

Delay
y[n−1]

y[n] = x[n] + y[n− 1]

n x[n] y[n− 1] y[n]
0 1 0 1
1 2 1 3
2 2 3 5
3 0 5 5
4 0 5 5

Note that we typically assume that systems start at
rest.

The CT version of the accumulator is

The integrator

y(t) =

∫ t

−∞
x(τ)dτ (8)

x(t)→
∫ t
−∞ x(τ)dτ → y(t)

which will convert x(t) = δ(t) into y(t) = u(t).

x(t) //+ // ∫ t

−∞(·)dt //y(t)OO

Note that in CT systems we use integration instead of
delays.

Adding gain, we get a feedback system like

x[n] //+ //

��

y[n]

α

OO

Delay
y[n−1]oo
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where the behaviour of the system depends on the value of α (growth if α > 1,
decay if 0 < α < 1, remain the same if α = 1). . We can write out this system
as

y[n]︸︷︷︸
output

= αy[n− 1]︸ ︷︷ ︸
growth/decay

+ x[n]︸︷︷︸
addition

Feedback systems are important in, for example, automatic control systems
like temperature-control or auto-piloting of vehicles / aircraft. .

Z Example: The above feedback system can represent a bank balance.
We can write it as

y[n]︸︷︷︸
balance

= αy[n− 1]︸ ︷︷ ︸
prev w/ interest

+ x[n]︸︷︷︸
net deposit

where α = 1 + r for interest rate r, e.g., r = 0.005. Equivalently,

y[n]− αy[n− 1] = x[n]

i.e., the net deposit since n − 1 is the same as the current balance at
n minus the balance at time n− 1 times the interest rate.

For working with feedback systems, we will need to review geometric series
and Taylor series expansion.

Deriving a closed form equation for a feedback
system

yn = αyn−1

= α(αyn−2)

= α(α(αyn−3))

= · · ·
= α(α(α . . . (αy0)))

= αny0

= y0α
n

which is an exponential signal! Note that yn is just an
alternative notation for y[n].
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Z Example: A first order difference equation; population growth. A
town with initial population p0 = 300 and growth rate r = 0.01. In 60
years, what will the population be? The population at pn is

pn = (1 + r)pn−1

= αpn−1

= p0α
n

= p0(1 + r)n

Therefore the population at p60 will be

p0(1 + r)n = 300(1 + 0.01)60 = 602

n p[n− 1] p[n] = (1 + r)p[n− 1] = y[0](1 + r)n

1 300.00 303.00
2 303.00 306.03
3 306.03 309.09
3 306.03 309.09
. . . . . . . . .
70 596.07 602.03

Thus we see the population growing exponentially. However, this model
does not take into account immigration or emigration (e.g., +xn and
−xn, respectively).

Z Example: A mortgage, at fixed 0.0274 (annual) interest rate (r =
0.0274

12 monthly), will grow from y[0] = $67, 200 (initial debt), as:

y[n] = (1 + r)y[n− 1]

for n months (we already know this from the earlier examples) and
would grow to y[30 · 12] = 152, 740 after N = 30 · 12 months (30
years). Making regular payments of x[n] = 300, it will grow as

y[n] = (1 + r)y[n− 1]− x[n]

(from here on we assume constant x = x[n] = 300 repayments). After
30 years we get

y[N ] = −14, 172

Oops, too many payments.
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Deriving a closed form equation for a feedback
system with linear emigration
Assuming some constant x and α, we have

y1 = αy0 − x
y2 = αy1 − x

= α(αy0 − x)− x
y3 = α(α(αy0 − x)− x)− x
· · · = · · ·
yN = αNy0 − (α(N−1)x− . . .− αx− x)

= y0α
N − x

N−1∑

i=0

αi

= y0α
N − xα

N − 1

α− 1

Z Example:
To pay off the mortgage from the previous example in 5 years, what
monthly payments should be made?
First we use the formula from above.

yN = y0(1 + r)N − x (1 + r)N − 1

(1 + r)− 1

= y0(1 + r)N − x (1 + r)N − 1

r

The loan will be paid back when y[N ] = 0, which implies

0 = y0(1 + r)N − x (1 + r)N − 1

r

Solving for x gives us:

x = y0
r(1 + r)N

(1 + r)N − 1

To pay back in 5 years, we plug in N = 5 · 12 = 60 months, and get

x = 1, 199.7

Payments of $1, 199.70 / month will pay off the mortgage in 5 years.

We can do more complicated things, e.g.,
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where x[n] = (1.001t); and y[n] = αy[n− 1]− x[n]. When α is complex, we get
a crazy spiral:

−60 −40 −20 0 20 40 60
−40

−20

0

20

40

60

80

a = 1.1ejπ/8 ≈ 1.0163 + 0.4210j

which is looking at the complex plain with an exponentially increasing
amplitude.

3.3 Properties

3.3.1 Memory / Memoryless

A system has memory if its output at time t0, y(t0), depends on input values
other than x(t0). Conversely, a system is memoryless if y[n] depends only on
x[n].

The integrator has memory:

y(t) =

∫ t

−∞
x(τ)dτ

as does a system
y(t) = x(t+ 5)
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The gain system is a memoryless system (aka static system),

y(t) = Kx(t)

as well as the “squarer”:
y(t) = x2(t)

3.3.2 Invertibility

An invertible system is a deterministic system where distinct inputs result in
distinct outputs. The “squarer”

y(t) = x(t)2

is not invertible, because, e.g., for y(t) = 4, there are two possible inputs: 2 and
−2. The gain system

y(t) = Kx(t)

is invertible, because

x(t) =
1

K
y(t)

and has a unique x(t) for each y(t).
We can define the identity system to be a system for which the input

equals the output. The inverse of a system T is a second system Ti that,
when cascaded with T , yields the identity system:

x(t)→ T → Ti → x(t)

the identity system for the gain example above is

x(t)→ K(·) → 1
K (·) → x(t)

3.3.3 Causality

A causal system does not anticipate future actions (i.e., the value at n0 depends
only on the input sequence for n ≤ n0). For example

y(t) = x(t+ 1)

is not causal, whereas
y(t) = x(t− 1)

is causal, because it does not take into account future inputs (at > t) to produce
an output at time t.

All physical systems are causal, but in [non-real-time / delayed] filtering, for
example, we can take into account future events, since they have already been
recorded. We can have non-causal components in a causal system:

x(t)→ delay 30s → advance 25s → x(t− 5)
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3.3.4 Stability

A system is stable when small divergences in the input don’t matter in the
output. If a stable system is used “responsibly” (i.e., with bounded input) it
will not blow up. Stable systems are difficult to upset.

We can say a system is BIBO stable if a Bounded Input always produces
a Bounded Output.

Testing a system is [BIBO] stability
If we can bound a signal x(t) to say that for a positive
finite value Bx

|x(t)| < Bx

for all time t, produces a fixed positive finite value By

|y(t)| < By

for all time t. In other words, for all bounded inputs
there is a bounded output.
To say that a system is BIBO unstable, we need to find
just one bounded input for which there is an unbounded
output.

Important: for the system to have a property, it must have the property for
all inputs. However, note that only the amplitude must be finite (not time);
and must be finite for all time.

Z Example: Testing the gain system for stability:

y(t) = Gx(t)

We pick some positive finite input Bx, which produces a bounded out-
put

|G ·Bx| < By

where, e.g., By = G ·Bx + 1, for any bounded Bx, By. This system is
stable.
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Z Example: Testing the accumulator (see Eq. 7) for stability.
Consider inputting x[n] = u[n], clearly bounded by Bx = 1 over all
time. The output is:

y[n] =

n∑

k=−∞
u[k]

There is no finite choice for By such that By < ∞ (positive finite
number) for all time n. Recall, to show that a system is not stable,
we just need to find a single exception. Thus the accumulator is an
unstable system.
The same applies to the CT accumulator:

y(t) =

∫ t

−∞
u(t)dt =

∫ t

0

1dt = t

(over all time t). So for bound Bx, we cannot find a bounded By over
all time; the system is unstable.

An unstable system is not of much value, since it can be difficult to control!

3.3.5 Time invariance

If input goes into the system tomorrow instead of today, the result will be the
same. Formally, in a time invariant system (aka, fixed system),

y(t− t0) = T [x(t− t0)]

Testing a system for time [in]variance
First:

1. Input x(t) to the system and obtain y(t), then
shift y(t) in time (replace all t with t − td) – this
is y(t− td)

2. Shift x(t) in time (replace all t with t− td), input
this x(t− td) into the system and obtain yd(t) out.

Now compare y(t − td) and yd(t) – are they the same?
If they are, then the system is time invariant.

Z Example: Is the following system time invariant?

y(t) = ex(t)

1. run x(t) through the system, we get y(t) = ex(t); next add a
delay, to get y(t− td) = ex(t−td).

2. run x(t− td) through the system, we get yd(t) = ex(t−td); com-
pare with above.

Yes, the system is time invariant.
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Z Example: Is the following system time invariant?

y(t) = cos(ω0t)x(t)

1. run x(t) through the system, we get y(t) = cos(ω0t)x(t); next
add a delay, to get y(t− td) = cos(ω0(t− td))x(t− td)

2. run x(t− td) through the system, we get yd(t) = cos(ω0t)x(t−
td); compare with above.

y(t− td) 6= yd(t)

No, the system is not time varying.

Z Example:
Is the accumulator (see Eq. 7) time invariant?

1. Run x[n] through the system; add a delay to it (replace n with
n− nd in y[n]):

y[n− nd] =

n−nd∑

k=−∞
x[k]

2. Run x[k − nd] through the system (input x[k − nd] instead of
x[k]):

yd[n] =

n∑

k=−∞
x[k − nd]

=

n−nd∑

k1=−∞
x[k1] (replace k with k1 = k − nd)

Now it is equal to the first equation (recall that k and k1 are just
dummy variables)! Therefore this system is time invariant.

3.3.6 Linearity

This is the most important of the properties that we look at. A linear system
has following properties:

• Additivity: for inputs x1(t) and x2(t):

x1(t) + x2(t)→ S → y1(t) + y2(t)

• Homogeneity: for some constant a,

ax(t)→ S → ay(t)

for some constant a.

Thus, with constants ak, k = 1, 2, we have

a1x1(t) + a2x2(t)→ S → a1y1(t) + a2y2(t)
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No physical system is linear under all operating conditions, but under some
conditions it is.

An amplifier is a linear system:

y(t) = Kx(t)

but
y(t) = x2(t)

is not linear.

Z Example: Is the following a linear system?

x(t)→ squarer → y(t) = [x(t)]2

Testing for homogeneity:

ax(t)→ ay(t)

ax(t)︸ ︷︷ ︸
input

→ [ax(t)]2 = a2 x2(t)︸ ︷︷ ︸
y(t)

= a2y(t)

And since ay(t) 6= a2y(t), it’s not homogeneous! Already not linear,
but next step would be testing for additivity:

x1(t) + x2(t)→ y1(t) + y2(t)

→ [x1(t) + x2(t)]2︸ ︷︷ ︸
input

= x2
1(t)︸ ︷︷ ︸
y1(t)

+2x1(t)x2(t) + x2
2(t)︸ ︷︷ ︸
y2(t)

but since y1(t) + y2(t) 6= y1(t) + 2x1(t)x2(t) + y2(t), it’s not additive!
This makes sense; think of x(t) = cos(t) (and y(t) = cos2(t)):
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Z Example: Testing the properties of a particular system

y(t) = sin(2t)x(t)

This system is

1. memoryless, because the output is a function of the input at the
present time;

2. not invertible, because at t = π, I can put in any input I want
but not get distinct output (it’s always 0);

3. causal, because the output does not depend on any future input.

4. stable, because the output is bounded for all bounded inputs
(sin(2t) is periodic, no matter what bounded input I put in, I will
always have bounded output – < 1 in this case);

5. time varying, because from we see that

yd(t) = sin(2t)x(t− t0) 6=y(t− t0) = sin(2(t− t0))x(t− t0)

6. and linear, since

a1x1(t) + a2x2(t)→ sin(2t)[a1x1(t) + a2x2(t)]

= a1 sin(2t)x1(t) + a2 sin(2t)x2(t)

= a1y1(t) + a2y2(t)
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3.4 Linear Time-Invariant Systems (LTIS)

A Linear Time-Invariant System (LTIS) is a system which is

• Linear (properties of homogeneity and additivity); and

• Time invariant

Why are LTI systems interesting to us?

• Able to model so many real-world systems

• . . . and can even approximate many non-linear systems with LTI systems

• We can do transforms on them: Laplace transform, Fourier trans-
form.

3.4.1 Linearity

A linear system has the properties of

• Additivity

x1(t) + x2(t)→ S → y1(t) + y2(t)

• Homogeneity: for some constant a,

ax(t)→ S → ay(t)

which together, define

• Linearity: for constants ak, k = 1, 2

a1x1(t) + a2x2(t)→ S → a1y1(t) + a2y2(t)

Therefore, if a system has these properties, we can say that it’s linear. If
we know the output for a signal x(t), we also know the output for a signal
composed of a linear combination of shifted versions of x(t). If we scale the
inputs x1(t), x2(t), . . . we scale the outputs, i.e., if the input is

x(t) = a1x1(t) + a2x2(t) + a3x3(t) + . . .

the output is given by

y(t) = a1y1(t) + a2y2(t) + a3y3(t) + . . .

in other words, letting y(t) = H[x(t)], for a linear system,

y(t) = H[a1x1(t) + a2x2(t) + a3x3(t)] = a1y1(t) + a2y2(t) + a3y3(t)

where H is the transfer function variable

y(t) = H[x(t)]

which indicates how inputs transfer to outputs.
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3.4.2 Impulse response

h(t) is the system impulse response; the system’s response to the impulse
δ(t); it completely characterizes the LTIS:

impulse δ(t) // LTIS h(t) // impulse response h(t)

We can think of the LTIS as a black box completely characterized by h(t); it
is the system output due to an impulse sequence δ(t) at the system input. The
same goes for DT; given δ[n] input into a system, the system responds with
h[n]:

x[n] = δ[n]︸ ︷︷ ︸
impulse

→ LTIS → y[n] = h[n]︸ ︷︷ ︸
impulse response

= H{δ[n]}︸ ︷︷ ︸
transfer function

δ[n]︸︷︷︸
impulse

→ LTIS → h[n]︸︷︷︸
impulse response

= H{δ[n]}︸ ︷︷ ︸
transfer function

If we multiply the impulse sequence by a constant α then, by homogeneity, the
output is also multiplies by α, i.e.,

αδ[n]→ LTIS → αh[n]

and, by time invariance,

αδ[n− k]→ LTIS → αh[n− k]

for any delay k = −∞, . . . ,−3,−2,−1, 0, 1, 2, 3, . . . ,∞. So we have:

αδ[n− k]︸ ︷︷ ︸
impulse

→ LTIS → αh[n− k]︸ ︷︷ ︸
impulse response

Therefore, we can represent any arbitrary input sequence in terms of impulse
response sequence as follows (as we saw in Eq. 3):

45



Z Example: A signal defined as a sum of shifted and scaled impulses
(from Eq. 3)
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x[n] = . . .+ x[−2]δ[n+ 2] + x[−1]δ[n+ 1] + x[0]δ[n] + x[1]δ[n− 1] + x[2]δ[n− 2] . . .

=

+∞∑

k=−∞
x[k]δ[n− k]

i.e., a sum of shifted and scaled impulses (where x[k] is acting like a
scalar ak). We can write out :

x[4]δ[n− 4] [0 0 0 0 0 0 0 0 1]
x[3]δ[n− 3] [0 0 0 0 0 0 0 -2 0]
x[2]δ[n− 2] [0 0 0 0 0 0 -4 0 0]
x[1]δ[n− 1] [0 0 0 0 0 2 0 0 0]

x[0]δ[n] [0 0 0 0 4 0 0 0 0]
x[−1]δ[n+ 1] [0 0 0 -2 0 0 0 0 0]
x[−2]δ[n+ 2] [0 0 3 0 0 0 0 0 0]
x[−3]δ[n+ 3] [0 3 0 0 0 0 0 0 0]
x[−4]δ[n+ 4] [-2 0 0 0 0 0 0 0 0]

where,

x[−4] x[−4]δ[n− 4] −2 · 1 −2
x[−3] x[−3]δ[n− 3] 3 · 1 3
x[k] x[k]δ[n− k] · ·

Thus, any LTI System is completely defined by h[n], the impulse response:

x[n]︸︷︷︸
input

→ h[n]
︸ ︷︷ ︸

black box

→ y[n]︸︷︷︸
output

therefore if we know h[n], we can get the output y[n] from any input x[n] (via
convolution)!

3.5 Convolution

The output of an LTIS can be calculated as the convolution of the input x(·)
with the impulse response h(·). The CT case is just a generalization of the
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DT case:

δ(t)︸︷︷︸
impulse

→ LTIS → h(t)︸︷︷︸
impulse response

and since we know (as a time-invariant system) that

δ(t− a)︸ ︷︷ ︸
impulse

→ LTIS → h(t− a)︸ ︷︷ ︸
impulse response

we can write any input as shifted impulses,

x(t) =

∫ ∞

−∞
x(τ)δ(t− τ)dτ

which brings us to, the

convolution integral

y(t) = x(t) ∗ h(t) =

∫ ∞

−∞
x(τ)h(t− τ)dτ (9)

In the DT case, we have the

convolution sum

y[n] = x[n] ∗ h[n] =

+∞∑

k=−∞
x[k]h[n− k] (10)

which should look familiar from the previous example. The notation x(t) ∗ h(t)
(or x[n] ∗ h[n]) is the notation for convolution.

Z Note: A more intuitive (but lesser used) notation is: (x ∗ h)[n]
instead of x[n]∗h[n], since convolution is not an operation on samples,
but rather, signals (for any time n)! In all cases be careful not to confuse
“∗”with the multiplication symbol!

Basically, we have an input x(t), we can use convolution to get the output y(t)
from an LTIS defined by h(t):

y(t) = x(t) ∗ h(t)

and in the discrete case,
y[n] = x[n] ∗ h[n]

In other words, the output of a system is the convolution of the input and the
impulse response. If we have the impulse response (the system’s response to the
unit impulse δ[n]), we can get the output for any entry signal x(t)!
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Convolution steps (DT)
To convolute x[n]∗h[n]; first, write both as functions of
k,

y[n] =
∑

k

x[k]h[n− k]

then

1. Flip h[k] (to h[−k])

2. Shift h[n− k] by changing n from n = −∞ until
there is overlap (where both are non-zero at some
point in time) between h[n− k] and x[k] begins

3. Calculate the sum of the multiplication of these
two vectors

y[n] =
∑

(h[n− k] · x[k])

4. Step n = n+ 1

5. Repeat from Step 3 until overlap ends.

In other words, convolution is like a sliding weighted average of x[n],
weighted by h[n].

Z Note: Due to the commutative property of convolution

h[n] ∗ x[n] ≡ x[n] ∗ h[n]

and therefore we could flip and shift x[n − k], and multiply with h[n]
(all instances of each reverse) and get the same result.

Notice that, if x[n] = δ[n], the result is y[n] = h[n]!
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Z Example: y[n] = x[n] ∗ h[n], where
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h[n]

First, write/draw as x[k] and h[n−k];
x[k] 0 0 1 1 1
h[k] 0 0 1 1 1

then

for all n where there is overlap between x[k] and h[n− k]:
• for n = 0:

n -2 -1 0 1 2
h[0− k] 1 1 1 0 0

x[k]× h[0− k] 0 0 1 0 0
y[0] = (

∑
x[k]× h[0− k]) = 1

• for n = 1:
n -2 -1 0 1 2

h[1− k] 0 1 1 1 0
x[k]× h[1− k] 0 0 1 1 0

y[1] = (
∑

x[k]× h[1− k]) = 2

• for n = 2:
n -2 -1 0 1 2

h[2− k] 0 0 1 1 1
x[k]× h[2− k] 0 0 1 1 1

y[2] = (
∑

x[k]× h[2− k]) = 3

• for n = 3:
n -2 -1 0 1 2

h[3− k] 0 0 0 0 1
x[k]× h[3− k] 0 0 0 1 1

y[3] = (
∑

x[k]× h[3− k]) = 2

• for n = 4:
n -2 -1 0 1 2

h[4− k] 0 0 0 0 1
x[k]× h[4− k] 0 0 0 0 1

y[4] = (
∑

x[k]× h[4− k]) = 1

And therefore, we get:
n -2 -1 0 1 2 3 4 5

y[n] 0 0 1 2 3 2 1 0
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y[n] = (x*h)[n]

Note that (in DT time) if x has nx samples, and h has nh samples, y
has ny = nx + nh − 1 samples.
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Z Example:
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1. Flip
h[−k] = [11100]

2. Shift h[n− k] (by changing n) to where overlap begins

h[0− k] = [11100]

(i.e., overlap begins at n = 0).

n = 0

3. Calculate
y[0] =

∑
(h[0− k] · x[k]) = 1

4. Step n = n+ 1 = 1

5. Calculate
y[1] =

∑
(h[1− k] · x[k]) = 2

6. Step n = n+ 1 = 2

7. Calculate
y[2] =

∑
(h[1− k] · x[k]) = 3

8. Step n = n+ 1 = 3

9. Calculate
y[3] =

∑
(h[1− k] · x[k]) = 2

10. Step n = n+ 1 = 4

11. Calculate
y[4] =

∑
(h[1− k] · x[k]) = 1

12. Stop, because overlap ends.
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y[n] = (x*h)[n]
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Z Example:

1. Flip
h[−k]

2. Shift h[n− k] (by changing n) to where overlap begins

h[−3− k]

(i.e., overlap begins at n = −3).

n = −3

3. Calculate

y[−3] =
∑

(h[−3− k] · x[k]) = −1

4. Step n = n+ 1 = −2

5. Calculate

y[−2] =
∑

(h[−2− k] · x[k]) = −1

6. Step n = n+ 1 = −1

7. Calculate
y[0] =

∑
(h[0− k] · x[k]) = 3

8. Step n = n+ 1 = 0

and so on . . . , until overlap ends.
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y[n]

Notice that the result y[n] begins (i.e., is magnitude y[n] 6= 0 for the
first time) at n = −3. This represents the starting point n where x[k]
and the shifted h[n− k] first intersect (specifically, at n = −3).
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(CT) Convolution steps
To convolute x(t) ∗h(t); first, write both as functions of
τ ,

y(t) =

∫ ∞

−∞
x(τ)h(t− τ)dτ

then

1. Flip h(τ) (to h(−τ)) t is where τ = 0 label the
piecewise parts of the function (e.g., t − 1 at τ =
−1, etc.)

2. Shift h(t−τ) from where t = −∞ until the t where
the functional form changes (e.g., where overlap
between h(t− τ) and x(τ) begins/changes)

3. While t <∞:

• Shift h(t − τ) to the right (i.e., from t =
−∞, . . .) until the functional form changes.
Record t at this point.

4. Note the t-intervals discovered, and, for each of
these intervals:

(a) Pick and label a random point in the interval
(e.g., in the middle)

(b) Draw h(t−τ), with the piecewise labels from
above

(c) Shade the overlapping area between x(τ)
and h(t− τ). Determine the upper and lower
bounds of the shaded area (these are the
bounds for the integral)

5. Solve the integrals

We can imagine CT convolution as:

y(t) = lim
∆→0

∞∑

k=−∞
x(k∆)p(t− k∆)∆

=

∫ ∞

−∞
x(τ)h(t− τ)dτ

where p(t) is the pulse (Eq. 4) of width ∆. As ∆ → 0, k∆ → τ , ∆ → dτ ,
p(t)→ δ(t). and thus Eq. 9.
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Z Example: Compute y(t) = h(t) ∗ u(t) for the system:

u(t)→ h(t) = e−atu(t) → y(t) = h(t) ∗ u(t)

y(t) = h(t) ∗ u(t)

=

∫ +∞

−∞
h(τ)u(t− τ)dτ

=

∫ t

0

e−aτdτ

=
1

−a
[
e−aτ

]t
0

=
1

−a (e−at − e−a0)

=
−1

a
(e−at − 1)

=
1

a
[1− e−at]

=

{
1
a [1− e−at] t > 0

0 t < 0
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Note that the amplitude of y(t) approaches 1
a (where a = 1 in this

plot).
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Z Example: Compute y(t) = u(t) ∗ h(t) for the system

u(t)→ h(t) = e−atu(t) → y(t) = h(t) ∗ u(t)

(identical to the previous example, but we will convolute u(t) with h(t)
instead of vice versa).

y(t) = u(t) ∗ h(t)

=

∫ +∞

−∞
u(τ)h(t− τ)dτ

=

∫ t

0

1 · u(τ)e−a(t−τ)dτ

=

∫ t

0

1 · e−ateaτdτ

=
1

a
e−at

[
eaτ
]t

0

=
1

a
e−at(eat − 1)

=
1

a
(e−at−at − e−at)

=
1

a
(1− e−at)

=

{
1
a [1− e−at] t > 0

0 t < 0

which is the same!
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Z Example: Compute the convolution y(t) = u(t) ∗ h(t) where

y(t) = x(t) ∗ h(t) = (e−tu(t)) ∗ (e−tu(t))

y(t) = x(t) ∗ h(t)

=

∫ +∞

−∞
x(τ)h(t− τ)dτ

=

∫ +∞

−∞
(e−tu(t)) ∗ (e−(t−τ)u(t− τ))dτ

=

∫ t

0

e−τe−(t−τ)dτ

=

∫ t

0

e−τe−t+τdτ

=

∫ t

0

e−τe−teτdτ

=

∫ t

0

e0e−tdτ

= e−t
∫ t

0

1dτ

= e−t · t
= te−t

=

{
te−t t > 0

0 t < 0
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Z Example: We have two boxes of the same size and position: both
from −0.5 to +0.5 (width 1) and with height 1. To convolute these
two x(t) ∗ h(t);

y(t) =

∫ ∞

−∞
x(τ)h(t− τ)dτ

First, write and graph both as functions of τ : x(τ) and h(τ). Then

1. Flip h(τ) (to h(−τ))

2. Draw h(t− τ) some distance to the left of x(τ), i.e., where t is
small. Label the left side τ = −1+t, and right side at τ = 0.5+t.

3. While t <∞:

• Shift h(t − τ) to the right (i.e., from t = −∞, . . .) until
the functional form changes. Record t at this point.

4. Set (using the t intervals we discovered):

y(t) =





0 t ≤ −1
? −1 ≤ t ≤ 0
? 0 ≤ t ≤ 1
0 t > 1

We may now draw the zero parts (where there is no overlap). For
the remaining intervals:

(a) Pick and label a random point in the interval (e.g., in the
middle)

(b) Draw h(t− τ) and label the side which falls in the interval

(c) Shade the overlapping area between x(τ) and h(t − τ).
Determine the upper and lower bounds of the shaded area
(these are the bounds for the integral)

5. Set

y(t) =





0 t ≤ −1∫ t+0.5

−0.5
1dτ = t+ 1 −1 ≤ t ≤ 0∫ 0.5

t−0.5
1dτ = −t+ 1 0 ≤ t ≤ 1

0 t > 1

Convolution as a filter We can imagine convolution not only as a black box,
but as a filter: We input a stream of data (x[n]) into the filter and obtain an
output stream y[n].

Convolution is

• an important computational tool, and

• an important conceptual tool.
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3.6 Interconnection of LTI Systems

Convolution properties

• Commutative x(t) ∗ h(t) = h(t) ∗ x(t)

• Associative [x(t)∗g(t)]∗h(t) = x(t)∗ [g(t)∗h(t)]

• Distributive x(t)∗[g(t)∗h(t)] = x(t)∗g(t)+x(t)∗
h(t)

The commutative property means that

x[n]→ h[n] → y[n]

is equivalent to

h[n]→ x[n] → y[n]

The associative property means that

x[n]→ h1[n] → h2[n] → y[n]

is equivalent to

x[n]→ h1[n] ∗ h2[n] → y[n]

and
x[n]→ h2[n] → h1[n] → y[n]

The distribute property means that

// h1[n]

��
x[n] ◦ + // y[n]

// h2[n]

OO

is equivalent to

x(t)→ h1(t) + h2(t) → y(t)

as we can also see by:

= x(t) ∗ (h1(t) + h2(t))

=

∫
x(τ)(h1(t− τ) + h2(t− τ)dτ))

=

∫
x(τ)h1(t− τ) + x(τ)h2(t− τ)dτ)

=

∫
x(τ)h1(t− τ) +

∫
x(τ)h2(t− τ)dτ)
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Invertible Systems and Deconvolution If we invert an h(t), and form an
identity system:

x(t)→ h(t) → hi(t) → x(t)

(where hi(t) is the inverse of h(t)) we note that:

h(t) ∗ hi(t) = δ(t)

3.7 (Unit) step response to an LTIS

In practice, impulses are difficult to generate and work with, so it can be difficult
to study an LTIS with impulse responses. We’re often interested in the response
of an LTIS to the unit step (refer to Section 2.7.1) or any step. Recall:

t0

u(t)

1

Like if we step up the temperature in an air-conditioning system, the voltage
in an electrical circuit, the dosage of a drug to a patient, etc.

u(t)︸︷︷︸
unit step

→ LTIS → y(t)︸︷︷︸
response

The reaction to the unit step is important. The output signal will change.
One of three things is likely to happen:

1. The system goes out of control (i.e., in an unstable system)

2. The output signal converges on some new value

3. The output signal oscillates around some new value

We are interested in

• steady state error (SSE) the error between the target step up, and the
actual signal

• rise time how fast to get from 10 percent of target value to 90 percent

• overshoot (e.g., in percent): how far does the signal initially overshoot

• settling time the time until the error settles below some specified error
threshold (e.g., in percent)

We often want to improve one of these, and usually it comes as a trade off
with the others. For example, to improve the rise time involved with the effect
of a certain drug on a patient, we risk increasing increasing overshoot.
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From the convolution integral:

y(t) =

∫ +∞

−∞
x(τ)h(t− τ)dτ

=

∫ +∞

−∞
u(τ)h(t− τ)dτ

=

∫ t

0

1 · h(t− τ)dτ

If the system is causal, then h(t − τ) is zero for (t − τ) < 0and for τ > t,
and

y(t) =

∫ t

0

h(τ)dτ (11)

where y(t) is the unit step response. It can be calculated directly from the
impulse response!

Differentiating,

h(t) =
dy(t)

dt
(12)

we see that the unit impulse can be calculated directly from the unit step re-
sponse (and thus completely describes the input-output characteristic of an
LTIS).

Z Example: Getting a step response from the impulse response.
Consider

h(t) = e−3tu(t)

This system is causal. Thus, from Eq. 11,

y(t) =

∫ t

0

h(τ)dτ

=

∫ t

0

e−3τdτ

=
[e−3τ

−3

]t
0

= (
−e−3t

−3
− 1

−3
)u(t)

=
1

3
(1− e−3t)u(t)

We can verify this, with Eq. 12:

h(t) =
d

dt
y(t)

=
d

dt

1

3
(1− e−3t)u(t)

=
1

3
(1− e−3t)δ(t) +

1

3
(−e−3t)(−3)u(t)

= −(−e−3t)u(t)

= e−3tu(t)
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4 Fourier Series
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4.1 Response of LTI Systems to Complex Exponentials

So far, we studied LTI systems because

• they can be used to construct a broad and useful class of signals, and

• the response to an LTIS provides us with a convenient representation.

Previously, we used shifted unit impulses as basic signals. Now, we will
use complex exponentials. Both advantages (above) are provided by the set of
complex exponentials (recall, Eq. 5 in Section 2.7.2):

x(t) = eat

with complex number a (or Ceat with complex numbers C and a). Note that
the LTIS changes the amplitude of this signal only! Thus,

x(t)→ LTIS → λx(t)

where x(t) is a complex exponential. In this case, it is a complex amplitude,
a function of a:

eat → LTIS → H(a)eat (13)

i.e., H(a). This system is composed as follows:

x(t)→ LTIS → λ︸︷︷︸
eigen value

x(t)

︸ ︷︷ ︸
eigen function

where

• an eigen function is a signal for which the system output is just a con-
stant times the input (a scalar multitude) x(t);

• the eigen value is the amplitude factor (the multiplier) λ.

We can derive this relation with convolution:

y(t) = h(t) ∗ x(t)

=

∫ +∞

−∞
h(τ)x(t− τ)dτ

=

∫ +∞

−∞
h(τ)ea(t−τ)dτ

=

∫ +∞

−∞
h(τ)eat−aτdτ

=

∫ +∞

−∞
h(τ)eate−aτdτ

= eat
∫ +∞

−∞
h(τ)e−aτdτ

= H(a)︸ ︷︷ ︸
λ

eat︸︷︷︸
signal
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and thus Eq. 13 with complex amplitude. In other words the response of an
LTIS to a complex exponential is the same complex exponential, but with a
change in amplitude; i.e., all complex exponentials are eigen functions of LTI
systems:

We know that we can construct complicated signals by summing unit sample
signals (see, for example, Fig. 4). We could similarly start with a family of
exponentials or sinusoidal primitives (i.e., simple sine and cosine – either
continuous or discretely sampled) and construct more complicated signals.

Important property of sinusoids in an LTIS
If the input is an eternal sinusoid, e.g.,

x(t) = cos(ωt)

the output will be an eternal sinusoid, e.g.,

y(t) = A cos(ωt+ φ)

with

• same frequency ω

• different amplitude A (may be bigger or smaller)

• different phase angle φ (may be slightly delayed)

Whereas in time analysis we broke a signal into a sum of weighted, shifted,
impulse responses, in frequency analysis (hence the use of ω) we break a
signal into a sum of sinusoids of different frequencies. We can do this on any
signal that has finite energy.

Let x(t) correspond to a linear combination of three complex exponentials
(where, e.g., a = ωj):

x(t) = C1e
a1t + C2e

a2t + C3e
a3t

The response to each separately is (for k = 1, 2, 3):

Cke
akt → LTIS → CkH(ak)eakt

i.e., the response is the sum of responses:

y(t) = C1H(a1)ea1t + C2H(a2)ea2t + C3H(a3)ea3t

More generally:

∑

k

Cke
akt → LTIS →

∑

k

CkH(ak)eakt

Thus, if we know the eigen values H(ak) then the response to a linear combi-
nation of complex exponentials can be constructed in a straightforward manner;
An LTIS can be characterized entirely by how it treats sinusoids of different fre-
quencies ω.
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The transfer function H(ω)
Defines how inputs transfer to outputs:

Y (ω) = H(ω)X(ω)

so,

H(ω) =
Y (ω)

X(ω)

Expressed in polar (magnitude-phase) form,

H(ω) = |H(ω)|ejφ(ω)

and thus

H(ω)ej2πωt = |H(ω)|ejφ(ω)ej2πωt

= |H(ω)|ej(2πωt+φ(ω))

1. |H(ω)| is the modulation transfer function
(MTF)

2. φ(ω) is the phase transfer function (PTF)

H(ω) will be important when looking at the Laplace
transform and Z transform. It can be derived from
differential equations.

4.2 Introduction to Fourier Series and Frequency Analysis

In frequency analysis, we decompose signals into sinusoids of different fre-
quencies. The famous Fourier put forth the idea that any periodic function can
be represented by a series of sines and cosines which are harmonically related.
This has many applications, including:

• Musical analysis

• Vibrating strings

• Orbits of planets

• Radiation

• Cell phones must use different frequencies

• Speech recognition / compression

• Filtering: boosting specific frequencies

• Analysis of linear systems

• Radio: Each station has it’s own frequency

Now we will look at Fourier analysis, using the concepts we have been
working with so far (see Section A):

• Transforms
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• Taylor series

• Sinusoids

• Exponentials and complex exponentials

• Euler’s relations

Fourier analysis is a type of frequency domain analysis, as opposed to the
time domain which we have been working with previously;

• time tomain x(t)

• frequency domain |x(ω)|

In a LTIS, we might want to change the frequency response. For example,
by manipulating controls in an audio system for more bass (low frequency) or
treble (high frequency). Or, in analysis of the stock market, we may want to
look at only weekly movements (high frequency), and ignore the boom/bust
cycles (low frequency), or vice versa.

In frequency analysis we deal with harmonics, analogous to in music. Sim-
ilar to what we saw above with sinusoids, note that combining the k-th and l-th
harmonic,

ejkω0t · ejlω0t = ej(k+l)ω0t

produces another harmonic (k + l) with the same fundamental frequency!
With music instruments, the same note produces the same fundamental fre-
quency, but sounds different due to the other harmonics. For example, these
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could come from two different instruments playing the same note (fundamental
frequency ω0 = 1; T0 = 2π).

4.3 Fourier Series Representation of CT Periodic Signals:
Analysis and Synthesis Equations

Almost any periodic signal con be represented by a Fourier series.
Two instruments playing the same note (i.e., at the same fundamental fre-

quency), sound different because of the different harmonics. The Fourier
series will break the sound into its frequency and harmonic (corresponding to
phase and magnitude).
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How to determine a Fourier Series Representa-
tion

1. (Optional) Confirm that it is periodic (otherwise,
use a FT!)

2. Find the fundamental period T0

3. Rewrite as exponentials using Euler’s formula

4. Reduce and collect terms

We represent signal x(t) as

Synthesis Equation

x(t) =

k=+∞∑

k=−∞
Cke

jkω0t (14)

Ck = C∗−k

The frequency ω0 is the fundamental frequency aka first harmonic. The
kω0 is called the k-th harmonic. The {Ck}s are the Fourier series coeffi-
cients; where

Analysis Equation

Ck =
1

T0

∫

T0

x(t)e−jkω0tdt (15)

and from here (Eq. 15), we get for k = 0,

C0 =
1

T0

∫

T0

x(t)dt

(the average value of x(t) over one period T0). The analysis equation shows:
how much of the k-th component there is. Note how x(t) from the synthesis
equation plugs into the analysis equation; and vice versa with respect to Ck.
Each Ck is a complex number, representable in either Cartesian form,

Ck = a+ jb

or polar / Euler form
Ck = |Ck|ejθk

(with magnitude |Ck| and phase θk = ∠Ck). Since C−k = C∗k it follows that
θ−k = −θk . For simple cases (e.g., square wave, triangle wave) there are
analytical solutions.

The sum of two terms of the same frequency kω0 gives

C−ke
−jkω0t + Cke

jkω0t = |Ck|e−jθke−jkω0t + |Ck|ejθkejkω0t

= |Ck|
[
e−j(kω0t+θk) + ej(kω0t+θk)

]

= 2|Ck| cos(kω0t+ θk)
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Figure 5: Construction of a signal from a linear combination of periodic sinusoids
x(t) = x1(t) + x2(t) + · · ·+ x5(t).

and thus, given the Fourier coefficients Ck, we can easily get the Fourier series
trigonometric form:

x(t) = C0 +

∞∑

k=1

2|Ck| cos(kω0t+ θk)

= C0 +

∞∑

k=1

[
Ak cos kω0t+Bk sin kω0t

]
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Z Example: Find the Fourier Series representation for the signal:

x(t) = sinω0t

Periodic with fundamental period T0 = 2π
ω0

. We can rewrite as expo-
nentials using Euler’s relations; reduce and collect terms:

x(t) = sinω0t

=
1

2j
[ejω0t − e−jω0t]

=
1

2j︸︷︷︸
C1

ejω0t − 1

2j︸︷︷︸
C−1

e−jω0t

=

k=+1∑

k=−1

Cke
jkω0t (The synthesis equation, Eq. 14)

where:

• C0 = 0

• C1 = 1
2j ;

• C−1 = − 1
2j ; and

• Ck 6=1,−1 = 0 (all other coefficients).
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Z Example: Consider the signal

x(t) = 1 + sinω0t+ 2 cosω0t+ cos(2ω0t+
π

4
)
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signal

which is periodic with period T0 = 2π
ω0

. Using Euler’s relation (see
Section A.2), we can manipulate the signal:

x(t) = 1 + sinω0t+ 2 cosω0t+ cos(2ω0t+
π

4
)

= 1 +
1

2j
[ejω0t − e−jω0t] + [ejω0t − e−jω0t] +

1

2
[ej(2ω0t+

π
4 ) + e−j(2ω0t+

π
4 )]

= 1 +
1

2j
ejω0t − 1

2j
e−jω0t + ejω0t − e−jω0t +

1

2
ej(2ω0t+

π
4 ) +

1

2
e−j(2ω0t+

π
4 )

= 1 + (1 +
1

2j
)ejω0t − (1 +

1

2j
)e−jω0t + (

1

2
ej

π
4 )ej2ω0t + (

1

2
e−j

π
4 )e−j2ω0t

where, in Cartesian form (a+ bj) or Euler / polar form (|C|ejθ),

Ck C−k
k = 0 1 N/A
k = 1 1 + 1

2j 1− 1
2j

k = 2 1
2e
j(π4 ) =

√
2

4 (1 + j) 1
2e
−j(π4 ) =

√
2

4 (1− j)
k ≥ 3 0 0

which we can plot as:

• magnitude |Ck|, e.g., |C1| =
√

12 + 0.52 ≈ 1.1180; and

• phase ∠Ck, e.g., ∠C1 = φ(1 + 0.5j) = 0.4360
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Note that these are even and odd functions. This is all the information
we need to reconstruct the signal.
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Z Example: Consider the signal

x(t) = 3 + 3 cosω0t+ 5 cos(2ω0t+
π

6
) + 4 sin 3ω0t
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signal

which is periodic with period T0 = 2π
ω0

. Using Euler’s relation (see
Section A.2), we can manipulate the signal:

x(t) = 3 + 3 cosω0t+ 5 cos(2ω0t+
π

6
) + 4 sin 3ω0t

= 3 + 3
1

2
[ejω0t + e−jω0t] + 5

1

2
[e2ω0t+

π
6 − e−j(2ω0t+

π
6 )] + 4

1

2j
[ej3ω0t − e−j3ω0t]

= 3 +
3

2
[ejω0t + e−jω0t] +

5

2
[e2ω0t+

π
6 − e−j(2ω0t+

π
6 )] +

4

2j
[ej3ω0t − e−j3ω0t]

= 3 +
3

2
ejω0t − 3

2
e−jω0t +

5

2
e2ω0t+

π
6 − 5

2
e−j(2ω0t+

π
6 ) +

4

2j
ej3ω0t − 4

2j
e−j3ω0t

= C0 + C1e
j1ω0t − C1e

−j1ω0t + C2e
2ω0t − C2e

−j2ω0t + C3e
j3ω0t − C3e

−j3ω0t

=

k=+3∑

k=−3

Cke
jkω0t

where

Ck C−k
k = 0 3 —
k = 1 1.5 1.5
k = 2 2.5∠π

6 2.5∠− π
6

k = 3 2∠π
2 2∠− π

2
k ≥ 4 0 0

in polar from (magnitude ∠ phase) form, where, note, the k = 3-rd
coefficient lies on purely on the imaginary axis π

2 .

−4 −2 0 2 4
0

0.5

1

1.5

2

2.5

3

 

 

magnitude

−4 −2 0 2 4
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

 

 

phase

Note how the Ck contain the phase angle (e.g., +π
6 ) information.
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Z Example: The periodic square wave:
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square wave

Note that it is periodic: T0 = 2; ω0 = 2π
T0

= π. We use the analysis
equation Eq. 15 to find:

C0 =
1

T0

∫

T0

x(t)dt

=
1

2

∫ 2

0

x(t)dt

=
1

2

[ ∫ 1

0

1dt+
1

2
+

∫ 2

1

−1dt
]

=
1

2

[
1− 1

]

= 0

and

Ck =
1

T0

∫

T0

x(t)e−jkω0tdt

=
1

2

∫ 2

0

x(t)e−jkπtdt

=
1

2

∫ 1

0

e−jkπtdt− 1

2

∫ 2

1

e−jkπtdt

=
1

2

[ 1

−jkπ e
−jkπt

]1
0
− 1

2

[ 1

−jkπ e
−jkπt

]2
1

=
1

2

1

−jkπ
[
e−jkπt

]1
0
− 1

2

1

−jkπ
[
e−jkπt

]2
1

=
1

−j2kπ
[
e−jkπt

]1
0
− 1

−j2kπ
[
e−jkπt

]2
1

=
1

−j2kπ
[
e−jkπ − 1

]
+

1

j2kπ

[
e−jk2π − e−jkπ

]

=
1

−j2kπ
[
e−jkπ − 1

]
+

1

j2kπ

[
1− e−jkπ

]

=





1
−j2kπ

[
− 1− 1

]
+ 1

j2kπ

[
1−−1

]
k is odd

1
−j2kπ

[
1− 1

]
+ 1

j2kπ

[
1− 1

]
k is even

=

{ 2
jkπ k is odd

0 k is even

Fig. 6 is drawn for k = 0,±1, . . . ,±7.
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Figure 6: Approximation of the square wave, using N = 7. As we increase N for
k±N , it will converge. Already we see some convergence. This is an illustration
of the Gibbs phenomenon.

Z Note: Recall that (via Euler):

e−j2kπ = cos k2π − j sin 2kπ

= 1− j0
= 1

for any k = . . . ,−4,−2, 0, 2, 4, . . ..

Z Note: Recall that (via Euler):

e−jkπ = cos kπ−j sin kπ =

{
1− 0 k is even
0− 1 k is odd

=

{
1 k is even
−1 k is odd

since cos(kπ) = 1 for any even k, and = −1 for any odd k; And
sin kπ = 0 for any integer k; and = 1 otherwise.

4.4 Convergence

We can approximate Eq. 14 to some N :

xN (t) =

N∑

k=−N
Cke

jkω0t

i.e., approximating x(t) with a finite linear combination of harmonically-related
complex exponentials.

Fig. 6 plots xN for N = 7. Using more coefficients (higher N) leads to a
better approximation. Fig. 7 plots the magnitude |Ck| and angle ∠Ck.

Let eN be the approximation error:

eN (t) = x(t)− xN (t) = x(t)−
N∑

k=−N
Cke

jkω0t
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Figure 7: The magnitude |Ck| and phase/frequency ∠Ck plots of the square
wave example with k = −7,−6, . . . , 0, . . . , 6, 7.

We can determine error as the measure the energy of eN (t) over one period:

EN =

∫

T0

|eN (t)|2dt

The particular choice of coefficients to minimize the energy of the error is given
by Eq. 15 (the exact expression used to determine the Fourier series coefficients).

4.5 Properties of the CT Fourier Series

1. Linearity

2. Time invariance

(a) time shifting

(b) time reversal

(c) time scaling

Lets say that the notation x(t) →FS Ck expresses the relationship between
Eq. 15 and Eq. 14 in a Fourier series of periodic signal x(t) with period T and
fundamental frequency ω0.

Linearity If x(t)↔FS Ck and y(t)↔FS Dk then we have

z(t) = αx(t) + β(y(t)↔FS Ek = αCk + βDk

Time Shifting If x(t)↔FS Ck then

x(t− td)↔FS e
−jkω0tCk

and the magnitudes of its Fourier series coefficients remain unchanged.

Time Reversal If x(t)↔FS Ck then

x(−t)↔FS C−k
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Time Scaling If x(t) =
∑∞
k=−∞ Cke

jkω0t, then

x(αt) =

∞∑

k=−∞
Cke

jk(αω0)t

The FS coefficients have not changed, only the FS representation has changed
because of the change in fundamental frequency.

Multiplication For two periodic signals x(t) (with FS coefficients Ck) and
w(t) (with FS coefficients Dk) with period T , since the product x(t)y(t) is also
periodic with the same period T ,

x(t)y(t)↔FS Ek =

∞∑

l=−∞
ClDk−l

where the right-hand side can be seen as the discrete-time convolution of the
sequence representing the Fourier coefficients of x(t) and the sequence repre-
senting the Fourier coefficients of y(t).

Conjugate and Conjugate Symmetry If x(t)↔FS Ck; then

x∗(t)↔FS C
∗
k

and if x(t) is real, i.e., x(t) = x∗(t), the FS coefficients will be conjugate
symmetric, i.e.,

C−k = C∗k

4.6 FS Representations of DT Periodic Signals

As in CT systems, x[n] = ejωn is an eigenfunction of the system, with output

y[n] = H(ejω)ejωn (16)

with eigenfunction ejωn and eigenvalue

H(ejω) =

∞∑

n=−∞
h[n]e−jωn (17)

= HReal(e
jω) + jHImag(e

jω)

= |H(ejω)|ej∠H(ejω)

where H(ejω) is the frequency response that characterizes the system.
From Eq. 16 and Eq. 17, we have:

y[n] =

+∞∑

k=−∞
h[k]ejω(n−k)

= ejωn
+∞∑

k=−∞
h[k]e−jωk︸ ︷︷ ︸
H(ejω)
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The concept of the frequency response of LTI systems is essentially the same
for CT and DT systems, except for the fact that the frequency response H(ejω)
of DT LTI systems is always a periodic function of the frequency variable ω
with period 2π.

To show this distinction to CT systems, we substitute ω + 2π into Eq. 17,
to get

H(ej(ω+2π)) =

∞∑

n=−∞
h[n]e−j(ω+2π)n

then, using the fact that e±j2πn = 1, for any integer n (i.e., integer multiple of
2π), we see that

e−j(ω+2π)n = e−jωne−j2πn = e−jωn · 1 = e−jωn

and therefore
H(ej(ω+2π)) = H(ejω)

for all ω, and more generally,

H(ej(ω+2πr)) = H(ejω)

for any integer r. The sequences

{ejωn} ≡ {ej(ω+2π)n}
for −∞ < n < −∞ are indistinguishable. This is the reason for the periodicity
in DT – the system must respond identically to both input sequences. Thus,
we only need to specify H(ejω) over one interval.

With the linear combination, we have (as in CT Eq. 14, but changed x(t)
for x[n]),

x[n] =

∞∑

k=−∞
Cke

jkω0n

and replace ω0 with (2π/N), to get

x[n] =
∑

k

Cke
jk(2π/N)n

Note again that there are only N distinct signals in this set, and we can change
k for any whole multiple of N (k + N , k + 2N , etc.), and get the identical
sequence (as opposed to the CT case). Therefore we only need to go over one
period of k. For example

x[n] =

N1∑

k=−N1

Cke
jk(2π/N)n

where, N = 2N1 + 1. Or, more generally, denoting range 〈N〉 of one period
(e.g., k = 〈N〉 = 0, 1, 2, . . . , N − 1 or k = 〈N〉 = 3, 4, . . . , N + 2),

Synthesis Equation

x[n] =
∑

k=〈N〉
Cke

jk(2π/N)n (18)

Ck = C∗−k
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Analysis Equation

Ck =
1

N

∑

n=〈N〉
x[n]e−jk(2π/N)n (19)

for x[n] periodic with N .
Note that these equations represent finite geometric series.

Z Example: Consider the signal

x[n] = sin(ω0n)

which is periodic only if 2π
ω0

is an integer or a ratio of integer. When it
is an integer N , then ω0 = 2π/N and thus

x[n] = sin
(2π

N
n
)

Expanding (with Euler’s relation), we get

x[n] =
1

2j

[
ej(2π/N)n − e−j(2π/N)n

]

=
1

2j
ej(2π/N)n − 1

2j
e−j(2π/N)n

=
∑

k=〈N〉
Cke

j(2π/N)n

where, clearly C1 = 1
2j and C−1 = − 1

2j and Ck = 0 for any other k.

Recall, that these coefficients repeat with period N , so C1+N = 1
2j

and C−1+N = − 1
2j , etc. Thus:

C1 = . . . C1−2N = C1−N = C1 = C1+N = C1+2N = . . . =
1

2j

and

C−1 = . . . C−1−2N = C−1−N = C−1 = C−1+N = C−1+2N = . . . =
1

2j

75



Z Example: Consider the signal

x[n] = sin(
2π

10
n)

where N = 2π
ω0

= 10. From the previous example, we obtain

k Ck
. . . . . .
−11 − 1

2j

−9 1
2j

−1 − 1
2j

1 1
2j

9 − 1
2j

11 1
2j

. . . . . .

In the case where 2π
ω0

is an integer ratio, i.e.,

ω0 =
2πM

N

the above example x[n] = sin(ω0n) becomes

x[n] =
1

2j
ejM(2π/N)n − 1

2j
e−jM(2π/N)n

from which we see that

CM =
1

2j
, and C−M = − 1

2j
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Z Example: Consider the signal

x[n] = 1 + sin(
2π

N
)n+ 3 cos(

2π

N
)n+ cos(

4π

N
n+

π

2
)

similar to one of the previous examples for CT FS. The signal is periodic
with period N . We can expand x[n] directly to obtain:

x[n] = 1 +
1

2j
[ej(2π/N)n − e−j(2π/N)n] +

3

2
[ej(2π/N)n + e−j(2π/N)n]

+
1

2
[ej(4πn/N+π

2 ) + e−j(4πn/N+π
2 )]

= 1 + (
3

2
+

1

2j
)ej(2π/N)n + (

3

2
− 1

2j
)e−j(2π/N)n

+ (
1

2
ej

π
2 )ej2(2π/N)n + (

1

2
e−j

π
2 )e−j2(2π/N)n

And thus, the FS coefficients are:

Ck C−k
k = 0 1
k = 1 3

2 + 1
2j

3
2 − 1

2j

k = 2 1
2j − 1

2j

Recall that these coefficients repeat for k +N , k + 2N , etc.

77



Z Example: Consider the signal x[n] with a period of N = 5:

x[n] =

{
1 n = 0, 1, 2
0 n = 3, 4

Using the analysis equation Eq. 19, we have

Ck =
1

N

∑

n=〈N〉
x[n]e−jk(2π/N)n

=
1

N

N−1∑

n=0

x[n]e−jk(2π/N)n

=
1

5

4∑

n=0

x[n]e−jk(2π/5)n

=
1

5

2∑

n=0

1 · e−jk(2π/5)n

=
1

5

[
e−jk(2π/5)0 + e−jk(2π/5)1 + e−jk(2π/5)2

]

=
1

5

[
1 + e−jk(2π/5) + e−jk(4π/5)

]

=
1

5

[
e−jk(2π/5)

(
ejk(2π/5) + 1 + e−jk(2π/5)

)]

=
1

5

[
e−jk(2π/5)

(
1 + 2 cos

(
(2π/5)k

))]

=
1

5

(
1 + 2 cos

(
(2π/5)k

))
e−jk(2π/5)

and

C0 =
1

5

2∑

n=0

1 · 1 =
3

5
= 0.6

Thus

|Ck| =
∣∣∣1 + 2 cos(

2πk

5
)
∣∣∣

and

∠Ck = ∠
(1

5

(
1 + 2 cos

(
(2π/5)k

))
e−jk(2π/5)

)

−5 0 5 10
0

1

2

3

 

 

mag(C
k
)

−5 0 5 10
−2

0

2

 

 

phase(C
k
)
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Z Example: Consider the same signal as the previous example, but
this time we will work on it from a more generic different point of view.

Ck =
1

N

Np−1∑

n=0

e−jk(2π/N)n

where Np indicates the number of positive (+1) values from 0 – Np = 3
in our particular case; we get

C0 =
1

N

Np−1∑

n=0

e−jk(2π/N)n

=
1

N

Np−1∑

n=0

1

=
Np
N

Ck =
1

N

Np−1∑

n=0

e−jk(2π/N)n

=
1

N

Np−1∑

n=0

(
e−jk(2π/N)
︸ ︷︷ ︸

α

)n

=
1

N

1− αNp
1− α

=
1

N

1− (e−jk(2π/N))Np

1− e−jk(2π/N)

=
1

N

e−jk(2π/N 1
2 )Np(ejk(2π/N) 1

2Np − ejk(2π/N) 1
2Np)

e−jk(2π/N 1
2 )(ejk(2π/N) 1

2 − ejk(2π/N) 1
2 )

=
1

N

e−jk(π/N)Np(2j sin(kNpπ/N))

e−jk(π/N)(2j sin(kπ/N))

=
1

N

e−jk(π/N)Np(sin(kNpπ/N))

e−jk(π/N)(sin(kπ/N))

=
1

N

sin(kNpπ/N)

sin(kπ/N)
e−jk(π/N)(Np−1)

which is in Euler / polar form; and equivalent to previous example for
N = 5 and Np = 3.

4.7 Properties of DT FS and comparison with CT FS

From the synthesis equation Eq. 18, we can approximate x[n],

x̂[n] =

M∑

k=−M
Cke

jk(2π/N)n
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We see that for M = 4 the partial sum exactly equals x[n]! Thus, unlike
in the CT case, there are no convergence ‘issues’ / Gibbs phenomenon – it
converges perfectly.

Frequency Shifting

x[n] =
1

2j
ejM(2π/N)n − 1

2j
e−jM(2π/N)n

Multiplication

x[n]y[n] =
∑

l=〈N〉
ClDk−l

which is basically convolution over one period (the summation variable is re-
stricted to an interval of N consecutive samples)!

Parseval’s Relation

1

N

∑

n=〈N〉
|x[n]|2

∑

n=〈N〉
|Ck|2

Establishes that the average power of a periodic signal is the same as the sum
of the average powers of all the harmonic components.
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A Appendix: Math Review
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j
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|z
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|z|
=

√ x
2
+
y
2

Figure 8: The complex plane showing Euler’s formula: z = |z|eiφ(z).

A.1 Complex Numbers

Complex number, in Cartesian form:

z = x+ iy

(where i is imaginary) i.e., z = Re(z)+Im(z); in polar form (and Euler form):

z = (r cos θ)︸ ︷︷ ︸
x

+ (r sin θ)︸ ︷︷ ︸
y

i

= |z|eiφ(z)

= r(cos θ + i sin θ)

= reiθ

by Euler’s formula, where

• r = |z| = |x+ yi| =
√
x2 + y2 is the magnitude of z

• θ = ∠z = φ(z) = atan2(y, x) is the angle or phase of z

Note that i0 = 1, i1 = i, i2 = −1, i3 = −1 and thereafter repeating
For example: 1.14 + 1.64i. Can plot, where x axis is the real part and the y

is the imaginary axis. See Fig. 8.
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Multiplying complex numbers

(1 + i)(2 + 3i) = 2 + 5i+ 3i2 = −1 + 5i

When you multiply two complex numbers, their magnitudes multiply:

|xy| = |x||y|

and their phases add:
φ(xy) = φ(x) + φ(y)

Dividing complex numbers

1. find conjugate of denominator

2. multiply numerator and denominator by this

3. simplify (recall i2 = −1, etc.)

3 + 4j

1− 2j
=

3 + 4j

1− 2j
· 1 + 2j

1 + 2j
= 5− 6j

Note that the conjugate of z = x+ iy = |z|(cos θ + i sin θ) = reiθ is

z̄ = x− iy = r(cos θ − i sin θ) = re−iθ

an alternative notation is z∗. On the complex plane, z is reflected across the
real axis (hence x stays the same but iy reverses its sign).

And this is why the magnitude of a complex number is the amplitude:

|z| =
√
x2 + y2

=
√

(r cos2 θ)︸ ︷︷ ︸
x2

+ (r sin2 θ)︸ ︷︷ ︸
y2

= r
1

2
+ r

1

2
= r
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A.2 Euler’s formula

By Euler’s formula2 we encode complex numbers with exponential notation,

Euler’s Formula

ejθ = cos θ + j sin θ

where eiθ is the vector of magnitude A and phase θ. With magnitude A, we
have

Aejθ = A cos θ +A sin θj

The conjugate is

conjugate

e−jθ = cos θ − j sin θ

and from these we can derive:

Euler’s relations

cos θ = Re{ejθ} =
1

2
[ejθ + e−jθ]

sin θ = Im{ejθ} =
1

2j
[ejθ − e−jθ]

Note, we can rewrite the sinusoid (in terms of periodic complex exponentials
of the same fundamental period) as:

A cos(ω0t+ φ) =
A

2
ejφejω0t +

A

2
e−jφe−jω0t

setting φ = 0, we can get to

A cos(ω0t+ 0) =
A

2
ej0ejω0t +

A

2
e−j0e−jω0t

=
A

2
ejω0t +

A

2
e−jω0t

=
A

2

[
ejω0t + e−jω0t

]

and setting A = 1, we get

cos(ω0t) =
1

2

[
ejω0t + e−jω0t

]

2Euler’s formula can be derived from expanding eiθ with the Taylor series, and collecting
imaginary and real parts together
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Figure 9: The complex plane, sinusoids, and Euler’s formula. Source: http:

//www.texample.net/tikz
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A.3 Geometric Series

Finite geometric series

N∑

n=0

αn =
1− αN+1

1− α

Infinite geometric series

∞∑

n=0

αn =
1

1− α

for |α| < 1 (otherwise it blows up).

Deriving the finite series

S =

N∑

n=0

xn

S = 1 + x+ x2 + x3 + x4 . . .+ xN−1 + xN

Sx = 1x+ xx+ x2x+ x3x+ x4x . . .+ xN−1x+ xNx

Sx = x+ x2 + +x3 + x4 + x5 . . .+ xN−1 + xN + xN+1

Subtracting,
S − Sx = 1− xN+1

so
S(1− x) = 1− xN+1

and thus,

S =
1− xN+1

1− x
Now, note that, as N → ∞, xN+1 → 0 (recall, |x| < 1), so we can replace it
with 0, and thus get:

∞∑

n=0

αn =
1

1− x
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A.4 Taylor Series Expansion

The Taylor series of a real or complex-valued function f(x) that is infinitely
differentiable, for example f(x) = ex (we can differentiate this d

dxe
x over and

over again) or d
dx sin(x2).

It is can be used to approximate functions that do not have a closed form
solution; particularly the transcendental functions such as ex, sinx, and
cosx.

The steps, for function f(x), are

1. Write formula for f (k)(x) where k is the number of times to take the
derivative

2. Choose constant c (if not already specified) e.g., c := 0

3. Write out summation, for k = 0, 1, 2, . . .,

f(x) ≈ f(c) + f ′(c)(x− c) +
f ′′(c)

2!
(x− c)2 + · · · (20)

and calculate coefficients until a pattern emerges

4. Compact it to sigma notation:

f(x) ≈
∞∑

k=0

f (k)(c)

k!
(x− c)k

Z Example: Taylor series expansion of the exponential function,

f(x) = ex

Now we take Eq. 20. We choose c = 0. Note that f ′(0) = 1 (since
in d

dce
c = 1 for c = 0, because d

dce
0 = e0 = 1). This means that all

f (k)(c) for any k goes to 1; thus Eq. 20 becomes

ex ≈ 1 + 1 · x+ 1 · (x− 0)2

2!
+ 1 · (x− 0)3

3!
+ . . .+ 1 · (x− 0)k

k!

≈ 1 + x+
x2

2!
+
x3

3!
+ . . .+

xk

k!

≈=

∞∑

k=1

xk

k!

With with constant c, this is the Maclaurin series:

1 + x+ x2 + x3 + · · ·

The idea is that the error term → 0 as k →∞
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Z Example: Taylor series expansion of the sine function,

sin(x) ≈ sin(c) + sin′(c) · x+
sin′′(c)

2!
· x2 +

sin′′′(c)
3!

· x3 + · · ·

≈ sin(0) + cos(0) · x+
− sin(0)

2!
· x2 +

− cos(0)

3!
· x3 + · · ·

≈ 0 + 1 · x+
0

2!
· x2 +

−1

3!
· x3 + · · ·

≈ 0 + x+ 0 +
−1

3!
· x3 + · · ·

≈ x− x3

3!
+ · · ·
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