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Multi-label Classification: An Introduction

Data instance:

Binary Classification: e.g. is this a beach? ∈ {No, Yes}
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Multi-label Classification: An Introduction

Data instance:

Binary Classification: e.g. is this a beach? ∈ {No, Yes}

Multi-class Classification: e.g. what is this?
∈ {Beach, Forest, City, People}

Multi-label Classification: e.g. which of these?
⊆ {Beach, Forest, City, People}

Multi-label classification is the supervised classification task where each
data instance may be associated with multiple class labels.
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Multi-label Classification: An Introduction

Input space: X = R
d

Instance x = [x1, . . . , xd ] ∈ X

Class labels: L = {1, 2, . . . , L}

Label space: Y = {0, 1}L

Labelset: y = [y1, . . . , yL] ∈ Y; yj = 1 if jth label relevant to x; else 0)

Training set: {(xi , yi )|i = 1, . . . ,N} ⊂ (X × Y)

Classification: h : X → Y

Prediction: ŷ = h(x)

Evaluation:

compare each ŷi with each yi (labelset accuracy); OR
compare each ŷj with each yj (label accuracy).
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Example Applications

Multi-label classification is relevant to many domains:

Text

text documents → subject categories
e-mails → labels
medical description of symptoms → diagnoses

Vision

images/video → scene concepts
images/video → objects identified/recognised

Audio

music → genres / moods
sound signals → events / concepts

Bioinformatics

genes → biological functions

Sensor Networks / Robotics

sensor inputs → states / error diagnoses
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Methods for Multi-label Classification

Problem Transformation: Using off-the-shelf binary / multi-class
classifiers for multi-label learning.
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Methods for Multi-label Classification

Problem Transformation: Using off-the-shelf binary / multi-class
classifiers for multi-label learning.

Binary Relevance method (BR) One binary classifier for each label:
ŷ ≡ [ŷ1, . . . , ŷL] = [h1(x), . . . , hL(x)]

where each yj ∈ {0, 1}

simple; flexible; fast
but does not explicitly model label dependencies
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Methods for Multi-label Classification

Problem Transformation: Using off-the-shelf binary / multi-class
classifiers for multi-label learning.

Binary Relevance method (BR) One binary classifier for each label:
ŷ ≡ [ŷ1, . . . , ŷL] = [h1(x), . . . , hL(x)]

where each yj ∈ {0, 1}

simple; flexible; fast
but does not explicitly model label dependencies

Label Powerset method (LP): One multi-class classifier; one class for
each labelset:

ŷ ≡ ĉ = h(x)

where class ĉ ∈ C, C = 2L (in practice C = distinct({y1, . . . , yN}))

models label dependencies; good accuracy
but high complexity (min(N, 2L)); overfitting; difficult for incremental
classification
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Ensembles Of Classifier Chains

Efficiently modelling label dependencies in a BR-like way using Classifier
Chains (CC) [Read et al., 2009].

BR: ŷ ≡ [ŷ1, ŷ2, . . . , ŷL] = [h1(x), h2(x), . . . , hL(x)]

CC: ŷ ≡ [ŷ1, ŷ2, . . . , ŷL] = [h1(x), h2(x, ŷ1), . . . , hL(x, ŷ1, ŷ2, . . . , ŷL−1)]
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Predictive performance depends on how labels are indexed in Y. We used
an Ensemble of (random) Classifier Chains (ECC):

competitive predictive performance

scales to large datasets (100, 000s of examples, 100s of labels)
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Ensembles Of Classifier Chains

Efficiently modelling label dependencies in a BR-like way using Classifier
Chains (CC) [Read et al., 2009].

BR: ŷ ≡ [ŷ1, ŷ2, . . . , ŷL] = [h1(x), h2(x), . . . , hL(x)]

CC: ŷ ≡ [ŷ1, ŷ2, . . . , ŷL] = [h1(x), h2(x, ŷ1), . . . , hL(x, ŷ1, ŷ2, . . . , ŷL−1)]

Predictive performance depends on how labels are indexed in Y. We used
an Ensemble of (random) Classifier Chains (ECC):

competitive predictive performance

scales to large datasets (100, 000s of examples, 100s of labels)

A probabilistic interpretation [Cheng et al., 2010]:

Px(y) = Px(y1)

L∏

j=1

Px(yj |y1, . . . , yj−1)

Improves on CC, but not ECC; complex (searches all 2L combinations)
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Labelset Mapping

An issue with classifier chains:

high memory use (large L = large feature space).

New method: k-Labelset Mapping (kLM):

k-Nearest Neighbors in the label space of BR:

ŵ = h(x), w ∈ R
L

di = euclidean dist(yi , ŵ) for yi ∈ distinct({y1, . . . , yN})
map ŵ′ = avg(y1, . . . , yk) from smallest d1, . . . , dk
map ŷ = ft(ŵ′)

e.g. [0.9, 0.0, 0.5, 0.8] 7→ {[1, 0, 0, 1]0.8, [1, 0, 0, 0]1.4, [0, 0, 0, 1]1.6} 7→
[0.6, 0.0, 0.0, 0.6] 7→ [1, 0, 0, 1]

Models label dependency like LP, fast like BR

Faster than, and competitive with CC
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But, same story: different classifiers perform better on different datasets:

BR: fast, best when labels are independent

LP-based, (e.g., kLM): good when only a few distinct labelsets
(indicating label interdependence)

CC: performs well overall by modelling label interdependence
approximately (but doesn’t specialise)

Label dependencies are the biggest influencing factor on performance,
directly and indirectly.
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Label Dependence — A Closer Look

It was always clear that:

there are dependencies (i.e., correlations) between labels; and

modelling these dependencies improves predictive performance; but

is inherently expensive (L(L−1)
2 pairwise, 2L all).
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there are dependencies (i.e., correlations) between labels; and

modelling these dependencies improves predictive performance; but

is inherently expensive (L(L−1)
2 pairwise, 2L all).

If we can discover significant dependencies, we can model only these, and
model them appropriately.

smaller, better chains for CC

only map dependent labels with kLM

etc.
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Label Dependence — A Closer Look

It was always clear that:

there are dependencies (i.e., correlations) between labels; and

modelling these dependencies improves predictive performance; but

is inherently expensive (L(L−1)
2 pairwise, 2L all).

If we can discover significant dependencies, we can model only these, and
model them appropriately.

smaller, better chains for CC

only map dependent labels with kLM

etc.

In multi-label data [Read, 2010, Dembczyński et al., 2010]:

Unconditional dependence: correlations in Y.

Conditional dependence: dependencies in Y given a specific x ∈ X
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Unconditional (In)dependence

A vector of labels Y is is unconditionally L-independent if:

p(Y) =
L∏

j=1

p(Yj)

Can measure with Mutual information,

I (Yj ;Yk) =
∑

yj∈{0,1}

∑

yk∈{0,1}

p(yj , yk) log(
p(yj , yk)

p1(yj)p2(yk)
)

or Pearson’s Correlation Coefficient

PYj ,Yk
=

cov(Yj ,Yk)

σYj
σYk
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Conditional (In)dependence

Label dependence taking into account a specific instance: P(yj |yk , x). Can
use, for example:

Four-class pairWise classification method (FW):
Models yjk ∈ {00, 01, 10, 11} for each pair of labels y1≤j<k≤L

prediction ŷ = average label votes for each yj (and use a threshold).

and compare to performance vs. BR to measure significant dependence.
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Conditional (In)dependence

Label dependence taking into account a specific instance: P(yj |yk , x). Can
use, for example:

Four-class pairWise classification method (FW):
Models yjk ∈ {00, 01, 10, 11} for each pair of labels y1≤j<k≤L

prediction ŷ = average label votes for each yj (and use a threshold).

and compare to performance vs. BR to measure significant dependence.

Table: On synthetic data with strong conditional dependence and independence.

Conditional Dependence Conditional Independence
FW BR LP CC FW BR LP CC

Subset Acc. 0.77 0.70 0.69 0.74 0.84 0.89 0.59 0.88
Labelset Acc. 0.45 0.38 0.38 0.43 0.59 0.61 0.43 0.60

Label Acc. 0.94 0.92 0.91 0.94 0.97 0.98 0.90 0.98

FW (also CC) best at modelling conditional dependence.

If complete independence, BR is best choice.
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Conditional1 and unconditional dependence and independence.
label pair conditional. uncond.

{amazed-suprised, happy-pleased} -0.565 ± 0.33 0.0
{amazed-suprised, relaxing-clam} 3.806 ± 1.028 0.476

{amazed-suprised, quiet-still} -0.422 ± 0.020 0.59
{amazed-suprised, sad-lonely} 0.566 ± 0.742 0.362

{amazed-suprised, angry-aggresive} -2.258 ± 2.071 0.126
{happy-pleased, relaxing-clam} 2.26 ± 5.283 0.028

{happy-pleased, quiet-still} 2.534 ± 0.078 0.225
{happy-pleased, sad-lonely} 3.512 ± 10.79 0.427

{happy-pleased, angry-aggresive} 1.685 ± 2.939 0.369
{relaxing-clam, quiet-still} 0.986 ± 0.021 0.455
{relaxing-clam, sad-lonely} -0.281 ± 0.082 0.19

{relaxing-clam, angry-aggresive} 1.554 ± 3.485 0.8
{quiet-still, sad-lonely} 0.425 ± 0.515 0.547

{quiet-still, angry-aggresive} 1.276 ± 9.072 0.395
{sad-lonely, angry-aggresive} 1.13 ± 1.321 0.215

115×2 CV eval(FW,D)−eval(BR,D) on training set D
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Preliminary Results; Current & Future Work

For each pair Yj ,Yk , if I (Yj ;Yk) > 0.4, train FW (yjk ∈ {00, 01, 10, 11})
for this pair, else train (BR yjk ∈ {0, 1}2). Sum votes for each label (and
use a threshold) to get a labelset prediction ŷ:

Table: Comparing performance on the Emotions dataset

BR FW BR/FW

Subset Accuracy 0.46 0.54 0.57

Labelset Accuracy 0.21 0.27 0.29

Label Accuracy 0.78 0.79 0.79
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Preliminary Results; Current & Future Work

For each pair Yj ,Yk , if I (Yj ;Yk) > 0.4, train FW (yjk ∈ {00, 01, 10, 11})
for this pair, else train (BR yjk ∈ {0, 1}2). Sum votes for each label (and
use a threshold) to get a labelset prediction ŷ:

Table: Comparing performance on the Emotions dataset

BR FW BR/FW

Subset Accuracy 0.46 0.54 0.57

Labelset Accuracy 0.21 0.27 0.29

Label Accuracy 0.78 0.79 0.79

Current/Future Work:

Combining BR with FW, LP, CC, etc.

Improving kLM, classifier chains (CC), etc.

Learning Conditional Random Fields (CRFs).

Feature selection/reduction.
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Sidetrack: Feature Selection

So far, many of the best/popular methods are based on:

binary relevance; or

LP-subsets.

For example predicting the relevance of label y1 under BR:

ŷ1 = h1(x)

Are all features in X relevant to predicting only Y1?

Answer so far: often not!

For BR, accuracy peaks using the top 30-50% of features.

Big savings to be had if we can figure out which feature subset to use
(efficiently).
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Multi-label Classification in Datastreams

Initial work ([Read et al., 2010]; from [Read, 2010] & [Bifet et al., 2009])
on instance-incremental multi-label classification in datastreams (data
arriving continuously and rapidly; concept drift expected):

Adaptive Ensembles of Classifier Chains (ECC)

Hoeffding trees as base-classifiers
reset classifiers based on current performance / concept drift

Multi-label Hoeffding Tree:

Label Powerset method (LP) at the leaves
an ensemble strategy to deal with concept drift

Experiments/Results:

generating synthetic multi-label data streams
setting a benchmark on real-world and synthetic data

Current / Future Work:

beating the benchmark

modelling label dependencies incrementally, and drift within

incremental feature selection
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Summary / Other areas of interest

Summary:

multi-label classification

multi-label methods

dependencies in multi-labeled data

more accurate / efficient methods using these dependencies

special considerations for data streams
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Summary / Other areas of interest

Summary:

multi-label classification

multi-label methods

dependencies in multi-labeled data

more accurate / efficient methods using these dependencies

special considerations for data streams

Other areas of interest:

Distributed Algorithms for Tracking in Sensor Networks

testbed implementation
particle filters
machine learning
multi-label classification
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The End
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