
Advances in Multi-label Classification

Jesse Read

Department of Signal Theory and Communications
Universidad Carlos III

Madrid, Spain

Universidad de Málaga
June 21, 2011

Introduction

Multi-label classification is the supervised classification task where
each data instance may be associated with multiple class labels.

Introduction

Multi-label classification is the supervised classification task where
each data instance may be associated with multiple class labels.
Given a predefined set of class-labels, e.g.
L = {beach, trees, urban, people} and a set of instances from
an input domain, e.g. :

Multi-class (single-label) Classification: examples are
associated with a single class label; e.g. beach.

Multi-label Classification: examples are associated with a label
subset: e.g. {beach, trees}.

Notation

Instance x = [x1, . . . , xd] ∈ R
d

Class labels: L = {1, 2, . . . , L}

Label space: Y = {0, 1}L

Labelset: y = [y1, . . . , yL] ∈ Y; yj = 1 if jth label relevant to
x; else 0)

Training set: {(xi , yi)|i = 1, . . . ,N} ⊂ (X × Y)

Classification: h : X → Y

Prediction: ŷ = h(x); or
ŵ = h(x), where ŵj ∈ [0, 1]; then ŷ = ft(ŵ); ŷj = 1ŵj≥t

Notation

Instance x = [x1, . . . , xd] ∈ R
d

Class labels: L = {1, 2, . . . , L}

Label space: Y = {0, 1}L

Labelset: y = [y1, . . . , yL] ∈ Y; yj = 1 if jth label relevant to
x; else 0)

Training set: {(xi , yi)|i = 1, . . . ,N} ⊂ (X × Y)

Classification: h : X → Y

Prediction: ŷ = h(x); or
ŵ = h(x), where ŵj ∈ [0, 1]; then ŷ = ft(ŵ); ŷj = 1ŵj≥t

Evaluation:

example ŷi = yi (labelset accuracy); OR
label ŷij = yij of example i (label accuracy).

Notation

Instance x = [x1, . . . , xd] ∈ R
d

Class labels: L = {1, 2, . . . , L}

Label space: Y = {0, 1}L

Labelset: y = [y1, . . . , yL] ∈ Y; yj = 1 if jth label relevant to
x; else 0)

Training set: {(xi , yi)|i = 1, . . . ,N} ⊂ (X × Y)

Classification: h : X → Y

Prediction: ŷ = h(x); or
ŵ = h(x), where ŵj ∈ [0, 1]; then ŷ = ft(ŵ); ŷj = 1ŵj≥t

Evaluation:

example ŷi = yi (labelset accuracy); OR
label ŷij = yij of example i (label accuracy).
choose a threshold t for ft(·)

Datasets and Statistics

N L (
∑

y)/N uniq.y Type

Music 593 6 1.87 0.046 media
Scene 2407 6 1.07 0.006 media
Yeast 2417 14 4.24 0.082 biology

Genbase 661 27 1.25 0.048 biology
Medical 978 45 1.25 0.096 medical text
Slashdot 3782 22 1.18 0.041 news
Lang.Log 1460 75 1.18 0.208 forum

Enron 1702 53 3.38 0.442 e-mail
Reuters(avg) 6000 103 1.46 0.147 news

Ohsumed 13929 23 1.66 0.082 medical text
tmc2007 28596 22 2.16 0.047 text

Media Mill 43907 101 4.38 0.149 media
Bibtex 7395 159 2.40 0.386 text
IMDB 120919 28 2.00 0.037 text

del.icio.us∗ 16105 983 19.02 0.981 text

Challenges

Multi-label learning challenges:

discovering and modelling label dependencies

dimensionality (output space of 2L instead of L)

measures of evaluation / loss functions

Label Dependence

Label independence if:

p(Y) =
L
∏

j=1

p(Yj)

This should never be the case!

Label Dependence

Label independence if:

p(Y) =
L
∏

j=1

p(Yj)

This should never be the case!

Unconditional dependence: P(y1|y2)

Conditional dependence: P(y1|y2, x)

It has been widely acknowledged that:

there are dependencies (i.e., correlations) between labels; and

modelling them improves predictive performance; but

is inherently expensive (L(L−1)
2 pairwise, 2L all).

GOAL: discover significant dependencies, and model them
appropriately.

Conditional dependence.
For pairs of labels (yj , yk), where

BR models yj ∈ {0, 1}, yk ∈ {0, 1}

FW models yjk ∈ {00, 01, 10, 11}

Table: Synthetic data with strong conditional dependence and
independence.

Conditional Dependence Conditional Independence

FW BR FW BR

Subset Acc. 0.77 0.70 0.84 0.89

Labelset Acc. 0.45 0.38 0.59 0.61

Label Acc. 0.94 0.92 0.97 0.98

Wherever there is label independence, BR is the best option.

Modelling very weak/non-existent label dependencies can be
detrimental and, it’s computationally expensive! (L vs.
L(L− 1)/2 in this case).

Problem Transformation

Transform a multi-label problem into single-label
(binary/multi-class) problems

Flexible, general, can be more scalable

Can use any off-the-shelf single-label classifier (kNN, Decision
Trees, SVMs, Naive Bayes, etc.)

Problem Transformation

Transform a multi-label problem into single-label
(binary/multi-class) problems

Flexible, general, can be more scalable

Can use any off-the-shelf single-label classifier (kNN, Decision
Trees, SVMs, Naive Bayes, etc.)

For example:

Binary Relevance (BR): one binary classifier for each label

Label Powerset (LP): every labelset is a single class-label in a
multi-class problem

Copy+Threshold (CT): one L-class multi-class problem, where
posterior probabilities are used to decided on multiple labels
(e.g. using a threshold).

Pairwise Classification (PW): decision boundary between each
label; essentially a version of CT.

Algorithm Adaptation

Adapt an existing single-label classifier for multi-label classification.

Usually problem-specific.

Often use problem transformation internally.

Algorithm Adaptation

Adapt an existing single-label classifier for multi-label classification.

Usually problem-specific.

Often use problem transformation internally.

For example:

Decision Trees, e.g. CLUS [Blockeel et al., 2006]

kNN, e.g. MLkNN [Zhang and Zhou, 2007]

Probabilistic, e.g. [McCallum, 1999]

Label Powerset (LP) Transformation

Each combination becomes a single class-label.
If L = {1, 2, . . . , 6} then we have class-labels
{000000, 000001, . . . , 111111} (26 in total).

Usually good performance, but

worst-case complexity min(2L,N) classes; and

issues with label sparsity and overfitting.

Improving LP

RAndom k-labEL Subsets (RAkEL)
[Tsoumakas and Vlahavas, 2007]:

Train m LP classifiers on label sets L1,L2, . . . ,Lm

where each Ll ⊂ L and |Ll | = k ; k < L.

e.g. L1 = {1, 3, 4},L2 = {2, 3, 6},L3 = {3, 5, 6}
(k = 3,m = 3)

complexity reduced to m ×min(2k ,N), reduces label sparsity
and overfitting (because of the ensemble)

Improving LP

RAndom k-labEL Subsets (RAkEL)
[Tsoumakas and Vlahavas, 2007]:

Train m LP classifiers on label sets L1,L2, . . . ,Lm

where each Ll ⊂ L and |Ll | = k ; k < L.

e.g. L1 = {1, 3, 4},L2 = {2, 3, 6},L3 = {3, 5, 6}
(k = 3,m = 3)

complexity reduced to m ×min(2k ,N), reduces label sparsity
and overfitting (because of the ensemble)

Ensembles of Pruned Sets (EPS) [Read et al., 2008]:

Find infrequent/rare labelsets, then create pruned sets to
replace them; then train LP.

e.g. yi = [001101] → yia = [001100], yib = [000101]

works because because of ‘long-tail’ effect: 10% of labelsets
associated with 90% of examples

up to two orders of magnitude faster in practice; reduces label
sparsity and overfitting (in an ensemble)

Binary Relevance (BR) Transformation

Each label is a separate binary problem: Y1, . . . ,YL where each
Yj = {0, 1}. ŷ = h(x) where each ŷj = hj(x) for j = 1, . . . , L.

Good time complexity (L binary models); but

does not explicitly model label correlations (poor prediction).

Improving BR

Meta-BR:

label output predictions to train a meta BR classifier:
ŷ = hmeta(h(x)).

Labelset Mapped-BR:

map output to the closest labelset (from training data):
φ(h(x)) 7→ ŷi .

Improving BR

Meta-BR:

label output predictions to train a meta BR classifier:
ŷ = hmeta(h(x)).

Labelset Mapped-BR:

map output to the closest labelset (from training data):
φ(h(x)) 7→ ŷi .

Ensembles of Classifier Chains (ECC) [Read et al., 2009]:

Pass information along a ‘chain’ of binary classifiers

Improving BR

Meta-BR:

label output predictions to train a meta BR classifier:
ŷ = hmeta(h(x)).

Labelset Mapped-BR:

map output to the closest labelset (from training data):
φ(h(x)) 7→ ŷi .

Ensembles of Classifier Chains (ECC) [Read et al., 2009]:

Pass information along a ‘chain’ of binary classifiers

ŷ1 = h1(x);

Improving BR

Meta-BR:

label output predictions to train a meta BR classifier:
ŷ = hmeta(h(x)).

Labelset Mapped-BR:

map output to the closest labelset (from training data):
φ(h(x)) 7→ ŷi .

Ensembles of Classifier Chains (ECC) [Read et al., 2009]:

Pass information along a ‘chain’ of binary classifiers

ŷ1 = h1(x); ŷ2 = h2(x, ŷ1),

Improving BR

Meta-BR:

label output predictions to train a meta BR classifier:
ŷ = hmeta(h(x)).

Labelset Mapped-BR:

map output to the closest labelset (from training data):
φ(h(x)) 7→ ŷi .

Ensembles of Classifier Chains (ECC) [Read et al., 2009]:

Pass information along a ‘chain’ of binary classifiers

ŷ1 = h1(x); ŷ2 = h2(x, ŷ1), · · · , ŷL = hL(x, ŷ1, ŷ2, . . . , ŷL−1)

i.e. instead of P(yj |x), model P(yj |x, y1, . . . , yj−1)

use in an ensemble of random chains

high performance, and approximately as fast as BR

Recent Work

A graphical model approach1:

1 identify strongest dependencies

2 form a model, e.g. 3—4—2 1—5 6

3 model {00, 01, 10, 11} between each connected pair:
e.g. 3(11)4(10)2; 1(01)5; 6(0) 7→ [0, 0, 1, 1, 1, 0]

4 much more efficient than modelling for all pairs

1work with Fernando Perez Cruz, UC3M, Madrid

Recent Work

A graphical model approach1:

1 identify strongest dependencies

2 form a model, e.g. 3—4—2 1—5 6

3 model {00, 01, 10, 11} between each connected pair:
e.g. 3(11)4(10)2; 1(01)5; 6(0) 7→ [0, 0, 1, 1, 1, 0]

4 much more efficient than modelling for all pairs

k-Labelset mapping:

1 identify strongest dependencies

2 form sets, e.g. {3,4,2}; {1,5}; {6}

3 BR classification, e.g. ŵ = h(x), where each ŵ ∈ [0, 1]

4 use Labelset-mapped BR on sets:
e.g. ŷ =

[

φ
(

ŵ3, ŵ4, ŵ2

)

, φ
(

ŵ1, ŵ5

)

, ŵ6

]

5 φ averages across the top k closest mappings (Euclidean
distance); avoids overfitting

1work with Fernando Perez Cruz, UC3M, Madrid

Recent Point of Interest: Feature Selection

Most methods look at transforming the label space, but not the
feature space. For example, BR:

ŷ = [ŷ1, ŷ2, . . . , ŷL] = [h1(x), h2(x), . . . , hL(x)]

are all features in X relevant to the jth label (of L labels in total)?
Probably not!

Recent Point of Interest: Feature Selection

Most methods look at transforming the label space, but not the
feature space. For example, BR:

ŷ = [ŷ1, ŷ2, . . . , ŷL] = [h1(x), h2(x), . . . , hL(x)]

are all features in X relevant to the jth label (of L labels in total)?
Probably not!

ECC2 [Read et al., 2011]: random feature selection across the
ensemble

LIFT [Zhang, 2011]: clustering analysis to produce
label-specific features

Recent Point of Interest: Data Streams

Data instances arrive continuously and theoretically infinitely.

incremental nature (labels / label combinations come and go
over time – an issue for LP-methods)

concept drift (label dependencies also evolve over time, and at
different rates – not just label concepts)

Recent Point of Interest: Data Streams

Data instances arrive continuously and theoretically infinitely.

incremental nature (labels / label combinations come and go
over time – an issue for LP-methods)

concept drift (label dependencies also evolve over time, and at
different rates – not just label concepts)

Batch-incremental multi-label learning [Qu et al., 2009]:

can use LP-based methods with SVMs, etc; but

must parameterise batch size w , initial buffer, etc.

can only learn from w examples; and only every w examples.

Recent Point of Interest: Data Streams

Data instances arrive continuously and theoretically infinitely.

incremental nature (labels / label combinations come and go
over time – an issue for LP-methods)

concept drift (label dependencies also evolve over time, and at
different rates – not just label concepts)

Batch-incremental multi-label learning [Qu et al., 2009]:

can use LP-based methods with SVMs, etc; but

must parameterise batch size w , initial buffer, etc.

can only learn from w examples; and only every w examples.

Instance-incremental multi-label learning [Read et al., 2010]:

incremental ECC, EPS, E-HT-PS; using Hoeffding Trees

‘preloading’ PS

concept drift monitors (ADWIN)

monitoring error rate, or label combinations
restart models when drift detected

Summary

Important to model label dependence;

but can be computationally expensive; so

model it only where necessary, and appropriately!

Ensemble methods work well, but

reduce redundancy.

Special considerations for data streams.

Blockeel, H., Schietgat, L., Struyf, J., Clare, A., and Dzeroski, S. (2006).

Hierarchical multilabel classification trees for gene function prediction (extended abstract).
In Workshop on Probabilistic Modeling and Machine Learning in Structural and Systems Biology, Tuusula,
Finland.

Elisseeff, A. and Weston, J. (2001).

A kernel method for multi-labelled classification.
In In Advances in Neural Information Processing Systems 14, pages 681–687. MIT Press.

Godbole, S., Sarawagi, S., and Chakrabarti, S. (2002).

Scaling multi-class support vector machines using inter-class confusion.
In KDD ’02: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages
513–518.

McCallum, A. K. (1999).

Multi-label text classification with a mixture model trained by EM.
In Association for the Advancement of Artificial Intelligence workshop on text learning.

Qu, W., Zhang, Y., Zhu, J., and Qiu, Q. (2009).

Mining multi-label concept-drifting data streams using dynamic classifier ensemble.
In ACML.

Read, J., Bifet, A., Holmes, G., and Pfahringer, B. (2010).

Efficient multi-label classification for evolving data streams.
Technical report, University of Waikato, Hamilton, New Zealand.
Working Paper 2010/04.

Read, J., Pfahringer, B., and Holmes, G. (2008).

Multi-label classification using ensembles of pruned sets.
In ICDM’08: Eighth IEEE International Conference on Data Mining, pages 995–1000. IEEE.

Read, J., Pfahringer, B., Holmes, G., and Frank, E. (2009).

Classifier chains for multi-label classification.
In ECML ’09: 20th European Conference on Machine Learning, pages 254–269. Springer.

Read, J., Pfahringer, B., Holmes, G., and Frank, E. (2011).

Classifier chains for multi-label classification.
Machine Learning.

